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Rigid quantum Monte Carlo simulations of condensed molecular matter:
Water clusters in the n=2\8 range

Stephen F. Langley and E. Curottoa�

Department of Chemistry, Arcadia University, Glenside, Pennsylvania 19038-3295
and Department of Physics, Arcadia University, Glenside, Pennsylvania 19038-3295

D. L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881-1966

J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912-9127

�Received 8 November 2006; accepted 11 January 2007; published online 27 February 2007�

The numerical advantage of quantum Monte Carlo simulations of rigid bodies relative to the flexible
simulations is investigated for some simple systems. The results show that if high frequency modes
in molecular condensed matter are predominantly in the ground state, the convergence of path
integral simulations becomes nonuniform. Rigid body quantum parallel tempering simulations are
necessary to accurately capture thermodynamic phenomena in the temperature range where the
dynamics are influenced by intermolecular degrees of freedom; the stereographic projection path
integral adapted for quantum simulations of asymmetric tops is a significantly more efficient
strategy compared with Cartesian coordinate simulations for molecular condensed matter under
these conditions. The reweighted random series approach for stereographic path integral Monte
Carlo is refined and implemented for the quantum simulation of water clusters treated as an
assembly of rigid asymmetric tops. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2484229�

I. INTRODUCTION

A number of recent investigations have contributed to
the development, testing, and applications of path integral1–3

Monte Carlo methods4–25 in non-Euclidean manifolds26–28

arising in molecular condensed matter theory, whenever ho-
lonomic constraints are employed. Among the earliest at-
tempts reported in the literature, one finds the simulation of
bulk rigid water carried out in quaternion space with the
fixed axis approximation.29 When there is a small number of
linear rotors present in the system simulated, it is possible to
split the kinetic energy operator in the density matrix expres-
sion. The angular momentum terms are isolated and then
treated by vector space methods.30–34 Such an approach has
been used to handle the simulation of a linear covalent mol-
ecule on surfaces,30,31 a linear molecule solvated by noble
gas atoms,32–34 and para-D2, ortho-D2 clusters.35 Other au-
thors have reported path integral Monte Carlo �PIMC� meth-
ods in torsional space using time slicing and angular
variables.36,37 In a series of articles38–42 we have introduced
and refined methodologies to carry out PIMC methods in
rotational and torsional manifolds based on the DeWitt
formula.2 We have established that torsional spaces and ro-
tational spaces can be mapped using a general strategy; the
maps are bijections from the manifold to an equidimensional
Euclidean space. The stereographic projection coordinates
extend from negative to positive infinity; therefore, once the
metric of the manifold is transformed, it becomes possible to

simulate the random walk using these “Cartesian-type” coor-
dinates and to map the diffusion process back into the mani-
fold. The one-to-one nature of the map between the angular
variables and the stereographic projections is the key for the
faithful representation of random paths in the manifold. In
this manner, the notoriously difficult problem of evaluating
the path integral inside open sets and the problem of impos-
ing boundary conditions on the time evolution operator are
avoided. Furthermore, using stereographic projections, it is
possible to expand paths using a random series after gener-
alizing the Feynman-Kaç formula in non-Euclidean spaces.
This latter advance allows one to develop a fast converging
algorithm for the PIMC method, without the need to evaluate
the gradient or the Hessian of the potential. Additionally, one
can develop efficient estimators based on numerical deriva-
tives of the action; this development has been recently re-
ported for path integral simulations with Cartesian coordi-
nates by one of our groups.22,23 The extension of these
techniques to non-Euclidean manifolds mapped with stereo-
graphic projections has been tested recently.42 Rigid hydro-
gen fluoride �HF� clusters from the dimer to the octamer
have been simulated.42 Rigid diatomic molecules are linear
rotors; however, these calculations would be intractable if the
angular terms were treated with vector spaces.

The present article has two main purposes. Firstly, we
investigate the efficiency gained in PIMC simulations of mo-
lecular condensed matter when holonomic constraints are
used. Secondly, we make use of new improvements in the
stereographic projection path integral algorithms applied to
Cartesian products of inertia ellipsoid spaces to simulate wa-a�Electronic mail: curotto@arcadia.edu
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ter clusters of several sizes in the 100–500 K range. For the
investigation of the efficiency gain, in particular, we are in-
terested to learn how rigid body simulations are more effi-
cient than flexible ones in quantum simulations. It is well
known that rigid body simulations improve the efficiency of
thermodynamic estimators in Metropolis simulations. How-
ever, the efficiency gained by treating high frequency modes
rigidly has not been investigated carefully for quantum par-
allel tempering simulations.43–46 The gain in efficiency in
classical Metropolis simulations of rigid bodies is usually
quantifiable as a decrease in the statistical fluctuation at all
the temperatures.47–49 We expect the same to hold for parallel
tempering simulations. However, we anticipate that in quan-
tum simulations the efficiency of the rigid body algorithms
will have two contributions; the first should be a similar
decrease in statistical fluctuations of the estimated thermody-
namics properties, and the second, and probably more impor-
tant contribution is the convergence with respect to the num-
ber of path variables of the properties, at temperatures where
the high frequency modes are predominantly in the ground
state. In this case, one expects the path integral Monte Carlo
approach based on Cartesian coordinates to experience non-
uniform convergence. Nonuniform convergence can be expe-
rienced even when highly efficient accelerating schemes,
such as the reweighted random series �RRS� method, are
employed in spaces mapped by Cartesian coordinates. In or-
der to verify these statements, we carry out a number of
numerical tests. We choose a coupled, harmonic, many-
particle one-dimensional system �a harmonic chain� to inves-
tigate the convergence issue with path integral simulations.
The knowledge of the eigenvalues of the Hessian for the full
system and its adiabatic limit allows us to use analytical
formulas for the heat capacity as a function of T and the
Trotter number. Both primitive convergence and cubic con-
vergence can be inspected analytically for the full system
and its adiabatic limit. One can learn a great deal about the
convergence behavior of the four estimators by inspecting
graphs of the heat capacity as a function of the two variables.
The harmonic chain is a reasonable yet simple model for
condensed molecular matter, where the complications that
require differential manifolds are avoided by restricting the
motion to translations in one dimension only.

We carry out several rigid body quantum simulations for
water clusters in the dimer through the octamer range.50 For
this purpose, we revisit the RRS method recently developed
for non-Euclidean manifolds, and we find a simple but im-
portant improvement for its numerical implementation. We
simulate a particle in a ring and a rigid water monomer, with
its rotations hindered by an external potential field to test the
new improvements.

The remainder of this article is organized as follows: The
improved RRS stereographic projection path integral for
simulations in non-Euclidean spaces is discussed in Sec. II.
All the numerical tests are presented in Sec. III. Section IV
contains our conclusions.

