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ABSTRACT

Nucleotide excision repair (NER) is a major repair
pathway that recognizes and corrects various
lesions in cellular DNA. We hypothesize that
damage recognition is an initial step in NER that
senses conformational anomalies in the DNA
caused by lesions. We prepared three DNA
duplexes containing the carcinogen adduct N-(20-
deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene
(FAAF) at G1, G2 or G3 of NarI sequence (50-CCG1G2

CG3CC-30). Our 19F-NMR/ICD results showed that
FAAF at G1 and G3 prefer syn S- and W-conformers,
whereas anti B-conformer was predominant for G2.
We found that the repair of FAAF occurs in a
conformation-specific manner, i.e. the highly S/
W-conformeric G3 and -G1 duplexes incised more
efficiently than the B-type G2 duplex (G3�G1>G2).
The melting and thermodynamic data indicate that
the S- and W-conformers produce greater DNA dis-
tortion and thermodynamic destabilization. The N-
deacetylated N-(20-deoxyguanosin-8-yl)-7-fluoro-2-
aminofluorene (FAF) adducts in the same NarI
sequence are repaired 2- to 3-fold less than FAAF:
however, the incision efficiency was in order of
G2�G1>G3, a reverse trend of the FAAF case. We
have envisioned the so-called N-acetyl factor as it
could raise conformational barriers of FAAF versus
FAF. The present results provide valuable conform-
ational insight into the sequence-dependent

UvrABC incisions of the bulky aminofluorene DNA
adducts.

INTRODUCTION

Adduct formation is an important aspect of DNA
damage: if unrepaired, various mutations in DNA could
occur (1–3). The presence of mutations on specific onco-
genes or tumor suppressor genes may trigger cancer initi-
ation. Human cells are armed with various effective repair
pathways to safeguard genomic DNA from continuous
assault by exogenous and endogenous sources (4).
Nucleotide excision repair (NER) is a major repair
pathway that is known for the removal of stretches of
bases containing various lesions, including single-base
damages, bulky adducts and cross-links, among others
(5). Deficiencies in NER are closely associated with the
development of several genetic diseases, such as xero-
derma pigmentosum that increases the risk of skin
cancer due to higher sensitivity to sunlight (6).
The NER pathway in Escherichia coli involves the

UvrABC nuclease system and has been studied extensively
for understanding DNA damage recognition and incision.
E. coli NER is initiated following damage recognition by a
dimeric UvrA protein. Next, UvrB protein reaches the
damage site, forms a trimer and verifies the damage.
Departure of UvrA from the resulting complex recruits
UvrC and UvrD proteins, which cleave and remove the
lesion-bearing patch of DNA. Finally, DNA polymerase I
synthesizes and ligase I seals a new patch to complete the
repair process (5,7).
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Arylamines are an important class of environmental
pollutants that are implicated in the etiology of human
cancers, especially of the bladder and liver (1).
2-Acetylaminofluorene was originally developed as an
agricultural insecticide, but was later banned due to its
strong tumorigenic activity in rat livers (8). It has been
used extensively as a model for studying chemical carcino-
genesis. In vivo, metabolic activation of AAF produces a
highly electrophilic nitrenium ion, which subsequently
interacts with DNA to produce two major C8-substituted
dG adducts: AAF and AF (Figure 1a) (8,9). In vitro,
N-acetylated AAF blocks the activity of high-fidelity poly-
merases and requires bypass polymerases for a translesion
synthesis (TLS), whereas AF only slows down replication
(10). In general, the bulky AAF exhibits greater suscepti-
bility towards NER than AF (11), which is known to
exist in a sequence-dependent equilibrium between
anti B-conformer and syn S-conformer (Figure 1c)
(10,12–14). We recently reported that AAF adducts also
adopt a sequence-dependent S/B/W-conformational equi-
librium (Figure 1d) (15).
Local sequence context plays an important role in the

repair of arylamine–DNA adducts (16). Fuchs et al. con-
structed DNA sequences modified with AAF at each of
three guanines of the most frequently studied mutational
hotspot known as NarI sequence (50- . . .CG1G2CG3

CC . . . -30) and tested their substrate repairability in the
E. coli UvrABC and human exonuclease systems. In
E. coli, the three AAFs were repaired in a sequence-
dependent manner, with relative repair efficiencies of
G1:G2:G3 in a ratio of 100:18:66 (17,18). However, differ-
ent repair efficiencies were observed for the same lesions

by the human exonuclease, 38:100:68 for G1, G2 and G3,
respectively (18). AAF at G3 of NarI sequence induces
�100-fold greater frequency of �2 frameshift (�2
deletion) mutations, even though the three guanines
exhibit similar chemical reactivities (19). We have shown
that the FAF-modified NarI -2 deletion duplex in the 50–
CG1G2CG3*CC-3

0 context adopts a single looped-out
bulge structure, whereas the 50–CG1G2CG3*CT–3

0

context results in a local conformational heterogeneity
(20). These results support the importance of the 30-next
flanking nucleotide to the lesion in modulation of
mutation efficiency. The studies verified that the conform-
ational stability of a slipped mutagenic intermediate is a
critical determinant for the hotness (up to 30- to 50-fold)
of G3 in NarI sequence for �2 frameshift mutation (20–
22). Mekhovich et al. (23) found a greater incision rate in
E. coli systems when AAF was located at G3 of the NarI
sequence (50—CG1G2CG3*CC—30) than in a non-NarI
sequence (50—GATG*ATA—30). Zou et al. (24) have
reported that the UvrABC incision efficiency is 70%
more in the TG*T than in the CG*C sequence context
when adducted with either AF- or AAF lesions.

The NER pathway is characterized by its unique ability
to excise a wide array of structurally diverse DNA lesions.
The structure of individual adducts per se is not as import-
ant as lesion-induced local distortions and destabilizations
to trigger a NER response. Examples include disruption of
Watson–Crick hydrogen bonding, DNA bending, thermo-
dynamic destabilization, local conformational flexibility
and flipped-out bases in the unmodified complementary
strand (25,26). However, mechanisms of sequence depend-
ence that control NER efficiencies remained elusive.

(a) (b)

(c)

(d)

Figure 1. (a) Chemical structures of AAF, FAAF, AF and FAF adducts; (b) sequences of fully paired 16-mer and 12-mer NarI duplexes used in the
present study; major groove views of the central trimer segments of (c) the B/S and (d) B/S/W-conformer equilibrium of FAF and FAAF-modified
duplexes. The modified dG and the complementary dC are shown in red and green sticks, respectively, and the aminofluorene moiety is highlighted
with shiny gray CPK and the N-acetyl with pink CPK. In the B-type conformer, anti-[FAAF/FAF]dG maintains Watson–Crick hydrogen bonds,
thereby placing the carcinogen moiety in the major groove. The carcinogens in the S- and W-conformers stack into the helix or wedged into the
minor groove, respectively, with the modified dG in the syn conformation.
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It could be that the observed local sequence effects
described in the previous paragraph for AF and AAF
are due to differences in the extent of distortions, which
in turn depends on the conformation adopted in a particu-
lar sequence context.

In the present work, we investigated the role of con-
formational heterogeneity in the structure–repair relation-
ships of AF and AAF. These two adducts are structurally
similar, but differ in the absence and presence, respective-
ly, of an N-acetyl group on the central nitrogen. We
prepared oligonucleotides that were site-specifically
modified by the fluorine model FAF and FAAF at three
different guanines (G1, G2 and G3) of the NarI recognition
sequences (Figure 1a and b). We conducted spectroscopic
and melting experiments for conformational and thermo-
dynamic analyses. Moreover, we performed NER studies
of these adducts using the E. coli UvrABC system. The
results present strong structural and thermodynamic evi-
dences for the differential NER efficiencies exhibited by
AF and AAF at different guanine residues of the NarI
sequence.

MATERIALS AND METHODS

Caution

2-Aminofluorene derivatives are mutagens and suspected
human carcinogens and therefore must be handled with
caution.

Crude oligodeoxynucleotides (ODN, 10 mmol scale) in
desalted form were purchased from Eurofins MWG
operon (Huntsville, AL, USA). All HPLC solvents were
purchased from Fisher Inc. (Pittsburgh, PA, USA).

