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Calculus of Variation [mln78]

Given a functional f(y, y′; x) with y′ = dy/dx,
determine the path y(x) between fixed end-
points y(x1) = y1, y(x2) = y2 such that the
following integral is an extremum:

J =

∫ x2

x1

dx f
(
y(x), y′(x); x

)
.

y

x1 x2

x

y
2

y1

Variation of path: y(x, α) = y(x, 0) + αη(x) with η(x1) = η(x2) = 0.

Parametrized integral: J(α) =

∫ x2

x1

dx f
(
y(x, α), y′(x, α); x

)
.

Extremum condition:

(
dJ

dα

)
α=0

= 0 for arbitrary η(x).

Differentiation:
dJ

dα
=

∫ x2

x1

dx

(
∂f

∂y

∂y

∂α
+

∂f

∂y′
∂y′

∂α

)
.

Integration by parts (second term):∫ x2

x1

dx
∂f

∂y′
∂2y

∂x∂α
=

[
∂f

∂y′
∂y

∂α

]x2

x1

−
∫ x2

x1

dx

[
d

dx

(
∂f

∂y′

)]
∂y

∂α
.

Substitute and use (∂y/∂α)α=0 = η(x):

⇒
∫ x2

x1

dx

(
∂f

∂y
− d

dx

∂f

∂y′

)
η(x) = 0.

Requirement that integral must vanish for arbitrary η(x) implies

Euler’s equation:
∂f

∂y
− d

dx

∂f

∂y′ = 0.

Notation used in calculus of variation:

Variation of path:

(
∂y

∂α

)
α=0

dα
.
= δy.

Variation of integral:

(
dJ

dα

)
α=0

dα
.
= δJ .

⇒ δJ =

∫ x2

x1

dx

(
∂f

∂y
− d

dx

∂f

∂y′

)
δy = 0.



[mex26] Shortest path between two points in a plane I

Use the calculus of variation to prove that the shortest path between two points A and B in the
(x, y)-plane is a straight line y(x) = ax+ b.

y

A

x

B

Solution:



[mex27] Economy plastic cup

A manufacturer of plastic cups receives an order for cups of given height, diameters at the top and
bottom, and material thickness. Determine the profile y(x) at z = 0 of the cup which minimizes
the amount of plastic needed for each cup.

y(x)

x

y

z

Solution:



Variational Problem with Auxiliary Condition [mln16]

Search for a function y(x) that yields an extremum of the integral

J =

∫ x2

x1

dx f [y(x), y′(x); x]

subject to an auxiliary condition in the form of the integral constraint

C =

∫ x2

x1

dx σ[y(x), y′(x); x] = const.

Use the functional Fλ[y(x), y′(x); x] = f [y(x), y′(x); x] + λσ[y(x), y′(x); x],
where λ is an undetermined Lagrange multiplier.

Find the extremum of Jλ =

∫ x2

x1

dx Fλ[y(x), y′(x); x].

This leads to Euler’s equation
∂Fλ

∂y
− d

dx

(
∂Fλ

∂y′

)
= 0.

Then adjust the value of λ in the solution such that the auxiliary condition
is satisfied.

Examples:

• Isoperimetric problem [mex28]

• Catenary problem [mex38]



[mex28] Isoperimetric problem

Consider a fence of length L constructed in such a manner as to connect two points of a wall that
are a distance 2a apart. Use the calculus of variation with an auxiliary integral constraint to show
that the shape of the fence must be part of a circle.

L

y

−a 0 a
x

Solution:



[mex38] Catenary problem

Consider a chain of length L and mass per unit length ρL. Its ends are suspended from two
fixed points which are positioned at the same height and a distance 2a apart. Use the calculus of
variation with an auxiliary integral constraint to show that the shape of the chain is described by
the function y(x) = A−B cosh(x/B), where A,B are constants.

x
−a +a

g

y

Solution:



[mex29] Athletic refraction

An athlete starts at point A and wants to reach point B in the shortest possible time by running
over land and swimming across water. Her running speed is v1 = 7m/s and her swimming speed
v2 = 1m/s. (a) At which point (x, y) = (100m, ??) should she dive into the water along the optimal
path and in what time does she finish the race? (b) Derive Snell’s law, sin θ1/ sin θ2 = v1/v2, from
this extreme-value calculation and identify the angles θ1, θ2 in the illustration below.