II. METHODS

The partial averaging method and RRS approach have
been extended to non-Euclidean spaces in a series of previ-

ous works.38–42 We revisit the basic theory in the present
manuscript since a computationally more efficient approach
is developed. We begin with the elements of the density ma-
trix in non-Euclidean manifolds,

��q,q�,�� =� Dq exp�Ag −
1

�
�

0

��

d��1

2
g�� q̇�q̇� + V�	 ,

�1�

where Ag contains the natural logarithm of the square root of
the determinant of the metric tensor evaluated at every point
along the path. To develop the equivalent of the Feynman-
Kaç formula in non-Euclidean spaces, we introduce a conve-
nient reference space,

��q,q�,��

�0�q,q�,��

=

Dq exp�− �1/��
0

��d��L�0� + �L + V��


Dq exp�− �1/��
0
��d�L�0��

. �2�

The symbol L�0� represents a potential-free Lagrangian for a
system of particles constructed in a convenient reference
space of equal dimensionality with a constant �i.e., configu-
ration independent� metric tensor,

L�0� =
1

2
g��

�0� q̇�q̇�. �3�

The Lagrangian L�0� is used to handle the tail portion of the
path truncated by the primitive algorithm to improve conver-
gence. The geometric interaction is defined as

�L = −
N

2�
ln�det�g���� +

1

2
�g�� − g��

�0��q̇�q̇�. �4�

On the right, it is assumed that a trapezoid quadrature with N
points is used to evaluate the integral in u=� /�� so that

−
1

�
�

0

��

d�−
N

2�
ln�det�g�����

=
N

2
�

0

1

du�ln�det�g�����

=
1

2�
i=1

N

ln�det�g���� = Ag. �5�

To develop a random series algorithm, the infinite di-
mensional Riemann integral is recast in terms of path vari-
ables ak

� defined by

q��u� = qr
��u� + ��1/2�

k=1

�

ak
�	k�u� , �6�

where the functions 	k�u� have the following property in the
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interval �0, 1�:

�
0

1

du
d	k�u�

du

d	k��u�

du
= 
kk�, �7�

and qr
��u�=q�+ ��q���−q��u.

Simply truncating the series for q��u� to the first km

terms produces the primitive algorithm. To improve conver-
gence, corrections for �L+V are added to treat the tail por-
tion of the series. This convergence enhancement can be
done in two ways: One develops a partial averaging ap-
proach or a RRS method. Both approaches start with the
Jensen inequality,

��q,q�,��

�0�q,q�,��
=


d�a�exp�− �
0
1duL�0���exp�− �
0

1du��L + V���a


d�a�exp�− �
0
1duL�0��

�

d�a�exp�− �
0

1duL�0��exp�− �
0
1du���L + V��a�


d�a�exp�− �
0
1duL�0��

, �8�

where d�a�=da1¯dakm
, dak=dak

1∧dak
2∧ ¯dak

D, and the av-
erage � �a is taken over the �infinite� truncated tail coeffi-
cients �d�a�a=dakm+1dakm+2¯ �,

���L + V��a =

d�a�a exp�− �
0

1duL�0����L + V�


d�a�a exp�− �
0
1duL�0��

. �9�

A constant metric tensor in the reference Lagrangian L�0� and
a D-dimensional Dirac-delta function allow one to evaluate
all the integrals contained in ���L+V��a analytically,

���L + V��a

=

dz exp�− �1/2����z�z����L + V��qa + z�


dz exp�− �1/2����z�z��
, �10�

where qa
�=q0

�+�k=1
km ak

�	k�u� is the core path and

��� =
g��

�0�

��2�u�1 − u� − �
k=1

km

	k
2�u��−1

. �11�

If one expands both �L and V about the core path, one
obtains the gradient partial averaging method,

�PA�q,q�,��

�0�q,q�,��
=


d�a�exp�− �
0
1du�L�0� + �L + V +

1

2
���������L + V��	


d�a�exp�− �
0
1duL�0��

. �12�

This method converges quadratically in non-Euclidean spaces, but it requires the Hessian of the potential, that of the metric
tensor, and that of ln�det�g����. All the additional computations in the term ������L+V� can be avoided with the RRS method.

To develop the RRS method, one introduces a finite expansion of the path with km� km terms,

q̃��u� = qr
��u� + ��1/2�

k=1

km

ak
�	k�u� + ��1/2 �

k=km+1

km�

ak
�	̃k�u� , �13�

�RW�q,q�,��

�0�q,q�,��
=


d�a�r exp�− �
0
1duL�0��exp�− �
0

1du��L + V��


d�a�r exp�− �
0
1duL�0��

, �14�

and constructs the functions 	̃k�u� so that the partial averag-
ing expansion about the core path derived from the above is
equal to the same derived with the infinite series. In Eq. �14�
we define the volume element for the RRS path integral
d�a�r=da1¯dakm�

. One repeats the steps starting from Eq.
�8� through Eq. �11�, but replaces the infinite tail series

�k=km+1
� ak	k�u� with �k=km+1

km� ak	̃k�u� everywhere to find the

functions 	̃k�u� that best reproduce the convergence of the

partial averaging method. The requirement for 	̃k�u� is easily
derived,

�
k=km+1

km�

	̃k
2�u� = u�1 − u� − �

k=1

km

	k
2�u� . �15�

So far, the theoretical treatment is identical to that em-
ployed in Euclidean spaces; for non-Euclidean spaces there
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remains one issue for the development of RRS algorithms:
How does one compute the integral 
0

1du��L+V� using the
RRS? One cannot use all km� terms to compute the action
directly since the u derivatives of the 	k functions are not

orthogonal to those of the 	̃k functions. Consequently, the
desired cancellations between the terms in L�0� and those in
�L do not take place. Our first approach to work around this
problem has been to substitute for the geometric interaction
�L an expansion up to the quadratic term about the core path
and to recombine the terms in L�0� for all the elements of the
core path.

Here, we consider a simpler approach where the three
terms L�0�+�L+V are simply recombined into a single ex-
ponent before the integration over u is carried out. Then, the
proper terms cancel automatically without invoking addi-
tional definitions or properties of the path basis functions.
This simple observation leads to a substantially simpler cu-
bically convergent method,

�RW�q,q�,��

�0�q,q�,��
=


d�a�r exp�− �
0
1duU�q̃��u���


d�a�r exp�− �
0
1duL�0��

, �16�

U�q̃��u�� = −
N

2�
ln�det g���q̃��u��� +

1

2
g���q̃��u��q̇�q̇�

+ V�q̃��u�� . �17�

Translating Eq. �16� into an algorithm yields a substantial
improvement over the previous approaches. The expression
for the important sampling procedure no longer requires the
Hessian of the metric tensor and its determinant. Further-
more, in evaluating canonical averages for estimators,

�A�q,q��� =

dqg1/2A�q,q���RW�q,q�,��


dqg1/2�RW�q,q�,��
, �18�

the reference metric tensor is no longer needed in the impor-
tance sampling expression. This can be seen by writing the
diagonal element of the reference density matrix explicitly,