Preparation and characterization of FAF- and FAAF-
modified ODNs

We previously reported the preparation of 12-mer NarI
ODNs (50-CTCG1G2CG3CCATC-30), in which each of
the three guanine were site-specifically modified by FAF
(20). We have also demonstrated that the incorporation of

fluorine atom at the longest axis position 7 does not affect
the overall conformational and thermal/thermodynamic
profiles of AF- or AAF-modified duplexes (14,20). The
three FAF-modified NarI sequences were each annealed
with a complementary 12-mer sequence (50-GATGGCGC
CGAG-30) to form fully paired NarI–G1–FAF, NarI–G2–
FAF and NarI–G3–FAF duplexes, respectively. These
duplexes were thoroughly characterized by 19F-NMR,
CD and UV melting experiments (20).
FAAF-modified 16-mer ODN were prepared using

the general procedures described previously (15,27).
Briefly, approximately 0.5–1mg of N-acetoxy-N-2-
(acetylamino)-7-fluorofluorene dissolved in absolute
ethanol was added drop wise to a sodium citrate buffer
(pH 6.0) containing 200–250 ODs of unmodified ODN
(50-CTCTCG1G2CG3CCATCAC-30) and placed in a
shaker for 5min at 37�C. Figure 2a shows a typical
reversed-phase HPLC chromatogram derived from the re-
sulting mixture. The FAAF modified oligomers appearing
between 28 and 85min were separated and purified up to
>97% purity by repeated injections. The HPLC system
consisted of a Hitachi EZChrom Elite HPLC unit with
an L2450 diode array detector and a Phenomenex Luna
C18 column (150� 10mm, 5.0mm). We employed a
gradient system involving 3–15% acetonitrile for 40min
followed by 15–20% and 20–35% acetonitrile for 20 and
40min, respectively, in pH 7.0 ammonium acetate buffer
(100mM) with a flow rate of 2.0ml/min.
The three FAAF-modified 16-mer sequences were each

annealed with the complementary sequence (50-GTGATG
GCGCCGAGAG-30) to form fully paired NarI–G1–
FAAF, NarI–G2–FAAF and NarI–G3–FAAF duplexes
for UV melting, DSC, CD and dynamic 19F-NMR
experiments.

LC/MS characterization of FAAF-modified ODNs

Electrospray ionization and quadrupole time-of-flight
mass spectrometry was utilized to verify the molecular
weights and the position of FAAF attachment of the
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Figure 2. (a) Chromatogram of a reaction mixture between 16-mer NarI sequence (50-CTCTCG1G2CG3CCATCAC-30) and an activated FAAF (N-
acetoxy-N-2-(acetylamino)-7-fluorofluorene). The mono- (G1, G3, G2), di- and tri-FAAF adducts eluted in the 28–35, 42–60 and 84min were purified
by reversed-phase HPLC (see ‘Materials and Methods’ section for gradient condition); (b) online photodiode array UV/Vis spectra of mono-, di- and
tri-FAAF adducts.
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three oligomers. The 16-mer ODNs were sequenced using
30–50 or 50–30 exonucleases as described previously for the
analysis of modified 12-mers (28). Normally, 1mg of a
particular ODN was combined with 0.01 units of an exo-
nuclease in a 1mM solution of MgCl2 and incubated for
several hours. The digests were separated using a
Phenomenex Aqua C18, 1.0� 50mm column (5 mm; 120
Å). Solvent A was 5mM in both ammonium acetate and
dimethylbutyl amine. Acetic acid was added to solvent A
to adjust the pH to 7.0. Solvent B was 0.1% formic acid in
acetonitrile. The flow rate was 100 ml/min and total run
time was 20min. All LC/MS spectra were acquired using a
Waters SYNAPT quadrupole time-of-flight mass spec-
trometer (Milford, MA, USA) operated in the negative
ion and V-modes. The measured molecular masses of all
three isomeric ODNs were within 0.1 Da of their theoret-
ical monoisotopic mass (5016.9 Da).

UV melting

UV melting data were obtained using a Cary100 Bio UV/
VIS spectrophotometer equipped with a 6� 6 multi-cell
block and 1.0 cm path length. Sample cell temperatures
were controlled by an in-built Peltier temperature control-
ler. Oligonucleotide duplexes with a concentration range
of 0.4–6.4 mM were prepared in solutions containing 0.2M
NaCl, 10mM sodium phosphate and 0.2mM EDTA at
pH 7.0. Thermomelting curves were constructed by
varying temperature of the sample cell (1�C/min) and
monitoring absorbance at 260 nm. A typical melting ex-
periment consisted of forward/reverse scans and was
repeated five times. Thermodynamic parameters were
calculated using the program MELTWIN version 3.5 as
described previously (12).

Circular dichroism

Circular dichroism (CD) measurements were conducted
on a Jasco J-810 spectropolarimeter equipped with a
Peltier temperature controller. Typically, 2 ODs of each
strand were annealed with an equimolar amount of a com-
plementary sequence. The samples were dissolved in 400 ml
of a neutral buffer (0.2M NaCl, 10mM sodium phos-
phate, 0.2mM EDTA) and placed in a 1.0mm path
length cell. The samples were heated at 85�C for 5min
and then cooled to 15�C, over a 10min period to ensure
complete duplex formation. Spectra were acquired every
0.2 nm with a 2 s response time from 200 to 400 nm at a
rate of 50 nm/min, were the averages of 10 accumulations
and were smoothed using 17-point adaptive smoothing
algorithms provided by Jasco.

Dynamic 19F-NMR

Approximately 20 ODs of a pure FAAF-modified 16-mer
ODN was annealed with an equimolar amount of a com-
plementary sequence to produce a fully paired duplex
(Figure 1b). The samples were then dissolved in 300 ml of
typical pH 7.0 NMR buffer containing 10% D2O/90%
H2O, 100mM NaCl, 10mM sodium phosphate and
100mM EDTA, and filtered into a Shigemi tube through
a 0.2mm membrane filter. All 1H- and 19F-NMR results
were recorded using a dedicated 5mm 19F/1H dual probe

on a Bruker DPX400 Avance spectrometer operating
at 400.0 and 376.5MHz, respectively, using acquisition
parameters described previously (14, 20, 29). Imino
proton spectra at 5�C were obtained using a phase-
sensitive jump-return sequence and referenced relative to
that of DSS. 19F-NMR spectra were acquired in the
1H-decoupled mode and referenced relative to that
of CFCl3 by assigning external C6F6 in C6D6 at
�164.9 ppm. One and two-dimensional 19F-NMR
spectra were measured between 5 and 60�C with increment
of 5–10�C. Temperatures were maintained by a Bruker-
VT unit with the aid of controlled boiling liquid N2 in
the probe. Line shape simulations were performed
as described previously (30) using WINDNMR-Pro
(version 7.1.6; J. Chem. Educ. Software Series; Reich, H.
J., University of Wisconsin, Madison, WI, USA).

DSC experiments

Calorimetric measurements of the three FAAF-modified
16-mer duplexes were performed using a Nano-DSC from
TA Instruments (Lindon, UT, USA). Prior to temperature
scanning, samples were degassed for at least 10min under
house vacuum in a closed vessel. Solutions were loaded,
respectively, into the sample and reference cells using a
pipette by attaching a small piece of silicone tube at the
end of the tip and were purged several times to get rid of
air bubbles. After both cells were filled, they were capped
and a slight external pressure (�3 atm) was applied to
prevent evaporation of the sample solution. Raw data
were collected as microwatts versus temperature.
Template–primer solutions were prepared by dissolving
desalted samples in a pH 7.0 buffer solution consisting
of 20mM sodium phosphate and 0.1 M NaCl. In a
typical scan, a 0.1mM template–primer solution was
scanned against buffer from 15�C to 90�C at a rate of
0.75�C/min. At least five repetitions were obtained. A
buffer vs. buffer scan was used as a control and subtracted
from the sample scan and normalized for heating rate.
This results in base-corrected �Cp

ex versus temperature
curves. Each transition shows negligible changes in the
heat capacities between the initial and final states, thus
��Cp

ex was assumed to be zero. The area of the resulting
curve is proportional to the transition heat, which, when
normalized for the number of moles of the sample, is equal
to the transition enthalpy, �H. �H is an integration of
�Cp

ex over temperature T. All sample solutions were
0.1mM concentration. Tm was the temperature at half
the peak area. �G and �S values have been determined
according to the procedures described by Chakrabarti
et al. (31).