B

land

water

100m

100m 100m
x

y

A

Solution:



[mex30] Brachistochrone problem I

A particle of mass m slides from rest down from point A to point C along a frictionless path
consisting of two straight-line segments that are joined at point B with coordinates (x, y) =
(100m, ??). At what height should point B be positioned to make the particle travel from A to C
in the shortest time. Find the time tO it takes the particle to travel from A to C along the optimal
path and the time tS along a straight path.

A

100m

100m 100m
x

y

B

C

g=9.8m/s2

Solution:



[mex31] Brachistochrone problem II

A particle of mass m slides from rest at the origin of the coordinate system down to the point E
along a frictionless path. (a) Use the calculus of variation to determine the path along which the
particle arrives at E in the shortest time. (b) Determine the time it takes the particle in [mex30]
to travel from A to C along a path such as found in (a).

2

E

y

xO

g=9.8m/s

Solution:



[mex144] Isochronous potential well

A particle is constrained to move under the influence of a uniform gravitational field g on a
curve y(x) with a minimum at x = 0 in a vertical plane. Find the shape of the curve such that
the oscillations of the particle about this potential minimum have a period that is independent
of the amplitude. This is accomplished by requiring that the potential energy (here mgy) is
proportional to the square of the arc length s from x = 0, just as is the case in a harmonic
oscillator. Use 1

2ks
2 = mgy, where k is the equivalent spring stiffness, and set mg/k = 4a, where a

is a characteristic length of the potential well. Find the maximum half width ∆x and the maximum
height ∆y of the potential well for which this scheme works and express these measures in units
of a. Find the value of a which makes the period of oscillation one second (1s) for g = 9.8m/s2.
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x
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y
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y

m

Solution:



Geodesics [mln38]

The term geodesic originates from surveying the Earth’s surface over dis-
tances so large that its curvature is significant.

Mathematical definition:
A geodesic is the shortest line between two points on any given surface.

Applications:

• Geodesics on a plane are straight lines [mex26], [mex117].

• Geodesics on a sphere lie on great circles [mex118].

Relation to dynamics:
Consider a particle of mass m that is constrained to move on a surface spec-
ified by a holonomic constraint g(x, y, z) = 0 and is not subject to any forces
other than the forces of constraint. The path of such a particle consists of
segments that are all geodesics.

Sketch of a proof: The potential energy V is identically zero and the energy
E is conserved. Therefore the kinetic energy T , the speed v of the particle,
and the Lagrangian L = T − V are constants. Now consider Hamilton’s
principle for paths with constant L. The action J is then minimized if the
time of travel, t2−t1, is minimized, which, in turn, is the case on the shortest
path, i.e. on a geodesic.

Clairaut’s theorem:
Consider a surface of revolution described by cylindrical coordinates z, φ, r(z).
Suppose a particle with mass m, constrained to move on that surface, is
launched with a speed v0 at φ = z = 0 in a direction at an angle α0 from
the meridian. (The intersection between the surface and a plane through
its axis produces two meridians.) From the conservation of kinetic energy
and the conservation of angular momentum around the axis it follows that
r sin α = const holds along the path of the particle.

Applications:

• Dynamical trap without potential energy [mex119].

• Vertical range of particle sliding inside cone [mex120].



[mex117] Shortest path between two points in a plane II

Use the calculus of variation to prove that the shortest path between two points A and B in the
(x, y)-plane is a straight line: r = D/ cos(φ − φ0). Perform the entire calculation using polar
coordinates.

r
B

A

D
φ

0
φ

Solution:



[mex118] Geodesic on a sphere

Use the calculus of variation to prove that the shortest path between two points A and B on a
sphere of radius r is a great circle. A great circle is the intersection between the sphere and a plane
that goes through the center of the sphere.