�0�q,q�,�� =  1

2�
�ND/2

��2��−D/2J	� d�a�r

�exp�− ��
0

1

duL�0�	 , �19�

where

J	 = det�J	J	
T �1/2, �20�

�J	�ij = �i�uj� , �21�

and we have used the following convenient notation:

�k�u� = �	k�u� �1 � k � km�

	̃k�u� �km + 1 � k � km� � .	 �22�

Therefore, for an N point quadrature, the quantity J associ-
ated with the change of variables, dqi→dak, is J

= ��2��km� /2J	. Upon combining all these results, �RW be-
comes,

�RW�q,q�,�� =  1

2�
�ND/2

��2��−D/2J	� d�a�r

�exp�− ��
0

1

duU�q̃��u��	 . �23�

This simple modification to the algorithm allows us to state
precise conditions for the convergence properties. In analogy
with the results that have been established rigorously in Eu-
clidean spaces, it is now possible to state the conditions that
�L+V must satisfy in order for the RRS techniques to con-
verge. Namely, �L+V must be in the Kato class Kd

loc, mean-
ing roughly that �L+V cannot have “bad singularities” or
the method does not converge. Furthermore, for the Fourier-
Wiener path integral, when the path functions are

	k�u� =� 2

�2

sin�k�u�
k

, �24�

	̃k�u� = f�u�� 2

�2

sin�k�u�
k

, �25�

and

f�u� =�u�1 − u� − �k=1
km �2/�2k2�sin2�k�u�

�k=km

km� �2/�2k2�sin2�k�u�
, �26�

it is possible to find an expression for the cubic convergence
constant in non-Euclidean manifolds,

lim
km→�

km
3 ���q,q�,�� − �RW�q,q�,��

��q,q�,�� �
=

�2�3

15�4g�0��������L + V�����L + V�

+ ��� ��L + V������L + V�� . �27�

In this equation, g�0��� plays the same role as the m0,i
−1 in Eq.

�84� of Ref. 19, and ��� =� /��q��� is the gradient at the path
end point q�.

With the new developments presented here, the RRS
methods in non-Euclidean differentiable manifolds are nearly
identical to those that have been developed in Euclidean
spaces mapped with Cartesian coordinates. There remain
only some minor differences, dictated mainly by the general
nature of the potential-free reference Lagrangian L�0�. We
have chosen g��

�0� to replicate as closely as possible the effec-
tive mass of the particles so that the potential-free reference
Lagrangian is as close as possible to its equivalent in the
equidimensional Euclidean space mapped with Cartesian co-
ordinates. In the present version of the theory the reference
metric tensor g��

�0� constitutes the only difference between the
RRS methods in non-Euclidean and those developed in Eu-
clidean space mapped with Cartesian coordinates. For the
latter ones, it is convenient to rescale the path coefficients ak

by ��1/2 /m0,i. We follow the same practice with � and �1/2

because the temperature rescaling proves crucial for the per-
formance of the energy and heat capacity estimators,
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�E�� =
D

2�
+� �

�����
0

1

duU�q̃��u���� , �28�

CV

kB
=

D

2
+

D2

4
+ D�� �

�����
0

1

d�U�q̃��u����
+ �2�� �

�����
0

1

duU�q̃��u���	2�
− �2� �2

��2���
0

1

duU�q̃��u����
− �−

D

2
− �� �

�����
0

1

duU�q̃��u����	2

, �29�

where the derivatives with respect to � are evaluated numeri-
cally. However, we do not divide by the effective masses
when we rescale the path coefficients primarily because in
non-Euclidean spaces effective masses �such as moments of
inertia� are dependent on the configuration. Consequently,
one is forced to decide on the precise form for the reference
metric tensor g��

�0�. The tensor g��
�0� is the “best constant” rep-

resentation of g�� on the manifold. We prefer to leave mass
dimensions on the path coefficients to yield a “cleaner” and
more general formalism for differential manifolds that is
completely independent of the choice of g��

�0�.

III. NUMERICAL TESTS

A. The harmonic chain

In using the adiabatic approximation, one assumes that
there are at least two sets of degrees of freedom. One set is
characterized by very low frequencies associated with inter-
molecular degrees of freedom, while the other set is charac-
terized by relatively elevated frequencies associated with in-
tramolecular degrees of freedom. If the molecules in the
sample of condensed matter are not too large, there is a rela-
tively large gap in the frequencies between these two sets. To
study how the convergence of PIMC simulations is affected
by releasing intramolecular constraints, let us consider the
following example which represents a simplified model of a
relatively large sample of condensed molecular matter. Let
us consider a chain of n point masses, of mass m, connected
by ideal springs �Fig. 1�. There are two sets containing �n /2�
springs. The springs in the first set share the same value for
the force constant k1. Those in the second set share the same
value, k2. The spring constants alternate between these two
values along the chain. Each point mass is only allowed to
translate backward and forward along the direction of the
chain. In Fig. 1, k1 represents the force constant for the in-
tramolecular degrees of freedom, and k2 the same for the
intermolecular ones. The mass-weighted Hessian for the
flexible case is the n�n matrix H,

H =
1

m�
k1 − k1 0 0

− k1 k1 + k2 − k2 0

0 − k2 k1 + k2 − k1 ¯

0 0 − k1 k1 + k2

] �

� . �30�

The adiabatic approximation for the model is sketched at the
bottom half of Fig. 1. Each pair of point masses connected
by a spring with constant k1 is now replaced by a 2m point
mass; each of these is connected to its neighbor�s� by an
ideal spring with constant k2. The mass-weighted Hessian is
now �n /2�� �n /2� in dimension,

H�a� =
1

2m�
k2 − k2 0 0

− k2 2k2 − k2 0

0 − k2 2k2 − k2 ¯

0 0 − k2 2k2

] �

� . �31�

Figure 2 contains the eigenvalues of the flexible har-
monic chain with n=1000 point masses for k1=0.1 a.u. and
k2=0.001 a.u. The eigenfrequencies �i are sorted in ascend-
ing order, scaled by the square root of the mass, and plotted
against the sorting index. The eigenfrequencies �i of the “in-
termolecular” degrees of freedom �i�500� are on left hand
side of the graph in Fig. 2; those for the intramolecular de-
grees of freedom cases are on the right. The value of �i are
discrete because the size n is finite. However, there is a gap
much larger than usual between �501 and �500. With close
inspection of Fig. 2, one can easily verify that �i��h

=�2k1 /m, for 500� i�1000, whereas �i→�*=�2k2 /m as
i→500. The adiabatic limit produces a graph in the 1� i
�500 range �white squares� that is indistinguishable from
the flexible case in the same index range on the scale of
Fig. 2.