Substrate construction and UvrABC protein purification

DNA substrates of 55 bp containing a FAAF adduct at
each of three guanine residues were constructed as previ-
ously described (11,32). Briefly, an FAAF-modified
16-mer ODN (50-CTCTCG1G2CG3CCATCAC-30) was
ligated with flanking 20-mer ODN (50-GACTACGTACT
GTTACGGCT-30) and 19-mer ODN (50-GCAATCAGG
CCAGATCTGC-30) ODN at the 50- and 30-end, respect-
ively (Supplementary Figure S1). The 20-mer was
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50-terminally labeled with 32P. The ligation product was
purified by urea–PAGE under denaturing conditions.
Following the purification, the substrate was annealed
to the corresponding complementary strand, and then
purified on an 8% native polyacrylamide gel. Similar
procedures were employed to construct FAF-
modified DNA substrates using 12-mer NarI sequence
(50-CTCG1G2CG3CCATC-30), which we prepared previ-
ously for 19F-NMR/UV/ICD studies (20).

UvrA, UvrB and UvrC proteins were over expressed in
E. coli and then purified as previously described (33). The
estimated purity of the three proteins was >95%. A
Bio-Rad Protein Assay was used to determine the
protein concentration with BSA as the standard based
on the manufacturer-recommended procedures.

Nucleotide excision assay and quantification of incision
products

The 50-terminally labeled DNA substrates were incised by
UvrABC as previously described (11,32). Briefly, the
DNA substrates (2 nM) were incubated in the UvrABC
reaction buffer (50mM Tris–HCl, pH 7.5, 50mM KCl,
10mM MgCl2, 5mM DTT) at 37�C in the presence of
UvrABC (UvrA, 10 nM; UvrB, 250 nM; and UvrC,
100 nM). The Uvr proteins were diluted and premixed in
Uvr storage buffer before addition to the reaction.
Aliquots were collected at 0, 5, 10, 15 and 20min into
the reaction. The reaction was terminated by heating at
95�C for 5min. The products were denatured by addition
of formamide loading buffer and heating to 95�C for
5min, followed by quick chilling on ice. The incision
products were then analyzed by electrophoresis on a
12% polyacrylamide sequencing gel under denaturing
conditions with TBE buffer.

To quantify the incision products, radioactivity was
measured using a Fuji FLA-5000 Image Scanner with
MultiGauge V3.0 software. The DNA incised (in fmol)
by UvrABC was calculated based on the total molar
amount of DNA used in each reaction and the ratio of
the radioactivity of incision products to total radioactivity
of DNA. At least three independent experiments were per-
formed for determination of the rates of incision.

RESULTS

Model sequences

We previously used FAF-modified 12-mer duplexes
(50-CTCG1G2CG3*CNATC-30, N=C or T) to probe the
impact of flanking and 30-next flanking sequences on
NarI-induced frameshift mutagenesis (20). Initially, we
tried to use the same 12-mer NarI sequence for
FAAF-modification for sake of comparison and consist-
ency; however, the sequence was unsuitable for FAAF.
Although FAAF adduction on the 12-mer NarI
sequence was facile, a resulting reaction mixture was dif-
ficult to purify on the reverse phase HPLC system (see
asterisked peaks in Supplementary Figure S2).
Moreover, ligation efficiencies of the FAAF-modified
12-mers, particularly on the G1- and G2-positions, were
very low. Accordingly, the length of DNA was increased

to 16 (50-CTCTCGGCGCCATCAC-30, Figure 1b) by
adding two nucleotides (underlined) on either side of the
12-mer. The resulting FAAF-modified 16-mer ODNs were
separated well on a reverse-phase HPLC and exhibited
excellent ligation efficiencies (see below).
Figure 2a shows an HPLC profile of a work-up mixture

after 20min of reaction. Unreacted control ODN
appeared at 21min, followed by seven FAAF-modified
ODNs in three retention time zones: Peaks 1–3 at 28–
35min, Peaks 4–6 at 42–60min and Peak 7 at 84min.
Online UV (Figure 2b) of the modified ODNs displayed
a small shoulder in the 290–320 nm range. The relative
absorption intensities (290–320 nm) for the three peak
groups were approximately 1:2:3. This finding is reminis-
cent of AF- or FAF-induced absorption shoulders
observed in 290–350 nm, whose intensities correlate con-
sistently with the number of adduct modifications (28). As
a result, Peaks 1–3 and 4–6 were assigned as mono- and
di-adducts, respectively, and Peak 7 as a tri-adduct. These
adducts were characterized by exonuclease digestion/
ESI-TOF-MS-MS analyses, as described below.
Depending on the location of FAAF, the mono-adducts
were designated as NarI–G1, NarI–G2 or NarI–G3, in
which G1, G2 and G3 signify the position of the
FAAF-modified guanine. Details of the structural charac-
terization and repair of the di- and tri-FAAF adducts will
be published separately.
The HPLC elution profile of the FAAF-modified

16-mer ODNs in the present study is similar to that
of the AAF-modified 15-mer NarI sequence
(50-TCCTCG1G2CG3CCTCTC-3

0) reported by Tan et al.
(34). These results indicate that AAF and FAAF are
chromatographically comparable, irrespective of
sequence length, as long as the common NarI core
(underlined) is included in the sequences. This is not
surprising since conformational and thermodynamic
compatibilities of fluorine containing AF and AAF
models have well been documented (20,30,35). A similar
elution pattern was observed for the FAF-modified
12-mer and FAAF-modified 16-mer NarI sequences;
however, the order of elution of G1 and G3 was reversed
(compare Figure 2a with Figure 2 in Ref. 20).

ESI-QTOF-MS characterization

The molecular weights of all three FAAF-modified ODNs
were measured by ESI-QTOF-MS prior to sequence veri-
fication by exonuclease digestion. Ionization of ODNs
normally occurs by the loss of a proton from a phosphate
group in the ODN backbone. As the number of nucleo-
tides in an ODN increases, the average charge state
observed in the full scan mass spectra increases as well
(28). As shown in Supplementary Figure S3, the ODNs
containing 16 nucleotides form (M-4H)4� ions predomin-
antly unlike the 12-mers studied previously that form
(M-3H)3� primarily upon electrospray (28). Exonucleases
cleave terminal deoxynucleotides from the ODN chain
until the FAAF-modified nucleotide is exposed at the
end of the chain. At that point the digestion reaction
slows down significantly. The position of modification is
identified (in this case) when the fragment(s) formed by
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the loss of the unmodified guanine nucleotides is observed
in the LC/MS spectra. This is shown in Supplementary
Figure S4 for the 30 digest of the -G1(FAAF)G2CG3-
ODN. The ions observed at m/z 659.5 and m/z 989.7 are
the (M-3H)3� and (M-2H)2� ions formed from the 50-CT
CTCG1(FAAF)-30 ODN digest fragment. The observation
of these ions confirms that this ODN is modified on the G
closest to the 50 end. The LC/MS analysis of the 50 digest
of the second modified ODN to elute is shown in
Supplementary Figure S5a and 5b. The exonuclease diges-
tion of this particular reaction product was particularly
slow and evidence for endonuclease activity is observed
in the mass spectra. All the Y fragments observed in
Supplementary Figure S5 are (M-3H)3� ions. The Y10
and Y9 fragments at m/z 1069.2 (50-G2CG3(FAAF)CCA
TCAC-30) and m/z 959.5 (50-CG3(FAAF)CCATCAC-30)
are formed by consecutive cleavages of unmodified
guanines, confirming that this reaction product is
modified on the guanine closest to the 30 end. LC/MS
analysis of the exonuclease digests derived from the
third singly-modified ODN to elute indicates that the
FAAF group is attached to the central G in the
sequence, -G1G2(FAAF)CG3-. LC/MS analysis of the 30

digest (Supplementary Figure S6) show ions at m/z 1154.7
and m/z 769.5 corresponding to the (M-2H)2� and (M-
3H)3� ions derived from the 50-CTCTCG1G2(FAAF)-30

digest fragment. The mass spectra acquired from the 50-
digest (Supplementary Figure S7) show (M-2H)2� and
(M-3H)3� ions at m/z 1604.3 and m/z 1069.2 whose
masses are consistent with 50-G2(FAAF)CG3CCATCAC
-30 fragment. No ions formed by the loss of two guanine
deoxynucleotides were observed in any of the mass
spectra. The observation of ODN fragments with two
G’s in both 30 and 50 digests confirms that the last singly
modified ODN to elute from the reaction mixture is
modified on the middle G.

