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6. Polymers III

• Polymer viscoelasticity

– creep compliance and stress relaxation [pln52]

– linear response and superposition principle

– zero shear viscosity

– polymer creep compliance: linear response [pex35]

– polymer stress relaxation: linear response [pex36]

– relaxation modulus of polymer melt [pln53]

– time regimes: glassy - rubbery - viscous

– characteristic dependences on degree of polymerization [psl9]

• Polymer crystallinity

– semi-crystalline state [pln54]

– hierarchical structure (chain-folding, lamellae, spherulites) [psl10]

– lateral versus linear lamellar growth [pln55]

– criteria for lateral growth (minimum stem length, temperature
window)

– velocity of lateral growth

– conditions for fastest lateral growth [pex37]

• Gelation [pln56]

– chemical gels [psl11]

– physical gels [psl12]

– rubber elasticity [pln64]

– elasticity of balloon during inflation [pex60]

– polymer gel [pln65]

– polymer gel free-energy density of mixing [pex14]

– swelling equilibrium of polymer gel [pex13] [pex12]

– polymer gel compressed uniaxially [pex11]

– percolation threshold and gel fraction

– percolation on Bethe lattice [pex38], [nex40]



Polymer Viscoelasticity: Linear Response [pln52]

Creep compliance: J(t)

• Constant stress applied abuptly: σ(t) = σ0θ(t).

• Linear time-dependent strain: e(t) = J(t)σ0.

• Regimes of linear strain response (see graph):

(1) fast elastic response,

(2) creep response (crossover),

(3) long-time asymptotic viscous response.

• Phenomenological model: J(t) = bt+ c
√
t, b, c ≥ 0.

Time-dependent stress σ(t) of arbitrary profile.

Linear strain response constructed via superposition principle:

e(t) =
∑
i

∆σ(τi)J(t− τi) →
∫ σ(t)

σ(t0)

dσ(τ)J(t− τ) =

∫ t

t0

dτJ(t− τ)
dσ

dτ
.

Strain response for linear and oscillatory stress profiles explored in [pex35].



Stress relaxation modulus: G(t)

• Constant strain applied abruptly: e(t) = e0θ(t).

• Linear time-dependent stress: σ(t) = e0G(t).

• Regimes of linear stress response (see graph):

(1) instant elastic response,

(2) stress relaxation due to viscous flow.

• Phenomenological models of stress relaxation:

B G(t) = e−t (fast),

B G(t) = (1 + t)−1 (slow).

Time-dependent strain e(t) of arbitrary profile.

Linear stress response constructed via superposition principle:

σ(t) =
∑
i

∆e(τi)G(t− τi) →
∫ e(t)

e(t0)

de(τ)G(t− τ) =

∫ t

t0

dτG(t− τ)
de

dτ
.

Stress response for model strain profiles explored in [pex36].
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Oscillatory strain: e(t) = sin(ωt).

Steady-state stress response: σ(t) = G′(ω) sin(ωt) +G′′(ω) cos(ωt).

• G′(ω): storage modulus describes elastic response,

• G′′(ω): loss modulus describes viscous response.

Example: G(t) = e−t.

⇒ σ(t) =
ω

1 + ω2

[
e−t + ω sin(ωt) + cos(ωt)

]
,

where the first term represents a transient response and the two remaining
terms the steady-state response with moduli

G′(ω) =
ω2

1 + ω2
, G′′(ω) =

ω

1 + ω2
.

Zero-shear viscosity η0 defined via σ
.
= η0 (de/dτ) for circumstances where it

is justified to assume that a constant strain rate produces a constant steady-
state stress.

σ = η0
de

dτ
=

∫ t

−∞
dτ G(t− τ)

de

dτ
=

∫ ∞
0

dt′G(t′)
de

dτ

⇒ η0 =

∫ ∞
0

dtG(t).

[extracted in part from Jones 2002]
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[pex35] Polymer creep compliance: linear response

The basic model for creep compliance expresses the time-dependent strain e(t) that results from
a stress σ0 turned on abruptly and held constant, e(t) = J(t)σ0. For a viscoelastic material, the
creep compliance J(t) is a monotonically increasing function that rises very steeply from zero and
then approaches a more moderate, linear increase at large t. For situations with time-dependent
stress σ(t), this linear response generalizes into the relation (Boltzmann superposition principle)

e(t) =

∫ t

−∞
dτ J(t− τ)

dσ(τ)

dτ
.