FIG. 1. A sketch of the harmonic chain. The point masses are represented by
gray circles; these are allowed to vibrate about their equilibrium positions
only in one dimension. In the top chain the spring constants alternate be-
tween the large value k1, representing a intramolecular interaction, and the
smaller value k2, representing the intermolecular interaction. The bottom
chain represents the adiabatic limit where the “diatomic molecules” repre-
sented by two point masses and the spring constant k1 are condensed into a
single point particle.
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1. The O„N… convergence of the quantum heat
capacity

Once the frequencies are computed from the eigenvalues
of the Hessian, one can study the convergence of the path
integral estimators using analytical formulas. Since the prob-
lem is reduced to a set of n independent oscillators, it is
simple to generalize well known analytical expressions for
the thermodynamic properties at finite N of a single har-
monic oscillator. N is the Trotter number or the number of
random series coefficients. There are several questions that
can be explored quickly with the simple harmonic chain. The
first three of the following four questions, in particular, are
important for the present discussion: How do the thermody-
namic properties converge with the adiabatic approximation
compared to the unconstrained counterpart? How much nu-
merical advantage does the adiabatic approximation yield at
cold temperatures? How does the numerical advantage
gained by using constraints change for algorithms with im-
proved convergence relative to the linear �or primitive� one?
Does the size of the chain impact the convergence proper-
ties? To answer these questions we use the frequency sets
��i�i=1

n for the flexible harmonic chain and ��i
a�i=1

n/2 for the

adiabatic approximation to calculate the heat capacity of the
chain at several temperatures. To simulate linear conver-
gence on CV /kB, we use the following expression derived
from the discretized path integral with N slices,

CV

kB
�

N
= �

i

1

4
����i�2 2

�̃i + �̃i
−1�2

� � 2

�̃i
N+1 + �̃i

−�N+1��2

+
1

N + 1
� �̃i

N+1 + �̃i
−�N+1�

�̃i
N+1 − �̃i

−�N+1�� �̃i − �̃i
−1

�̃i + �̃i
−1�2	 , �32�

where

�̃i =
1

2

���i

N + 1
+�1 +

1

4
���i

N + 1
�2

. �33�

For the following discussion it is convenient to introduce
two dimensionless temperature scales,

T* =
1

���2k2/m
, T† =

1

���2k1/m
. �34�

Let us consider the case for the harmonic chain with m=1,
k1=0.1 a.u., k2=0.001 a.u. For this case, the reader should
note that T†=T* /10. Figure 3 contains graphs of the function
in Eq. �32� plotted versus T* for several values of N. The left
graph contains several adiabatic cases for different values of
N, except for the set of points connected by the heavy dashed
line; these correspond to the converged quantum result. The
graph on the right contains plots for different values of N for
the flexible chain. The results in Fig. 3 demonstrate that the
adiabatic approximation yields a substantial numerical ad-
vantage while remaining very accurate in the 0.1�T*�1
range; in this, the adiabatic approximation can compute
CV /kB with N=16, whereas the flexible computation needs a
much greater number of slices �or path variables� to achieve
a comparable convergence.

FIG. 2. The eigenvalues for the mechanical system depicted in Fig. 1, for
k1=0.1 a.u. and k2=0.001 a.u., sorted in ascending frequencies.

FIG. 3. The finite Trotter number N heat capacity com-
puted with the linearly convergent estimator in Eq. �32�
and compared against the exact value �heavy dashed
line�. �a� is computed with the adiabatic set of frequen-
cies; �b� is computed using all 1000 eigenvalues of the
mechanical system depicted in Fig. 1 with k1=0.1 a.u.
and k2=0.001 a.u..
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2. The convergence of a higher order quantum heat
capacity estimator

The results obtained with Eq. �32� are compared with
those obtained with the Fourier path integral T-H estimator
since its analytical expression for the harmonic oscillator dis-
plays cubic convergence. The finite N, T-H heat capacity
estimator for the harmonic chain is

CV

kB
�

N
= �

i
�1

2
−

���i

24
+ �i +

1

2�1 − 8�i�

−
8��i − �i�
�1 − 8�i�2	 , �35�

where �i, �i, and �i are the following sums over the random
series coefficient index k:

�i = �
k=1 �odd�

N
����i/k��2

�k��2 + ����i�2 , �36�

�i = �
k=1 �odd�

N ���i

k�
�2 ����i�2

��k��2 + ����i�2�2 , �37�

�i = �
k=2 �even�

N ����i

k�
�2 1

�k��2 + ��h�i�2

+
2

��k��2 + ����i�2�2	 . �38�

A set of curves similar to those in Fig. 3 is produced with Eq.
�35� and plotted in Fig. 4. The superiority of the T-H estima-
tor is clear when one compares the curves in Fig. 4 with their
counterparts in Fig. 3 for both the flexible and rigid cases.
The numerical advantage of the adiabatic approximation in
the 0.1�T*�1 range remains clear even when convergence
is accelerated.

B. The particle in a ring and the hindered rotations
of a rigid asymmetric top

A number of successful numerical tests have been car-
ried out using the primitive Fourier path integral with pro-
jection coordinates in ellipsoids of inertia in earlier works.39

The testing of every part of an algorithm that performs path
integration over a manifold composed of Cartesian products
of many inertia ellipsoids with the RRS is a complex task. It
is productive to brake down such algorithms by testing the
theory gradually with systems of increasing complexity. We
use the monodimensional non-Euclidean space S1 to verify
that the improved RRS method converges with better prop-
erties than the corresponding primitive algorithm. The par-
ticle in a unit radius ring with 207 a.u. of mass is subjected
to a sinusoidal potential,

V =
4�

�2 + 4
= cos � , �39�

where 0���2� is the angular coordinate and � is the ste-
reographic projection. The set of points in the x−y plane that
are in the ring centered at the origin is mapped with the
following equations:

x =
4R2�

���2 + 4R2 , y = R
���2 − 4R2

���2 + 4R2 . �40�

The variable � is obtained from the point p�S1 by projecting
with a straight line from the point �0,R� through p onto line
y=−R. The map in Eq. �40� follows from simple geometric
arguments. Two PIMC simulations aimed at testing Eqs.
�23�, �28�, and �29� are carried out; one simulation uses km�
=km corresponding to the primitive algorithm and the other
uses km� =4km for the RRS. Both simulations use km=8 and
are comprised of 1�106 “warmup” moves followed by 1
�106 moves over which data points are collected. Both
simulations are repeated independently ten times to estimate
the statistical error. The statistical error is estimated from the
standard deviation to obtain a 95% confidence interval. In
Fig. 5 the heat capacity of the particle in a ring computed
with the primitive algorithm is compared with the same

FIG. 4. The finite Trotter number N heat capacity using
�a� the adiabatic limit or �b� the entire set of eigenvalues
for the heat capacity of the mechanical system depicted
in Fig. 1 computed with the cubically convergent esti-
mator in Eq. �35�.
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quantity computed with the RRS method and with the exact
result obtained by diagonalization. The particle in a ring is a
simple and convenient system that has proved essential in
testing new PIMC methods in non-Euclidean spaces.