Circular dichroism

Figure 3a shows an overlay of the CD spectra for the three
FAAF-modified NarI–G1, –G2 and –G3 duplexes relative
to the unmodified control (red). Unmodified and
FAAF-adducted duplexes both displayed a positive and
negative ellipticity at around 270 and 250 nm, respectively,
which is an S-curve characteristic of a B-form DNA

double helix. The modified duplexes displayed significant
blue shifts relative to the unmodified duplex, NarI–G3

(6 nm) >> NarI–G1 � G2 (3 nm), indicating adduct-
induced DNA bending. A concomitant increase in the
positive intensity around 270 nm was noted in the order
of G3�G1>G2, which could be due to the interaction of
the intercalated S-conformeric FAAF with neighboring
bases. We noted a similar blue shift and hyperchromic
effect for the highly (75%) S-conformeric FAF-modified
NarI–G3 duplex (Figure 3b and Table 1 in Ref. 20).

More importantly, FAAF-modified duplexes exhibited
sequence-dependent induced CD in the 290–320 nm range
(ICD290–320 nm). This finding is reminiscent of ICD290–

350 nm, which has been used as a sensitive marker for the
FAF-induced S/B/W-conformational heterogeneity
(positive for S- and W- and negative for B-conformer)
(12, 15, 20, 29, 36). In the present case, however, the
FAAF-modified NarI duplexes exhibited negative dips,
with the NarI–G2 duplex showing a greater dip than G1

or G3 duplexes (Figure 3a). This result could be due to a
higher ratio (57%) of B-conformer for the NarI–G2

duplex.

UV melting experiments

Supplementary Figure S8 shows the UV melting profiles
of the three FAAF–NarI duplexes and an unmodified
control duplex, all at 6.4 mM. All duplexes showed
typical monophasic, sigmoidal, helix–coil transitions
with a strong linear correlation (R2> 0.9) between Tm

�1

and lnCt. Thermal and thermodynamic parameters
calculated from UV melting are summarized in
Supplementary Table S1. As expected, modified duplexes
were destabilized thermally and thermodynamically
relative to the control duplex. The magnitude of thermal
(�Tm) and thermodynamic (��G) destabilization was in
the order of NarI–G2�NarI–G3 (�8.7 to �8.8�C, 3.3 to
3.7 kcal/mol, respectively)>NarI–G1 (�4.6�C and
2.0 kcal/mol, respectively).

Differential scanning calorimetry

Figure 3b shows differential scanning calorimetry (DSC)
plots of excess heat capacity Cp

ex versus temperature for
the FAAF–NarI duplexes relative to the unmodified

Figure 3. (a) CD spectral overlays recorded at 15�C and (b) DSC curves recorded in 20mM phosphate buffer containing 0.1 M NaCl at pH 7.0 of
fully paired 16-mer NarI duplexes with FAAF modification at G1 (green), G2 (blue) and G3 (pink).
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control. Table 1 summarizes the thermal and thermo-
dynamic parameters derived from these DSC curves.
Consistent with the UV melting data, the NarI–G3

duplex was most destabilized (��H=24.7 kcal/mol,
��G37�C=4.7 kcal/mol, �Tm=�8.3�C), followed by
NarI–G2 (��G37�C=4.1 kcal/mol, �Tm=�7.9�C).
NarI–G1 was the least affected (��G37�C=3.7 kcal/mol,
�Tm=�5.3�C).

Differences in the thermal and thermodynamic destabil-
izations must have arisen from the differences in the
S/B/W-conformational characteristics. The most
S-conformeric (61%) NarI–G3 duplex causes disturbance
of Watson–Crick base pairing, resulting in enthalpy reduc-
tion (��H=24.7 kcal/mol) (Table 2). However, the large
entropy (��S=64.7 eu) compensates for the enthalpy,
thus resulting in the overall free energy loss of
��G37�C =4.7 kcal/mol (37). In contrast, NarI–G1 and
–G2 duplexes possess higher populations of B-conformer
(46 and 57%, respectively), thus exhibiting lower differ-
ences in the enthalpy values (��H=21.9 kcal/mol and
��H=18.6 kcal/mol, respectively) (Table 2). The rela-
tively small enthalpy differences observed for the G1 and
G2 duplexes could be attributed to the presence of S- and

W-conformers in addition to B-conformer. As expected,
entropy compensation was less in these two duplexes
(NarI–G1, ��S=58.9 eu and NarI–G2, ��S=47.0
eu), yielding similar overall free energies (NarI–G1,
��G=3.7 kcal/mol and NarI–G2, ��G=4.1 kcal/mol).

S/B/W conformational heterogeneity

Figure 4a shows the 19F-NMR spectra of FAAF–NarI
16-mer G1-, G2- and G3-duplexes measured at 5�C, in
which 19F signals are in slow chemical exchange. These
NarI-FAAF duplexes exhibited three to five 19F signals,
each representing a particular conformation. The percent
population ratios shown were calculated on the basis of
line simulations as shown in Supplementary Figure S9.
Assignments of the different 19F signals of each duplex
were necessary to carry out meaningful structure-
activity-relationship studies. The signal assignments in
Figure 4a were made initially on the basis of chemical
exchange, ring current effect and chemical shift pattern
recognition as have been done for a number of FAAF-
and FAF-adducts in various sequence contexts (30,35). It
has been demonstrated that AF and AAF adducts adopt
the S/B- and S/B/W-conformational equilibrium, respect-
ively (Figure 1c and d) and their 19F chemical shifts are
independent of overall sequence and its length, but
strongly rely on the nature of the bases flanking the
lesion (15,30). The major 19F signals in Figure 4a correlate
well with the S/B/W-profiles reported previously for
FAAF adducts (15), i.e. B-, S- and W-conformers going
from downfield to upfield, i.e. �115.0 to �115.5, �115.5
to �117.0 and �117.0 to �118.0 ppm, respectively. Addi-
tional signals were observed in the �114.0��115.0 ppm
range for the NarI–G2 and –G3 duplexes (Figure 4a, see
Supplementary Table S2 for exact chemical shifts).
Consistent with this observation, their proton spectra dis-
played a mixture of broad imino signals arising not only
from those involved in Watson–Crick hydrogen bonds
(12–14 ppm), but also from the lesion site and its vicinity
(11–12 ppm) (Supplementary Figure S10).
To complement the 19F signal assignments, we addition-

ally conducted a set of comparative spectral analyses using

Table 1. Thermal and thermodynamic parameters of FAAF modified NarI duplexes obtained from differential scanning calorimetry

50-CTCTCG1G2CG3CCATCAC-30

30-GAGAGC C GCGGTAGTG-50

�DH
(kcal/mol)

�DS (eu) �DG37�c

(kcal/mol)
Tm

a (�C) DDHb

(kcal/mol)
DDSc (eu) DDG37�c

d

(kcal/mol)
DTm

e (�C)

Controlf 117.5 319.1 18.6 73.9 – – – –
NarI-G1-FAAFf 95.6 260.2 14.9 68.6 21.9 58.9 3.7 �5.3
NarI-G2-FAAFf 98.9 272.1 14.5 66.0 18.6 47.0 4.1 �7.9
NarI-G3-FAAFf 92.8 254.4 13.9 65.6 24.7 64.7 4.7 �8.3

aTm values is the temperature at half the peak area.
bDDH=DH (modified duplex) �DH (control duplex).
cDDS=DS (modified duplex) �DS (control duplex).
dDDG=DG (modified duplex) �DG (control duplex).
eDTm=Tm (modified duplex) �Tm (control duplex).
fThe average standard deviations for �DG, �DH and Tm are ±0.4, ±3.0 and ±0.4, respectively.