Solution:



[mex119] Dynamical trap without potential energy

Consider a surface of revolution with cylindrical coordinates z, φ, r(z) = (1 + z2)−1. A particle of
mass m is constrained to move on that surface without friction. It is launched at z = 0 with a
speed v0 in a direction at 45◦ relative to the meridian. Find the maximum value of |z| the particle
reaches along its trajectory.

z
v0

Solution:



[mex120] Vertical range of particle sliding inside cone

Consider a conical surface with vertical axis (z) and apex with angle 2α at the bottom in a uniform
gravitational field g. A particle of mass m is projected horizontally with velocity v0 at a distance
R from the axis on the inside of the cone. (a) How must v0 be chosen to keep the particle on
a horizontal circular path? (b) If v0 is smaller (larger) than the value required to keep it on a
horizontal circle, the resulting path will explore a band with rmin ≤ r ≤ R (R ≤ r ≤ rmax). Find
rmin and rmax.

0

α
g

vR

Solution:



Extremum Principles [msl20]

• Hero of Alexandria (2nd century BC) : A ray of light traveling from
one point to another by reflection from a plane mirror always takes the
shortest possible path. ⇒ Law of reflection.

• Fermat (1657): A ray of light traveling through the interface of op-
tically different media chooses the path that requires the least time.
⇒ Law of refraction.

• Newton, Leibniz, Bernoulli, Euler: Development of the calculus
of variation. Solution of important extremum problems.

• Maupertuis (1747): The motion of a dynamical system subject to
constraints proceeds in a way that minimizes the action (principle of
least action). ⇒ Equations for trajectories.

• Hamilton (1834): Of all possible paths along which a dynamical sys-
tem may move between two points within a specified time interval and
consistent with any constraints, the actual path followed is that for
which the action integral is an extremum. ⇒ Equations of motion.

Action integral: J =

∫ t2

t1

dt L(q1, . . . , qn; q̇1, . . . , q̇n; t).

Hamilton’s principle: δJ = 0.

Lagrange equations:
∂L

∂qj

−
d

dt

∂L

∂q̇j

= 0, j = 1, . . . , n.

Lagrange equations are Euler equations for Hamilton’s extremum principle.

q

t
t t1 2



Generalized Forces of Constraint
and Hamilton’s Principle [mln17]

Lagrangian: L(q1, q2, q̇1, q̇2, t).

Holonomic constraint: f(q1, q2, t) = 0.

Action integral: J(α) =

∫ t2

t1

dt L(q1, q2, q̇1, q̇2, t), qi(t, α) = qi(t, 0) + αηi(t).

⇒ dJ

dα
=

∫ t2

t1

dt

[(
∂L

∂q1

− d

dt

∂L

∂q̇1

)
∂q1

∂α
+

(
∂L

∂q2

− d

dt

∂L

∂q̇2

)
∂q2

∂α

]
α=0

= 0.

Constraint:
df

dα
=

∂f

∂q1

∂q1

∂α
+

∂f

∂q2

∂q2

∂α
= 0 ⇒ η2(t) = −η1(t)

∂f/∂q1

∂f/∂q2

.

⇒ dJ

dα
=

∫ t2

t1

dt

[(
∂L

∂q1

− d

dt

∂L

∂q̇1

)
−

(
∂L

∂q2

− d

dt

∂L

∂q̇2

)
∂f/∂q1

∂f/∂q2

]
η1(t) = 0.

⇒
(

∂L

∂q1

− d

dt

∂L

∂q̇1

) (
∂f

∂q1

)−1

=

(
∂L

∂q2

− d

dt

∂L

∂q̇2

) (
∂f

∂q2

)−1

= −λ(t).

This results in 3 equations for the unknown functions q1(t), q2(t), λ(t):

∂L

∂qi

− d

dt

∂L

∂q̇i

+ λ(t)
∂f

∂qi

= 0, i = 1, 2; f(q1, q2, t) = 0.