Additional numerical tests are performed in the three-
dimensional inertia ellipsoid. I� ��=1,2 ,3� represents the
eigenvalues of the moment of inertia tensor; the appropriate
metric tensor for a rigid top is39

g�� = I�J�
��J�

��f����
� , �41�

where the symbol f��
� represents a set of 18 independent

functions obtained by writing the kinetic energy of a rigid
asymmetric top in the laboratory frame in terms of the Euler

angles �, �, and �. The symbol J�
�� represents the Jacobian

matrix element for the transformation between the Euler
angle q�� and the stereographic projection q�. The �1 ,�2 ,�3

→� ,� ,� map is39

� = 2 sin−1� �4�2�2 + �4�3�2

��1�2 + ��2�2 + ��3�2 + 4
, �42�

� = tan−1 ��1�2 + ��2�2 + ��3�2 − 4

4�1 � − tan−1 �3

�2� , �43�

� = tan−1 ��1�2 + ��2�2 + ��3�2 − 4

4�1 � + tan−1 �3

�2� . �44�

These expressions can be easily inverted,

�1 = cos
�

2
cos

� + �

2
1 + cos��/2�sin��� + ��/2�

1 − cos��/2�sin��� + ��/2�
+ 1� ,

�45�

�2 = sin
�

2
cos

� − �

2
1 + cos��/2�sin��� + ��/2�

1 − cos��/2�sin��� + ��/2�
+ 1� ,

�46�

�3 = sin
�

2
sin

� − �

2
1 + cos��/2�sin��� + ��/2�

1 − cos��/2�sin��� + ��/2�
+ 1� .

�47�

We use geometric arguments similar to those for S1 to derive
the map and its inverse from Eulerian angles to the stereo-
graphic projections by using the four-dimensional quaternion
space and the spherical constraint. To simplify the notation
further we introduce seven auxiliary quantities,

d1 = �16��1�2 + ���1�2 + ��2�2 + ��3�2 − 4�2, �48�

d2 = ���2�2 + ��3�2, �49�

d3 = �d2�2, d4 = �d1�2, �50�

d5 = 8��1�2 − 4���1�2 + ��2�2 + ��3�2 − 4� , �51�

d6 = ��1�2 + ��2�2 + ��3�2 + 4, �52�

d7 = ��1�2 + ��2�2 + ��3�2 − 4. �53�

Then, the Jacobian is

J��
� =�

−
16d2�1

d1d6

2d5�2

d1d2d6

2d5�3

d1d2d6

d5

d4

8�1�2

d4 +
�3

d3

8�1�3

d4 −
�2

d3

d5

d4

8�1�2

d4 −
�3

d3

8�1�3

d4 +
�2

d3

� , �54�

while the nonvanishing f����
� functions are

f11
1 = 4�1�2 − �3d7

d1d2 �2

, �55�

f11
2 = 4�1�3 + �2d7

d1d2 �2

, �56�

f12
1 = f21

1 = − f12
2 = − f21

2 =
8�4�1�2 − �3d7��4�1�3 + �2d7�

�d6�2d1d2 ,

�57�

f22
1 =

64�4�1�3 + �2d7�
�d6�4 , �58�

f22
2 =

64�4�1�2 − �3d7�
�d6�4 , �59�

f22
3 = � 2d4

�d6�2 − 1�2

, �60�

f23
3 = f32

3 =
2d4

�d6�2 − 1, �61�

f33
3 = 1. �62�

Clearly, g�� is analytical, as are its gradient and its Hessian;
however, the analytical expressions for these as functions of

FIG. 5. The finite km heat capacity for a particle with 207 a.u. of mass
trapped in a ring with a 1.0 bohr radius subjected to a cos � potential. The
primitive algorithm �white squares� is compared with the improved RRS
method �black squares� and with the exact result �heavy line�.
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�� are formidable. Therefore, it is simpler to compute f����
�

and J�
�� and translate the sum in Eq. �41� directly into code.

The eigenvalues of the inertia tensor I� are chosen to be
identical to those of rigid water, namely, Ix , Iy , Iz�12 614,
8588, 4026 a.u., respectively. The rotations are hindered us-
ing an external scalar field represented by the function

V��1,�2,�3� = − V0
�1 + �2 + �3

��1�2 + ��2�2 + ��3�2 + 4
. �63�

The value of V0 is 0.04 hartree. V0 is in the same order of
magnitude of the cohesive energy of a water molecule in the
bulk. V0 is about six times larger than the binding energy of
the water dimer and about two times larger than the typical
cohesive energy of a water molecule in the octamer. The heat
capacity of the system at various temperatures is presented in
Fig. 6 for a number of values of core path variables km. The
simulations are carried out between 20 and 1000 K, in regu-
lar increments of 20 K using Metropolis sampling. The heat
capacity is estimated using the RRS with km� =4km and the
numerical derivative estimator in Eq. �29�. A total of 42 in-
dependent samples are collected at every temperature using
the Metropolis algorithm. Each sample consists of 1�106

moves used to reach the asymptotic distribution, followed by
1�106 moves over which the potential energy, the total en-
ergy, and the heat capacity are collected. Each move consists
of a configuration change �1 ,�2 ,�3→ ��1 ,�2 ,�3�� and the
translation of a randomly selected path variable for each co-
ordinate ak

1 ,ak
2 ,ak

3→ �ak
1 ,ak

2 ,ak
3��. k is an integer selected us-

ing a uniform discrete distribution in �1�k�km� �. The data
graphed in Fig. 6 have a number of reassuring features. The
km=0 curve is the classical estimate of the heat capacity. The
km=0 value of Cv /kB clearly approaches the proper equipar-
tition value. The classical value of Cv /kB decreases system-
atically as the temperature increases, indicating that the hin-
dered rotations gradually develop a free character at high
temperatures. The heat capacity estimators for km0 behave
very well statistically and show a clear convergence pattern
that one anticipates for such a system. All the km0 data
merge into the classical data at high temperatures. The sys-
tem behaves classically only above 500 K. This temperature
is large compared to the freezing and boiling temperature of

bulk water. The convergence information gathered with this
simpler model is indicative of the convergence pattern that a
bulk water simulation may display. The km=4 simulation is
converged for T260 K. The km=16 simulation converges
for T80 K. The km=32 simulation is probably converged
for T60 K; a cluster of rigid water molecules may require
relatively larger values of km to converge at these tempera-
tures.