Table 2. Conformational heterogeneity (B/S/W), thermal destabiliza-

tion and relative percent incision rates of FAAF- and FAF-modified

NarI duplexes

NarI Duplexes Population Ratiosa (%) �Tm
b

(�C)
Relative
incision
ratec (%)B S W

NarI-G1-FAAF 46 34 20 �5.3 93
NarI-G2-FAAF 57 15 9 �7.9 32
NarI-G3-FAAF 13 61 26 �8.3 100
NarI-G1-FAF 42 58 – �9.4 44
NarI-G2-FAF 69 31 – �6.8 43
NarI-G3-FAF 35 65 – �8.3 25

aThe percent population ratios were calculated at 5�C on the basis of
line simulations.
bDTm=Tm (modified duplex) � Tm (control duplex).
cPercent incision rate of modified duplexes with respect to NarI-G3-
FAAF (100%).
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three FAAF-12-mer duplexes in the non-NarI sequences
(Figure 4b) in otherwise identical flanking sequence
contexts (CG*G, GG*C and CG*C context for G1, G2

and G3, respectively). The top trace in Figure 4b is the
19F-NMR spectrum of a FAAF-modified 12-mer duplex
(50-CTTCTCG*CCCTC-30), whose S/B/W conformation-
al profiles have been well characterized (15). It should be
noted that this non-NarI 12-mer duplex contains the iden-
tical CG*C flanking sequence context as the 16-mer NarI–
G3–FAAF duplex. Comparison of the two spectra (i.e. top
traces of Figure 4a and b) revealed a parallel trend both in
terms of chemical shifts and population ratios (Table 2
and Supplementary Table S2), supporting the conform-
ational assignments. This is consistent with our previous
findings that the electronic environment for the 19F signals
of AF and AAF adducts are strongly modulated by the
nature of flanking bases (15, 30). Similarly, we prepared
two additional FAAF-modified non-NarI 12-mer duplexes
(50-CTTCTCG*GCCTC-30 and 50-CTTCTC
GG*CCTC-30) with the same flanking base contexts
(underlined) as the NarI–G1 and –G2 duplexes, respective-
ly. Figure 4a and b compares the 19F-NMR spectra of all
three NarI 16-mer and non-NarI 12-mer duplexes side by
side. The 19F signal profiles, as indicated by dotted lines
(pink, B; red, S; green, W) for G1!G2!G3 of each
sequence context, match quite well overall despite of
slight variations observed in chemical shifts and popula-
tion ratios, particularly for the GG*C sequence context.
Whereas the S- and W-conformer signals were prone to
shift, the B-conformer signal appeared to be steady at
�115.5 ppm. This trend is more apparent in Supplemental
Figure S11, in which the two FAAF-modified se-
quence series (NarI-16-mer versus non-NarI-12-mer) are
compared in a pair for each –CG*G-, -GG*C- and

–CG*C- sequence contexts. It is plausible that the carcino-
gen moiety in the major groove of the B-conformer is not
subjected to the ring current effect, as the S- and
W-conformers would be (14). We were unable to
identify the minor signals (asterisked) in the 16-mer
NarI–G2– (<19%) and –G3–FAAF duplexes, although
their downfield shifts relative to the B-conformer imply
B-like conformers, in which the fluorine containing car-
cinogen moiety is exposed.

Figure 4c shows the 19F-NMR spectra of FAF-modified
12-mer duplexes with the same NarI sequence contexts,
which have been thoroughly characterized (20). The B/S
conformer population ratios were determined to be
42%:58%, 69%:31%, 35%:65% for FAF-modified
NarI–G1, –G2 and –G3, respectively, at 5�C (Table 2)
(20). Although the chemical shift difference
(0.4–1.0 ppm) for the B and S conformer of FAAF
(Figure 4a) is significantly smaller than that (�1.5 ppm)
of the FAF counterparts, their overall S/B ratios appear to
match (Figure 4a and c). The B/S/W population ratios for
the FAAF–NarI–G1, –G2 and –G3 16-mer duplexes were
46:34:20, 57:15:9 and 13:61:26, respectively (Table 2). In
both the FAAF- (Figure 4a) and FAF- (Figure 4c) NarI
duplexes, the population of S-conformer decreased in the
order of G3>G1>G2 and that of the B-conformer
decreased in the reverse order, G2>G1 >G3. This
comparative analysis was based on the assumption that
structurally similar FAAF would experience similar
sequence effects on their conformational profiles as
observed by FAF in different sequence contexts of the
NarI sequence (20). As expected, the aminofluorene-
induced B/S-heterogeneity is strongly dependent on the
nature of the flanking sequences, regardless of whether
the lesion has the bulky acetyl group on the central

(a) (b) (c)

-112 -114 -116 -118 -120 ppm -112 -114 -116 -118 -120 ppm -112 -114 -116 -118 -120 ppm

’
’

’
’

’
’

’
’

’
’

’
’

Figure 4.
19F-NMR spectra of (a) FAAF-modified NarI 16-mer, (b) FAAF-modified non-NarI 12-mer and (c) FAF-modified NarI 12-mer duplexes

at 5�C. *unknown conformers; #impurity.
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nitrogen linking the carcinogen and the modified guanine,
thus validating our assumption.

Dynamic 19F-NMR

Figure 5 shows the 19F-NMR spectra of the three FAAF–
NarI duplexes as a function of temperature (5–60�C).
Whereas the three 19F signals in each duplex were in
slow exchange at 5�C, the two downfield B- and
S-signals became exchange broadened, giving rise to co-
alescent signals at around 30, 40 and 25�C for G1, G2 and
G3, respectively. In all cases, the merged signals coalesced
with the upfield W-signal at around 60�C. All three NarI
duplexes showed relatively strong off-diagonal contour
peaks of the major signals in the exchange spectra (data
not shown), confirming their chemical exchanges.

UvrABC incisions of FAAF-adducts on NarI sequence

Figure 6 shows the kinetic assay results, in which 55-mer
FAAF-modified DNA duplex substrates were incised by
UvrABC nuclease. These substrates were radioactively
labeled at the 50-end of the adducted strand. The major
incision products can be seen as 18-mer (NarI–G1), 19-mer
(NarI–G2) or 21-mer (NarI–G3) separated on a urea–
PAGE gel under denaturing conditions (Supplementary
Figure S12). The incision occurred at the eighth phosphate
bond 50 to the modified nucleotide, which is consistent

with the previously reported results of UvrABC incision
(11,32).
Quantitative analysis of the incision indicated that the

substrates were incised at different efficiencies, depending
on where the damage site was located in the sequence
(Figure 6). Specifically, the N-acetylated FAAF adducts
at NarI–G1 and NarI–G3 displayed similar rates of
incision, whereas NarI–G2 had a much lower rate of
incision, G3 (100%)�G1 (93%)>G2 (32%) (Figure 6c,
Table 2). For comparison, we also determined the
UvrABC incision of FAF adducts in the same NarI
sequence context. As shown in Figure 6b and c, the N-
deacetylated FAF adducts in the same NarI sequence
context were repaired 2 - to 3-fold less than FAAF.
Despite having similar B/S-conformer profiles (Figure 4
and Table 2) the incision efficiency of FAF adducts
at the three different sites in the NarI sequence followed
the order of G1 (44%)&G2 (43%)>G3 (25%), where the
percentages were calculated relative to FAAF NarI–G3

(which was the most efficiently incised).

DISCUSSION

It is well known that DNA sequence is a major
determining factor for repair outcomes of site-specifically
modified bulky DNA lesions. In this study, we examined
the conformational heterogeneity and thermodynamics of

(a) (b) (c)

Figure 5. Dynamic 19F-NMR spectra of fully paired 16-mer NarI duplexes. FAAF modification at (a) G1, (b) G2 and (c) G3. *unknown conformers;
#impurity.
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FAAF and FAF at three different guanine positions (G1,
G2 and G3) of the well-known NarI recognition sequence.
Moreover, we obtained NER data of these adducts using
the E. coli UvrABC system. Table 2, which summarizes
the S/B/W solution conformational heterogeneity, Tm and
NER efficiency results, presents strong evidence that the
NER repair efficiencies of AAF and AF adducts in the
NarI sequences are modulated by their conformational
and thermodynamic properties.