Generalized forces of constraint: Qi(t) = λ(t)
∂f

∂qi

, i = 1, 2.

Generalization to n coordinates and k constraints:

L(q1, . . . , qn, q̇1, . . . , q̇n, t) with fj(q1, . . . , qn, t) = 0, j = 1, . . . , k.

∂L

∂qi

− d

dt

∂L

∂q̇i

+
∑

j

λj(t)
∂fj

∂qi

= 0, i = 1, . . . , n,

∑
i

∂fj

∂qi

dqi +
∂fj

∂t
dt = 0, j = 1, . . . , k.

Applications:

• Static frictional force of constraint [mex32].

• Normal force of constraint [mex33]

• Particle sliding down sphere [mex34]

• Particle sliding inside cone: normal force of constraint [mex159]



[mex160] Bead sliding down cylindrical spiral

A bead of mass m slides down (from rest and without friction) a spiral with vertical axis: z =
aφ, r = R in cylindrical coordinates.
(a) Write the Lagrangian L(z, r, φ, ż, ṙ, φ̇) and the two equations of holonomic constraint, fj(z, r, φ) =
0, j = 1, 2. Derive the Lagrange equations.
(b) From the three Lagrange equations and the two equations of constraint determine the three
coordinates z(t), r(t), φ(t) and the two Lagrange multipliers λj(t), j = 1, 2.
(c) Infer the generalized force of constraint for each cylindrical coordinate.
(d) Show that the results are consistent with J̇z = Nz, where Jz is the angular momentum of the
bead and Nz is the torque exerted by the spiral on the bead.

Solution:



[mex122] Massive dimer on skates

Consider two particles of mass m connected by a rigid rod of negligible mass and length ` which
rotates freely about its center of mass. In addition, the center of mass undergoes translational
motion constrained by the requirement that it must by perpendicular to the direction of the rod at
all times. This system has one holonomic and one nonholonomic constraint. (a) Use the holonomic
constraint to express the Lagrangian L(x, y, θ, ẋ, ẏ, θ̇), where x, y are the center-of-mass coordinates
and the θ is the angle between the rod and the x-axis. (b) Express the nonholonomic constraint
as a relation between ẋ, ẏ, θ. (c) Derive the equations of motion in the form of three Lagrange
equations and one equation of (nonholonomic) constraint. (d) Solve these equations of motion for
the initial conditions x(0) = y(0) = 0, ẋ(0) = 0, ẏ(0) = v0 > 0, θ(0) = 0, θ̇(0) = ω > 0. (e)
Determine the forces of nonholonomic constraint.

2

c.m.

(x  ,y  )

m
θ

(x,y)

(x  ,y  )1 1

m

x

y

2

Solution:



[mex161] Massive dimer skating on incline

The massive dimer on skates described in [mex122] is now moving on an incline. The y-axis is
tilted an angle α above the horizontal. (a) Write the Lagrangian L(x, y, θ, ẋ, ẏ, θ̇), where x, y are
the center-of-mass coordinates and the θ is the angle between the rod and the x-axis. (b) Express
the nonholonomic constraint as a relation between ẋ, ẏ, θ. (c) Derive the equations of motion in
the form of three Lagrange equations and one equation of (nonholonomic) constraint. (d) Solve
these equations of motion for the initial conditions x(0) = y(0) = 0, ẋ(0) = 0, ẏ(0) = v0 > 0,
θ(0) = 0, θ̇(0) = ω > 0. (e) Determine the forces of nonholonomic constraint.

2

c.m.

(x  ,y  )

m
θ

(x,y)

(x  ,y  )1 1

m

x

y

2

Solution:



[mex162] Wave equation from Hamilton’s principle

Consider a violin string of length ` and mass per unit length ρ under tension F . Use Hamilton’s
principle to derive the wave equation and determine the speed of transverse wave propagation c.

Solution:
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