C. Simulations of water clusters

1. The manifold for n asymmetric rigid tops

Let q� represent the 6n-dimensional vector associated
with a configuration point in the space �R3 � I3� � �R3

� I3�¯ �R3 � I3�, where � is the Cartesian product, R3 is the
three-dimensional Euclidean space for the center of mass of
a top, and I3 symbolizes the inertia ellipsoid, the configura-
tion space for the orientations. In deriving the algorithms and
for the implementations of our code, we use the following
ordering for the coordinates: q6�i−1�+1, q6�i−1�+2, and q6�i−1�+3

�1� i�n� represent, respectively, the x, y, and z coordinates
of the center of mass for the ith top; q6�i−1�+4, q6�i−1�+5, and
q6i �1� i�n� represent the three stereographic projection co-
ordinates for the ith top. With these definitions the metric
tensor takes the following block-diagonal form:

g�� = �g�1� 0 0

¯ ¯ ¯

0 0 g�n� � . �64�

The molecular metric tensor g�i� is represented by a 6�6
block-diagonal matrix,

g�i� =�
m 0 0

0 m 0 0

0 0 m

0 G�i�
� , �65�

with m representing the mass of the molecular top and G�i�

representing the metric tensor associated with the orienta-
tions. The six independent elements of G�i� are calculated
using Eq. �41�. Given the sparse nature and block-diagonal
structure of g��, it is not difficult to design algorithms that
only require O�n� operations for the computation of g��q̇�q̇�,

g��q̇�q̇� = �
i=1

n

g��
�i� q̇6�i−1�+�q̇6�i−1�+�. �66�

The evaluation of g��q̇�q̇� requires CPU times comparable to
those needed for the computation of an empirical potential
surface in the equidimensional space. Analytical expressions
for the Hessian elements of g�� can be obtained. However,
the computation of the Hessian of g�� is just as expensive as
the Hessian of a typical empirical potential surface of equal
dimension. Therefore, the present formulation of the RRS
method in curved spaces is considerably cheaper than the
previous one.

It is important to clarify that our use of the space
�R3 � I3� � �R3 � I3�¯ �R3 � I3� does not introduce bias in
the distribution function of the constrained system. In

FIG. 6. The finite km heat capacity of a rigid water molecule in the center of
mass frame with hindered rotations.
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Ref. 49, the authors carefully analyze the difference between
the use of simulations in constrained spaces compared to
those carried out in the Euclidean space mapped with inter-
nal coordinates and with infinitely stiff springs for the high
frequency modes. The example of the bending angle distri-
bution on a trimer is detailed in Ref. 49. The authors suggest
including a �gE /g�1/2 term in classical simulations, where gE

is the determinant of the metric tensor of the Euclidean space
mapped with internal coordinates and g is the same for the
curved space. However, it can be shown in general, for both
linear and nonlinear tops, that �gE /g�1/2 is both translation-
ally and rotationally invariant even when the orientations are
mapped projectively as we do presently.51 Therefore, while it
is possible to include such correction in PIMC simulations in
curved spaces, we ignore this additional complication in the
present work since a constant term cannot affect the dynam-
ics.

2. Heat capacities for the trimer through the octamer

In Figs. 7 and 8 we present the results of several simu-
lations of water clusters, with each molecule modeled as a
rigid top. The data sets are computed using 20 independent

move blocks in the non-Euclidean manifold �R3 � I3� � �R3

� I3�¯ �R3 � I3�. Each block consists of 1�106 warmup
moves followed by 1�106 simulation moves. The standard
error in the mean is used to estimate the 95% confidence
interval. The confidence interval is represented graphically
by error bars in Fig. 8. Each move consists of a translation or
a rotation of a randomly selected molecule, and a translation
of one path variable for each coordinate, e.g., ak

6�i−1�+1,
ak

6�i−1�+2, ak
6�i−1�+3→ �ak

6�i−1�+1 ,ak
6�i−1�+2 ,ak

6�i−1�+3�. The integer
k is in �1�k�km� � and is selected randomly from a uniform
discrete distribution in the set. The simulations employ par-
allel tempering with 40 walkers at evenly spaced tempera-
tures between 50 and 500 K. To define the cluster, a constant
volume continuous Lee-Barker-Abraham spherical cavity is
employed,

VLBA = �
i=1

8  rOi
− RCM

2RC
�20

, �67�

where rOi
is the location of the oxygen atom for the ith water

molecule, RCM is the center of mass of the cluster, and RC is
9.0 bohr.

The km=24 graph is in the uniform convergence asymp-
tote above 100 K, while the heat capacity is still converging
nonuniformly below 100 K with km=24 core coefficients.
The data sets in Fig. 7 are graphed without error bars to
make the graphs less cluttered and to make the convergence
pattern stand out. The quantum heat capacities in Fig. 8 are
computed with km=24, which are converged within the sta-
tistical fluctuations for T�100 K for the octamer. The dif-
ference between the classical and the quantum simulations
remains substantial at 500 K for all sizes; nevertheless, it is
clear in both Figs. 7 and 8 that the two estimates converge at
some higher T.

D. Characterization of the random walks for „H2O…8

Given the large discrepancies between the classical and
the quantum simulations, we explore the simple point charge
�SPC� potential energy surface for the dimer through the oc-
tamer to find all the important minima; in turn these are used

FIG. 7. The heat capacity of the water octamer for various values of km �Eq.
�29�� showing the convergence profile of the estimator.

FIG. 8. The classical �white circles� and quantum �km

=24, black squares� heat capacity of water clusters ob-
tained with the RRS method �Sec. II� and the finite
difference estimator in Eq. �29�.
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to characterize the random walks using a Structural Com-
parison Algorithm �SCA�.52 The quantum effects are most
conspicuous for the octamer, for which the pronounced melt-
ing feature in the classical simulation is “washed away” by
quantum fluctuations. Therefore, as a check, we minimize all
the sizes from the dimer through the octamer and compare
our minima with those found by other groups with similar
potentials.50,53–58 We use the minima of the octamer to char-
acterize the configurations in several random walks. To mini-
mize the structures, we use the full R9n space mapped by
Cartesian coordinates, with the potential along the covalent
stretching and bending degrees of freedom obtained with the
F2 extension.59 The candidate structures are generated with
the genetic algorithm, and these are quenched with a T=0
Brownian dynamics algorithm, which in Euclidean spaces
with Cartesian coordinates takes a simple form,

ẍ� + 
����V + �x� = 0. �68�

Here, � is the coefficient of friction. The genetic algorithm is
implemented to create 100 candidate structures using simple
slicing-rejoining operators. The candidates are quenched,
sorted by energy in ascending order, and compared with
SCA if the energy difference between two minima is less
than 1�10−4 hartree.

SCA provides us with a measure of distance between
two configurations that are being compared. This comparison
is obtained by attempting to find the best superposition of
two structures through a set of translations, rotations, and a
sorting process. Typically a running configuration is com-
pared with a minimum. In the case of the genetic algorithm,
we compare the newly quenched candidates with all the
minima already known. This eliminates multiple copies of a
minimum included in the genetic pool that one uses for the
next generation of “children structures.” The key difference
with out implementation is that the comparison process al-
lows both enantiomers of optically active minima to contrib-
ute to the “gene pool.” Many minima lack an improper rota-
tion axis and consequently display optical isomerism. If all
the degenerate replicas of an optically active minimum are
eliminated from the pool, only one of the two enantiomers is
used in the generation of new candidates. The impact of
eliminating enantiomers from the gene pool could have on
the efficiency or even the success of a global optimization is
not known, but one can anticipate that when a large number
of atoms are involved this detail may become important. We
run 40 generations for the hexamer, heptamer, and octamer.
However, the global minimum for all the sizes from the
dimer through the octamer is found very quickly by the ge-
netic algorithm.