FAAF-induced B/S/W-conformational heterogeneity

Our combined 19F-NMR/ICD results show that FAAF
adduct in a well-known mutational hotspot NarI
sequence exist in a mixture of B/S/W conformers with
varying populations (Figure 4a, Table 2). A greater popu-
lation of syn-glycosidic S-(61%) and W-(26%) conformers
was observed in NarI–G3, in which the lesion is flanked
with C on both 50- and 30-ends (-CG3*C-). This result
is consistent with the preferred syn-conformation
adopted by duplexes modified by AF (20), 2-amino-3-
methylimidazo(4,5-f)quinolone (IQ) (38–40) and 2-
amino-1-methyl-6-phenylimid-azo(4,5-b)pyridine (PHIP)
(41), with the same -CG*C- contexts, in either NarI or
non-NarI sequences (20,38,39,41). The mostly syn NarI–
G3 duplex appeared to be distorted, bent or possibly
formed a B–Z junction, as evidenced by a significant
blue shift and hyperchromic effect in CD (Figure 3a)
(42). The latter was probably due to the n–n stacking

interaction between the intercalated aminofluorene and
flanking base pairs. On the other hand, the NarI–G2

duplex (-G1G2*C-) exhibited largely the anti-
B-conformer (57%) along with S- (15%), W- (9%) and
two unidentified minor conformers (�19%). In compari-
son to NarI–G3, the NarI–G2 duplex exhibited smaller
blue shift and hyperchromic effect (Figure 3a), suggesting
lesser disturbance of the double helical DNA structure.

These results indicate the heterogeneous nature of AAF
in the NarI sequence and are consistent with a previous
CD study that showed a major DNA distortion for AAF
at G3 adduct compared to G1 and G2 (42). Similarly,
Veaute et al. (43) conducted a DNase I footprint study
on the NarI sequence and showed that AAF at the G2

position inhibits DNase I digestion of DNA at up to
five bases in the modified strand and four bases in the
complementary strand. In contrast, inhibition at the G1

and G3 positions was extended to eight and six bases, re-
spectively in the modified strand.

The G3 and G2 duplexes are chemically isomeric, differ-
ing only in the direction of the G:C base pair at the
50-position (e.g. C:G ! G:C). Such a polarity swap is
clearly responsible for the rather dramatic conformational
shift from S- (61 to 15%) to B- (13 to 57%) and
W-conformation (26 to 9%) (Table 2). A similar polarity
switch at the 30-end of the NarI–G1 duplex resulted
in varying degrees of conformational shift in S- (61 to
34%), B- (13 to 46%) and W-conformation (26 to 20%).

Figure 6. Absolute percent incision rates of (a) FAAF and (b) FAF–NarI duplexes modified at G1, G2 and G3; (c) percent incision rates histogram of
FAF and FAAF at different positions relative to NarI–G3 FAAF as 100%.
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As expected, FAAF-modification at the three guanines
of the 16-mer NarI sequence resulted in thermal (�Tm=
�5.3 to �8.3�C) and thermodynamic (��G37�C=3.7–
4.7 kcal/mol) destabilization relative to the unmodified
control duplex (Table 1). The destabilizing effect of the
FAAF modification was sequence-dependent and was
related to the S/B/W-conformational profile. As
summarized in Tables 1 and 2, the highly S-conformeric
NarI–G3 duplex (61%) promoted lesion stacking and dis-
rupted the lesion site Watson–Crick base pairs, resulting
in thermal (�Tm=�8.3�C) and enthalpic destabilization
(��H=24.7 kcal/mol). In contrast, the highly
B-conformeric (57%) NarI–G2 duplex exerted less
enthalpy change (��H=18.6 kcal/mol). As expected,
NarI–G1 (46% B, 34% S) produced an intermediate
change in enthalpy (��H=21.9 kcal/mol). In all cases,
however, enthalpy–entropy compensation resulted in a
small overall difference (�1 kcal/mol) in thermodynamic
destabilization (Table 1). A similar case could occur if the
W-conformer was considered as a thermodynamic
destabilizer, G3 (26%)>G1 (20%)>G2 (9%). We previ-
ously studied three fully paired FAF-modified 12-mer
duplexes in the same NarI sequence contexts (20). The
UV melting results showed that FAF modification desta-
bilizes the duplexes (�Tm=�6.8 to �9.4�C, ��G=4.2–
4.6 kcal/mol) similarly. The highly S-conformeric (65%)
NarI–G3 duplex resulted in thermal destabilization
(�Tm=�8.3�C), whereas the highly B-conformeric
(69%) NarI–G2 duplex exerted less destabilization
(�Tm=�6.8�C) (Table 2) (20).

Conformation-specific nucleotide excision repair

The E. coli UvrABC system displayed significant differ-
ences in repair of the FAAF adduct at each guanine
position (G1, G2 and G3) of the NarI sequence. The
NarI–G2 duplex showed considerably lower efficiency
than NarI–G1 or NarI–G3, [G3 (100%)�G1 (93%)>G2

(32%)] (Figure 6). It is clear from Table 2 that these NER
results are in good agreement with the order of the
S-conformer population [G3 (61%)>G1 (34%)>G2

(15%)], but are in exactly the reverse order of the popu-
lation of B-conformer, [G2 (57%)>G1 (46%)>G3

(13%)]. This data suggest that the S-conformation is
recognized and incised by E. coli NER dominantly over
the B-conformation. We reported previously a similar
conformation-specific NER results on a series of
FAF-modified duplexes (16, 30).

The carcinogen in the highly S-conformer NarI–G3 is
base-displaced at the lesion site, thus resulting in a major
disturbance in the DNA helical structure (�Tm=�8.3�C,
��G37�C=4.7 kcal/mol) (Table 2). This finding is con-
trasted with the 57% B-conformer NarI–G2 duplex,
which maintains Watson–Crick base pairs at the lesion
site (�Tm=�7.9�C, ��G37�C= 4.1 kcal/mol). Similar
correlations could be made with either the W-conformer
alone, G3 (26%)>G1 (20%)>G2 (9%) or the syn-
conformation (combined S and W), G3 (87%)>G1

(54%)>G2 (24%).
For comparison, we also determined the UvrABC inci-

sions of FAF-adducts in the same NarI sequence context.

The two lesions revealed a similar B/S conformer hetero-
geneity in the NarI sequence context (Figure 4). Therefore,
the expectation was that FAF would show a similar NER
profile as FAAF, i.e. S-/W-conformer promotes NER
over B-conformer. However, the NER results revealed
that incision efficiency was in the order of G1&G2>G3

(Figure 6, Table 2). At first, this result appears to be in line
with the B-conformer population. It should be noted that
FAF is repaired consistently 2- to 3-fold less than FAAF
(Figure 6c, Table 2). This result is a general trend reported
in the literature, although much greater differences in
incision efficiency between AF and AAF have been
noted (11, 44). As a result, the difference between G1

and G2 of FAF is not statistically significant (P=0.83),
but their difference with G3 is significant (P< 0.0001).
The incision differences between FAAF and FAF seem

to suggest that, in addition to the sequence-dependent
adduct conformation, the acetyl group in FAAF may
play a role in DNA damage recognition by UvrABC.
The only structural difference between FAF and FAAF
is the absence of a bulky acetyl group on the linking
nitrogen of the former (Figure 1a). It has been docu-
mented that N-acetylated FAAF adducts in fully
paired duplexes produce a mixture of complex
S/B/W-conformers, whereas N-deacetylated FAF adopts
a simple exchangeable S/B-equilibrium (15, 30). Thus, it is
clear that the N-acetyl group is responsible for generating
up to 26% W-conformer in the NarI sequence (Figure 4).
The bulkiness of the acetyl group with its possibility for cis
and trans rotamer transitions about the amide bond (14,
15, 45) may facilitate the repositioning of the fluorenyl
rings into the minor groove from the S conformation.
This conformational rearrangement is relatively straight-
forward since it does not require a change in the glycosidic
bond, which is syn in both cases. We observed a good
correlation between the proportion of W-conformation
and NER efficiency of FAAF.
Moreover, although FAF and FAAF have similar S/

B-conformational profile (Figure 4), the N-acetyl group
in the latter could act as a ‘conformational locker’ to
raise the energy barriers among conformers. Such a
scenario, i.e. higher energy barriers of FAAF vs. FAF, is
plausible and might contribute to a greater disturbance in
DNA, and thus greater repair. By contrast, the N-
deacetylated FAF adopts a facile interchangeable B/
S-equilibrium (<2 kcal/mol) that triggers weaker binding
affinities with the damage-recognition protein UvrA. A
recent crystal study indicated that the UvrA dimer does
not contact the lesion site directly, but rather binds DNA
regions on both sides of the modification and primarily
recognizes adduct-induced unwinding, bending and de-
formity in the overall DNA structure (25). Furthermore,
DNA damage recognition in E. coli NER is achieved
through a sequential 2-step mechanism (46). The initial
step is to recognize the adduct-induced distorted DNA
structure. After strand opening at the damage site, the
DNA adduct structure is further recognized or verified
in a second step, which may facilitate the flipping of the
adducted nucleotide (47,48). Therefore, it is possible that,
for FAF, the second step of recognition plays a more
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important role than the first step, whereas the first step is a
dominate recognition for FAAF.
The order of NER efficiencies described here is roughly

consistent with bacterial NER data on AAF adducts
embedded in a similar NarI sequence (17): G1 (100%),
G3 (66%) and G2 (18%). Sequence dependence was also
found in human NER of AAF adducted in the NarI
sequence (18). In contrast to the E. coli NER data,
however, the AAF adduct at G2 (100%) was found to
be more repairable, followed by G3 (68%) and G1

(38%). Despite differences in the nature of proteins
involved in prokaryotic and eukaryotic NER, the two
systems show similar involvement of b-hairpin intrusion
as damage recognition factors (49). Liu et al. (50) found a
general qualitative trend toward similar relative NER
incision efficiencies for 65% of bulky benzo[a]pyrene
and equine estrogen substrates. Similar to bacterial
UvrA, Rad4 (XPC) in yeast also recognizes helical distor-
tion to sense DNA damage; unlike bacteria, yeast use a
base-flipping mechanism for repair (26). Therefore, the
efficiency of repair depends not only on the damage rec-
ognition step, but also on other factors, such as ease of
base flipping.
In summary, our structural and thermodynamic data

provide valuable conformational insights into the
sequence-dependent UvrABC incisions of the bulky
FAF and FAAF adducts in the NarI sequence context.
Repair of the bulky N-acetylated FAAF adduct seems to
occur in a conformation-specific manner, i.e. the highly S/
W-conformeric G3 and G1 duplexes incised considerably
more efficiently than the G2 duplex (G3�G1>G2) (Table
2). These results were supported by melting and thermo-
dynamic data. Not surprisingly, FAF was repaired 2- to
3-fold less than FAAF; however, the order of incision
efficiencies was the reverse of that in the FAAF case.
We considered the so-called N-acetyl factor and
lesion-specific recognition mechanism for the different
orders of incision for FAF and FAAF. Finally, the tem-
perature dependence of the S/B/W-conformational
equilibria of the FAAF-adducts in the NarI sequence
could provide valuable opportunities for
conformation-specific NER utilizing thermophilic
UvrABC proteins (51). Taken together, the results of
this study demonstrate the complexity of NER mechan-
isms of bulky DNA lesions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S2, Supplementary Figures
S1–S12.

FUNDING

National Institutes of Health (Grant number
R01CA098296); RI-INBRE Research Core Facility sup-
ported by the National Center for Research Resources (in
part); National Institutes of Health (Grant number P20
RR016457). Funding for open access charge: National
Institutes of Health (Grant number R01CA098296).

Conflict of interest statement. None declared.

REFERENCES

1. Luch,A. (2005) Nature and nurture - lessons from chemical
carcinogenesis. Nat. Rev. Cancer, 5, 113–125.

2. Melchior,W.B. Jr, Marques,M.M. and Beland,F.A. (1994)
Mutations induced by aromatic amine DNA adducts in pBR322.
Carcinogenesis, 15, 889–899.

3. Neumann,H.G. (2007) Aromatic amines in experimental cancer
research: tissue-specific effects, an old problem and new solutions.
Crit. Rev. Toxicol., 37, 211–236.

4. Friedberg,E.C., Walker,G.C., Siede,W., Wood,R.D., Schultz,R.A.
and Ellenberger,T. (eds), (2006) DNA Repair and Mutagenesis,
2nd edn. ASM Press, Washington.

5. Truglio,J.J., Croteau,D.L., Van Houten,B. and Kisker,C. (2006)
Prokaryotic nucleotide excision repair: the UvrABC system.
Chem. Rev., 106, 233–252.

6. Lehmann,A.R. (2003) DNA repair-deficient diseases, xeroderma
pigmentosum, Cockayne syndrome and trichothiodystrophy.
Biochimie, 85, 1101–1111.

7. Van Houten,B. (1990) Nucleotide excision repair in Escherichia
coli. Microbiol. Rev., 54, 18–51.

8. Heflich,R.H. and Neft,R.E. (1994) Genetic toxicity of
2-acetylaminofluorene, 2-aminofluorene and some of their
metabolites and model metabolites. Mutat. Res., 318, 73–114.

9. Beland,F.A. and Kadlubar,F.F. (1990) Handbook of Experimental
Pharmacology. Spring, Heidelberg.

10. Cho,B.P. (2004) Dynamic conformational heterogeneities of
carcinogen-DNA adducts and their mutagenic relevance. J.
Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 22,
57–90.

11. Luo,C., Krishnasamy,R., Basu,A.K. and Zou,Y. (2000)
Recognition and incision of site-specifically modified C8 guanine
adducts formed by 2-aminofluorene, N-acetyl-2-aminofluorene and
1-nitropyrene by UvrABC nuclease. Nucleic Acids Res., 28,
3719–3724.

12. Meneni,S.R., D’Mello,R., Norigian,G., Baker,G., Gao,L.,
Chiarelli,M.P. and Cho,B.P. (2006) Sequence effects of
aminofluorene-modified DNA duplexes: thermodynamic and
circular dichroism properties. Nucleic Acids Res., 34, 755–763.

13. Patel,D.J., Mao,B., Gu,Z., Hingerty,B.E., Gorin,A., Basu,A.K.
and Broyde,S. (1998) Nuclear magnetic resonance solution
structures of covalent aromatic amine-DNA adducts and their
mutagenic relevance. Chem. Res. Toxicol., 11, 391–407.

14. Zhou,L., Rajabzadeh,M., Traficante,D.D. and Cho,B.P. (1997)
Conformational heterogeneity of arylamine-modified DNA: 19F
NMR evidence. J. Am. Chem. Soc., 119, 5384–5389.

15. Patnaik,S. and Cho,B.P. (2010) Structures of
2-acetylaminofluorene modified DNA revisited: insight into
conformational heterogeneity. Chem. Res. Toxicol., 23, 1650–1652.

16. Meneni,S., Shell,S.M., Zou,Y. and Cho,B.P. (2007)
Conformation-specific recognition of carcinogen-DNA adduct in
Escherichia coli nucleotide excision repair. Chem. Res. Toxicol.,
20, 6–10.

17. Seeberg,E. and Fuchs,R.P. (1990) Acetylaminofluorene bound to
different guanines of the sequence -GGCGCC- is excised with
different efficiencies by the UvrABC excision nuclease in a
pattern not correlated to the potency of mutation induction.
Proc. Natl Acad. Sci. USA, 87, 191–194.

18. Mu,D., Bertrand-Burggraf,E., Huang,J.C., Fuchs,R.P., Sancar,A.
and Fuchs,B.P. (1994) Human and E.coli excinucleases are
affected differently by the sequence context of
acetylaminofluorene-guanine adduct. Nucleic Acids Res., 22,
4869–4871.

19. Burnouf,D., Koehl,P. and Fuchs,R.P. (1989) Single adduct
mutagenesis: strong effect of the position of a single
acetylaminofluorene adduct within a mutation hot spot. Proc.
Natl Acad. Sci. USA, 86, 4147–4151.

20. Jain,N., Li,Y., Zhang,L., Meneni,S.R. and Cho,B.P. (2007)
Probing the sequence effects on NarI-induced -2 frameshift
mutagenesis by dynamic 19F NMR, UV, and CD spectroscopy.
Biochemistry, 46, 13310–13321.

3950 Nucleic Acids Research, 2012, Vol. 40, No. 9

http://nar.oxfordjournals.org/cgi/content/full/gkr1307/DC1


21. Broschard,T.H., Koffel-Schwartz,N. and Fuchs,R.P. (1999)
Sequence-dependent modulation of frameshift mutagenesis at
NarI-derived mutation hot spots. J. Mol. Biol., 288, 191–199.

22. Koffel-Schwartz,N. and Fuchs,R.P. (1995) Sequence determinants
for -2 frameshift mutagenesis at NarI-derived hot spots. J. Mol.
Biol., 252, 507–513.