The structures we find for the global minima agree quali-
tatively with those reported in a number of global minimiza-
tion studies carried out with related potential
functions.50,53–58 In particular, we find all the cubic isomers
reported recently by Nigra et al.50 In agreement with Nigra et
al.,50 we find that the D2d cube is lower in energy than the S4

cube; we find the C2, Ci, and five C1 cubes with slightly
different energetic orders. We focus our comparison on Nigra
et al.50 since the authors report a characterization of the clas-
sical parallel tempering walk similar to the one we carry out.

The C2, Ci, and C1 cubes have energies comparable to other
open minima of the octamer potential energy surface and
contribute only slightly in the melting range. Our melting
peak in the classical calculation is at Tmax=142.3 K instead
of the Tmax=178.5 K reported by Nigra et al. The potential
used by the authors of Ref. 50 is a sophisticated model,53

known as the Matsuoka-Clementi-Yoshimine �MCY� poten-
tial, constructed by fitting CI computations on the water
dimer, and is quite different from the SPC model we use
here; discrepancies are to be expected. Therefore, it is re-
warding to find that the characterization of the walks gener-
ated on the SPC surface that we report in the following is in
excellent qualitative agreement with the results obtained by
the MCY surface.

We use SCA to characterize the walk in the following
manner. Let xA

i represent the Cartesian coordinates of atom i
in a configuration under analysis after a systematic set of
translation, rotations, and permutations is carried out to find
the best possible overlap with the global minimum configu-
ration. �x0

i �i=1
3n represents the Cartesian coordinates of the at-

oms in the global minimum. Then,

�0 = �
i=1

3n

�xA
i − x0

i � �69�

represents the “structural distance” from the global minimum
for �xA

i �i=1
3n . Histograms of �0 can be used to detect features in

the density matrix arising from as solid-solid transforma-
tions, melting, and similar thermally induced phenomena.
Figure 9 contains two sets of such histograms for �0 sampled
in the T interval below the melting peak of the classical heat
capacity. The graphs in Fig. 9�a� are obtained by measuring
105 configurations during the classical walk after 1�106

warmup moves. The graphs in Fig. 9�b� are obtained with
km=24. The broad feature between 10 and 40 bohrs in both
figures is comprised of cubic structures; these are either the
D2d or S4 isomer. The S4 isomer produces a shoulder of this
feature above 30 bohrs. In the classical simulation �Fig. 9�a��
this shoulder is detectable at 50 K and gradually gains inten-
sity. The first detected configurational jump for a cube to one
of the open structures �typically intersecting rings� in the
classical simulation is at 96.2 K. This peak in the histograms
of �0 is well differentiated from the broad features associ-
ated with cubic structures.

The isomeric distributions we measure in the classical
simulation agree qualitatively with those reported by Nigra
et al.50 in a number of key features. We see a significant
D2d→S4 isomerization present at 50 K. Nigra et al. reported
the onset of D2d→S4 isomerizations at 40 K. Similarly, we
find that the other cubic structures �the C2, Ci, and C1 cubes�
play a small role in the liquid region. This finding agrees
with the reported probabilities for this group of structures. In
Fig. 8 of Ref. 50, Nigra et al. reported the onset of liquid
structures above 120 K. We find the onset of liquid structures
around 96 K, explaining the difference in the peak tempera-
ture for the melting.

Probably, the quantum distributions of �0 �Fig. 9�b�� are
not converged at 73.1 K and below. The abrupt appearance
of the feature at 75 bohrs at 73.1 K is suggestive of the lack
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of convergence for the two distributions of �0 at 61.6 and
50.0 K. Nevertheless, we can see a pattern developing, even
at the colder temperatures. The D2d→S4 equilibrium is
shifted to the right considerably compared to the classical
simulation. Similarly, the cube→ liquid phase change is
shifted. At 84.6 K we can say with confidence that the oc-
tamer is melting. However, the quantum distributions of �0

continue to display distinguishable albeit broad features at
higher temperatures. The feature centered at 40 bohrs that
grows systematically at 40 bohrs between 96.2 and 119 K
contains a mixture of S4 and C2, Ci, and C1 cubes, whereas
the feature that grows around 60 bohrs from 84.6 K contains
cubic structures with a significant amount of obliqueness and
cubic structures with one missing vertex. The remarkable
differences in the distributions of �0 between classical and
quantum simulations explain the large differences visible in
the thermodynamic properties. One would anticipate that
quantum fluctuations would simply broaden the classical dis-
tributions of �0 and shift isomerization features to lower
temperatures. That shifting and broadening can be gleaned in
Fig. 9. However, one would not anticipate the appearance of
new features that remain well resolved at elevated tempera-
tures inside the liquid coexistance region. In fact, this has
been observed recently in other hydrogen bonded systems.42

IV. CONCLUSIONS

The two main objectives for the work reported in this
article are to illustrate the efficiency gained by using holo-
nomic constraints in PIMC simulations of molecular con-
densed matter and the exploration of the quantum thermody-
namic properties of small water clusters.

It is well known that rigid body simulations improve the
efficiency of thermodynamic estimators in Metropolis simu-
lations; however, little is known about how holonomic con-
straints affect the convergence of PIMC simulations. We
have investigated a simple one-dimensional harmonic chain
using analytical solutions of the thermodynamic path integral
for finite Trotter number. For this system the analytical solu-
tions of the path integral expression for the heat capacity as a
function of T and the Trotter number �or a number of path

variables� clearly support our hypothesis: The choice to use
holonomic constraints in PIMC simulations is dictated by the
efficiency of a simulation as it relates to convergence prop-
erties rather than statistical fluctuations. The present investi-
gation shows that if the smallest frequency in the intramo-
lecular set is at least a factor of 10 greater than the largest
frequency in the intermolecular set, then the adiabatic ap-
proximation is not only convenient; it is necessary to pro-
duce numerical convergence with reasonable means at low
temperatures. The numerical tests with the harmonic chain
reveal that the primitive algorithm simulation in the adiabatic
limit converges better than the cubically convergent estima-
tor for the flexible case. The fully flexible Cartesian simula-
tion becomes unfeasible at low temperatures, where the ther-
modynamics are dominated by intermolecular
rearrangements and the “molecules” are predominantly in the
ground vibrational state. Since the results obtained from the
harmonic chain and the conclusions that can be drawn are for
1000 point masses, there is evidence that these results may
apply to bulk molecular condensed matter as well as clusters.

The graphs in Fig. 4�a�, however, point to the next chal-
lenge for the present developments in the statistical thermo-
dynamic theory of condensed molecular matter. Clearly, be-
tween 1�T*�2 the system does not behave classically, and
the adiabatic approximation is not satisfactory. Figure 4 sug-
gests that perhaps one only needs to perform a flexible PIMC
simulation for T*1 and a rigid simulation below this value.
However, in more complex models of condensed matter
there may be more than one high frequency mode. Further-
more, even the rigid simulation may require parallel temper-
ing runners at temperatures above T*=1 to overcome poten-
tial energy barriers. These complications arise in the
quantum simulations of water clusters. With the parameters
of the SPC/F2 in Lobaugh and Voth,59 one obtains the fol-
lowing frequencies for water. The fundamental for the
H–O–H bend is at 1504 cm−1, the O–H symmetric stretch is
at 3322 cm−1, and the asymmetric O–H stretch is at
3601 cm−1. These frequencies are substantially redshifted
from the gas phase data since the SPC/F2 has been designed
for molecular dynamics simulations of bulk water. These fre-

FIG. 9. Histograms of the thermal distribution of �0,
the structural distance from the global minimum mea-
sured for the walking structure. �a� Classical distribu-
tions; �b� quantum distributions �km=24�.
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quencies are likely to be only rough approximations for a
small water cluster such as the octamer. Nevertheless, with
these data, and with T*= �����−1 and T��1.520 K cm��̃T*,
we can examine some characteristic temperatures associated
with the intramolecular vibrations in the water clusters. As-
suming that for T*�0.1 the harmonic oscillator is predomi-
nantly in the ground state, and that for T*2 it behaves
classically, one concludes that the H–O–H bending modes
are essentially in the ground state for T�230 K, the H–O
symmetric stretches are essentially in the ground state for
T�505 K, and the H–O asymmetric stretches are predomi-
nantly in the ground state for T�550 K. Below 550 K, a
flexible calculation has to converge the density matrix along
the stretching modes to a distribution dominated by the
ground state wave functions, and the convergence of estima-
tors is highly nonuniform. Therefore, in the 100–230 K, the
stereographic projection path integral employed here is much
more efficient than its flexible equivalent with Cartesian co-
ordinates. In the 230–500 K range, the best model should
allow bending, but the stretches should be constrained. At
present, the space metric for the seven-dimensional space
which includes the translation of the center of mass, the three
rotations, and the bending mapped by stereographic projec-
tions awaits development; this is the future direction of our
research. The resulting algorithm should be suitable for
simulations in the 230–500 K range, not only in clusters but
in bulk water, with much greater efficiency than was previ-
ously possible.
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APPENDIX: TRANSFORMING FROM EULER ANGLES
TO CARTESIAN COORDINATES AND BACK

Most empirical intermolecular potential energy surface
models are relatively simple expressions of the Cartesian co-
ordinates for each atom. Consequently, it is important to find
the Cartesian coordinates of all the atoms in the molecular
top i when the center of mass and the three stereographic
projections are known. There are two ways to convert the
Cartesian coordinates of all atoms to Euler angles, and then
to stereographic projections, each yielding equivalent metrics
in the inertia ellipsoid. The active map of the body fixed
frame is considered in this Appendix. The transformation of
the passive map can be handled in a similar way. The Euler
angles can be obtained from the stereographic projections by
using Eqs. �42�–�44�. The Cartesian coordinates of three
points in a rigid body in the center of mass coordinate system
can be obtained from the three Euler angles once a reference
configuration in the body frame common to all tops is speci-
fied. For water clusters we take the following reference con-
figuration:

x y z

H1 0 �y �z

O 0 �y 0

H2 0 �y − �z

, �A1�

where for the rigid model of water �y =0.9865, �y

=−0.1243, and �z=1.529 bohrs. The reference configuration
defines the space axes; this is a configuration point in which
the inertia tensor is diagonal. These space axes can be ob-
tained by simply transforming back from the reference body
frame to the running configuration, and the inverse mapping
can be obtained as well. The problem can be stated as fol-
lows. Let the element R�O�3� be the rotation matrix that
takes the reference configuration to an arbitrary running con-
figuration �namely, the body coordinates in the center of
mass Cartesian space�. When expressed in terms of Euler
angles the representation of the element R�O�3� is as
follows:60

R = � cos � cos � − cos � sin � sin � sin � cos � + cos � cos � sin � sin � sin �

− cos � sin � − cos � sin � cos � − sin � sin � + cos � cos � cos � cos � sin �

sin � sin � − cos � sin � cos �
� . �A2�

This definition yields nine equivalences between the Eulerian
angles and the Cartesian coordinates of each atom; from
these it is straightforward to derive the following relation-
ships between the trigonometric functions and the center of
mass coordinates:

cos � =
zH1

− zH2

2�z
, �A3�

sin � =
1

2�z

��xH1
− xH2

�2 + �yH1
− yH2

�2, �A4�

sin � =
xH1

− xH2

2�z sin �
, �A5�

cos � =
yH1

− yH2

2�z sin �
, �A6�
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cos � = −
zO

�y sin �
, �A7�

sin � =
1

cos �
 xH1

+ xH2

2�
− cos � cos � sin �� . �A8�

Some of these equations become infinite for those special
cases �rare events in random walks�, where sin �=0. Two
possibilities must be considered:

Case 1: �=0, The rotation matrix becomes

R = � cos�� + �� sin�� + �� 0

− sin�� + �� cos�� + �� 0

0 0 1
� . �A9�

The body coordinates now are

xH1
= xH2

= �y sin�� + �� , �A10�

xO = �y sin�� + �� , �A11�

yH1
= yH2

= �y cos�� + �� , �A12�

yO = �y cos�� + �� , �A13�

zH1
= − zH2

= �z; zO = 0. �A14�

Case 2: �=�. Then, the element of O �3� is

R = �cos�� − �� sin�� − �� 0

sin�� − �� − cos�� − �� 0

0 0 − 1
� . �A15�

The center of mass space fixed frame now gives the follow-
ing coordinates for the atoms:

xH1
= xH2

= �y sin�� − �� , �A16�

xO = �y sin�� − �� , �A17�

yH1
= yH2

= − �y cos�� − �� , �A18�

yO = − �y cos�� − �� , �A19�

zH1
= − zH2

= − �z, zO = 0. �A20�

Both special cases can be considered without loss of gener-
ality as a single rotation about the space z axis by � radians.
Therefore, one arrives at

sin � = xH1
/�y , �A21�

cos � = ± yH1
/�y �A22�

for the �=0 and �, respectively. A translation of the center of
mass for each top completes the transformation from the
coordinates of the center of mass–projection space to the
full Euclidean space �R3 � I3� � �R3 � I3�¯ �R3 � I3�→R9n

which contains the Cartesian coordinates of each atom.
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