23. Mekhovich,O., Tang,M. and Romano,L.J. (1998) Rate of incision
of N-acetyl-2-aminofluorene and N-2-aminofluorene adducts by
UvrABC nuclease is adduct- and sequence-specific: comparison of
the rates of UvrABC nuclease incision and protein-DNA complex
formation. Biochemistry, 37, 571–579.

24. Zou,Y., Shell,S.M., Utzat,C.D., Luo,C., Yang,Z., Geacintov,N.E.
and Basu,A.K. (2003) Effects of DNA adduct structure and
sequence context on strand opening of repair intermediates and
incision by UvrABC nuclease. Biochemistry, 42, 12654–12661.

25. Jaciuk,M., Nowak,E., Skowronek,K., Tanska,A. and Nowotny,M.
(2011) Structure of UvrA nucleotide excision repair protein in
complex with modified DNA. Nat. Struct. Mol. Biol., 18,
191–197.

26. Min,J.H. and Pavletich,N.P. (2007) Recognition of DNA damage
by the Rad4 nucleotide excision repair protein. Nature, 449,
570–575.

27. Cho,B.P. and Zhou,L. (1999) Probing the conformational
heterogeneity of the acetylaminofluorene-modified
2’-deoxyguanosine and DNA by 19F NMR spectroscopy.
Biochemistry, 38, 7572–7583.

28. Gao,L., Zhang,L., Cho,B.P. and Chiarelli,M.P. (2008) Sequence
verification of oligonucleotides containing multiple arylamine
modifications by enzymatic digestion and liquid chromatography
mass spectrometry (LC/MS). J. Am. Soc. Mass Spectrom., 19,
1147–1155.

29. Jain,N., Meneni,S., Jain,V. and Cho,B.P. (2009) Influence of
flanking sequence context on the conformational flexibility of
aminofluorene-modified dG adduct in dA mismatch DNA
duplexes. Nucleic Acids Res., 37, 1628–1637.

30. Meneni,S.R., Shell,S.M., Gao,L., Jurecka,P., Lee,W., Sponer,J.,
Zou,Y., Chiarelli,M.P. and Cho,B.P. (2007) Spectroscopic and
theoretical insights into sequence effects of aminofluorene-induced
conformational heterogeneity and nucleotide excision repair.
Biochemistry, 46, 11263–11278.

31. Chakrabarti,M.C. and Schwarz,F.P. (1999) Thermal stability of
PNA/DNA and DNA/DNA duplexes by differential scanning
calorimetry. Nucleic Acids Res., 27, 4801–4806.

32. Zou,Y., Liu,T.M., Geacintov,N.E. and Van Houten,B. (1995)
Interaction of the UvrABC nuclease system with a DNA duplex
containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE.
Biochemistry, 34, 13582–13593.

33. Zou,Y. and Van Houten,B. (1999) Strand opening by the
UvrA(2)B complex allows dynamic recognition of DNA damage.
EMBO J., 18, 4889–4901.

34. Tan,X., Suzuki,N., Grollman,A.P. and Shibutani,S. (2002)
Mutagenic events in Escherichia coli and mammalian cells
generated in response to acetylaminofluorene-derived DNA
adducts positioned in the Nar I restriction enzyme site.
Biochemistry, 41, 14255–14262.

35. Meneni,S., Liang,F. and Cho,B.P. (2007) Examination of the
long-range effects of aminofluorene-induced conformational
heterogeneity and its relevance to the mechanism of translesional
DNA synthesis. J. Mol. Biol., 366, 1387–1400.

36. Liang,F., Meneni,S. and Cho,B.P. (2006) Induced circular
dichroism characteristics as conformational probes for

carcinogenic aminofluorene-DNA adducts. Chem. Res. Toxicol.,
19, 1040–1043.

37. Liang,F. and Cho,B.P. (2010) Enthalpy-entropy contribution to
carcinogen-induced DNA conformational heterogeneity.
Biochemistry, 49, 259–266.

38. Elmquist,C.E., Wang,F., Stover,J.S., Stone,M.P. and Rizzo,C.J.
(2007) Conformational differences of the C8-deoxyguanosine
adduct of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) within the
NarI recognition sequence. Chem. Res. Toxicol., 20, 445–454.

39. Wang,F., DeMuro,N.E., Elmquist,C.E., Stover,J.S., Rizzo,C.J.
and Stone,M.P. (2006) Base-displaced intercalated structure of the
food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the
recognition sequence of the NarI restriction enzyme, a hotspot for
-2 bp deletions. J. Am. Chem. Soc., 128, 10085–10095.

40. Wang,F., Elmquist,C.E., Stover,J.S., Rizzo,C.J. and Stone,M.P.
(2007) DNA sequence modulates the conformation of the food
mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the
recognition sequence of the NarI restriction enzyme. Biochemistry,
46, 8498–8516.

41. Brown,K., Hingerty,B.E., Guenther,E.A., Krishnan,V.V.,
Broyde,S., Turteltaub,K.W. and Cosman,M. (2001) Solution
structure of the 2-amino-1- methyl-6-phenylimidazo[4,5-b]pyridine
C8-deoxyguanosine adduct in duplex DNA. Proc. Natl Acad. Sci.
USA, 98, 8507–8512.

42. Koehl,P., Valladier,P., Lefevre,J.F. and Fuchs,R.P. (1989) Strong
structural effect of the position of a single acetylaminofluorene
adduct within a mutation hot spot. Nucleic Acids Res., 17,
9531–9541.

43. Veaute,X. and Fuchs,R.P. (1991) Polymorphism in N-2-
acetylaminofluorene induced DNA structure as revealed by
DNase I footprinting. Nucleic Acids Res., 19, 5603–5606.

44. Gillet,L.C., Alzeer,J. and Scharer,O.D. (2005) Site-specific
incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene
(dG-AAF) into oligonucleotides using modified ’ultra-mild’ DNA
synthesis. Nucleic Acids Res., 33, 1961–1969.

45. Shapiro,R., Hingerty,B.E. and Broyde,S. (1989) Minor-groove
binding models for acetylaminofluorene modified DNA.
J. Biomol. Struct. Dyn., 7, 493–513.

46. Zou,Y., Luo,C. and Geacintov,N.E. (2001) Hierarchy of DNA
damage recognition in Escherichia coli nucleotide excision repair.
Biochemistry, 40, 2923–2931.

47. Malta,E., Verhagen,C.P., Moolenaar,G.F., Filippov,D.V., van der
Marel,G.A. and Goosen,N. (2008) Functions of base flipping in
E. coli nucleotide excision repair. DNA Repair, 7, 1647–1658.

48. Malta,E., Moolenaar,G.F. and Goosen,N. (2006) Base flipping in
nucleotide excision repair. J. Biol. Chem., 281, 2184–2194.

49. Scharer,O.D. (2011) Multistep damage recognition, pathway
coordination and connections to transcription, damage signaling,
chromatin structure, cancer and aging: current perspectives on the
nucleotide excision repair pathway. DNA Repair, 10, 667.

50. Liu,Y., Reeves,D., Kropachev,K., Cai,Y., Ding,S.,
Kolbanovskiy,M., Kolbanovskiy,A., Bolton,J.L., Broyde,S., Van
Houten,B. et al. (2011) Probing for DNA damage with
beta-hairpins: similarities in incision efficiencies of bulky DNA
adducts by prokaryotic and human nucleotide excision repair
systems in vitro. DNA Repair, 10, 684–696.

51. Ruan,Q., Liu,T., Kolbanovskiy,A., Liu,Y., Ren,J., Skorvaga,M.,
Zou,Y., Lader,J., Malkani,B., Amin,S. et al. (2007) Sequence
context- and temperature-dependent nucleotide excision repair of
a benzo[a]pyrene diol epoxide-guanine DNA adduct catalyzed by
thermophilic UvrABC proteins. Biochemistry, 46, 7006–7015.

Nucleic Acids Research, 2012, Vol. 40, No. 9 3951


	Conformational and Thermodynamic Properties Modulate the Nucleotide Excision Repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI Sequence
	Citation/Publisher Attribution

	Conformational and Thermodynamic Properties Modulate the Nucleotide Excision Repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI Sequence
	Creative Commons License
	Authors

	gkr1307 3939..3951