Here we consider the following two-parameter creep compliance representing the viscoelastic be-
havior of some hypothetical polymer melt:

J(t) = bt+ c
√
t, b, c > 0,

(a) Calculate the time-dependent strain, e(t), in (linear) response to a stress that increases from
zero at constant rate: σ(t) = at. Plot both J(t) and e(t) versus t for a = 1, c = 1, and b = 0.1, 0.5, 1.
Interpret your results.
(b) Calculate the time-dependent strain, e(t), in (linear) response to a harmonically oscillating
stress: σ(t) = a sin(ωt). Write the result in the form e(t) = eb(t)+ec(t), where each term represents
the linear response to one term of J(t). Plot e(t), eb(t), ec(t) versus t for a = 1, c = 1, b = 0.2, and
ω = 0.5, 1, 2. Produce three graphs for different values of ω, each with three curves. Use the range
of t such that 0 < ωt < 10 in each graph. Interpret your results.
Note that the term “linear” is used or implied to describe three different aspects: (i) the linear
term in J(t), (ii) the linear relation between strain e(t) and stress rate dσ/dτ , (iii) the linear stress
increase in σ(t) = at.

Solution:



[pex36] Polymer stress relaxation: linear response

The basic model for stress relaxation expresses the time-dependent stress σ(t) that results from
a strain e0 forced abruptly and held constant, σ(t) = G(t)e0. For a viscoelastic material, the
relaxation modulusG(t) is a monotonically decreasing function that approaches zero asymptotically
as t→∞. For situations with time-dependent strain e(t), this linear response generalizes into the
relation (Boltzmann superposition principle)

σ(t) =

∫ t

−∞
dτ G(t− τ)

de(τ)

dτ
.

Here we consider two alternative relaxation moduli: one decaying exponentially and the other as
a power law, representing the viscoelastic behavior of different hypothetical polymer melts:

G1(t) = e−t, G2(t) =
1

1 + t
.

(a) Calculate the time-dependent stress, σi(t), i = 1, 2, in (linear) response to a harmonically
oscillating strain: e(t) = sin(ωt) for the two model relaxation moduli. Plot G1(t) and G2(t) in the
same graph for 0 < t < 5 for comparison. Then plot σ1(t) and σ2(t) (two frames) for 0 < t < 10
and ω = 0.5, 1, 2 (three curves each). Interpret your results.
(b) Calculate the time-dependent stress, σi(t), i = 1, 2, in (linear) response to a strain that rises
from zero at a constant rate: e(t) = t. Plot σ1(t) and σ2(t) in the same frame for 0 < t < 5 for
comparison. Interpret your results.

Solution:



Relaxation Modulus of Polymer Melt [pln53]

In a monodisperse polymer melt, the relaxation modulus G(t) exhibits dis-
tinct behavior on three different time scales:

(1) The high initial value at short time reflects stiff glassy behavior.

(2) The plateau modulus Gp at intermediate times reflects rubbery elastic
behavior. Entanglement produces contacts that act like temporary
cross-links.

(3) At long times viscous behavior is in evidence with a strong dependence
on N (degree of polymerization). The terminal time τ(N) is related to
the zero shear viscosity introduced in [pln52]:

η0 =

∫ ∞
0

dtG(t) ' Gpτ(N).

Experimental evidence suggests that η0 ∼ N3.4. [psl9]

Reptation: diffusion of polymers along tubular space.

• mobility: µpol = µmon/N ,

• diffusivity: Dpol = kBTµpol ∼ N−1,

• effective random walk:1 〈L2〉 = Dpolτ(n) ∼ N2,

• terminal time: ⇒ τ(N) ∼ N3 (exp. evidence: ∼ N3.4 [psl9]),

• self diffusion: Ds ∼
〈x2〉
τ
∼ N

N3
∼ N−2 (exp. evid.: ∼ N−2.3 [psl9]).

[extracted in part from Jones 2002]

1using L ∝ N .



Dependences on Degree of Polymerization [psl9]

Zero shear viscosity

Self-diffusion coefficient

[from Jones 2002]



Crystallinity in Polymers [pln54]

Macroscopic crystallinity in polymers is rare. Polymer crystallinity tends to
stay incomplete.

The most common form of polymer crystallinity is a semi-crystalline state:
small crystals are embedded in an amorphous (glassy or rubbery) i.e. less
ordered state of the same material.

Reasons for partial crystallinity:

• slow kinetics caused by entanglement;

• ordering obstructed by

– random sequencing in copolymers,

– stereochemical randomness,

– polymer branching.

Common hierarchical structures of semi-crystalline polymers:

• Chain-folded lamellae:

– typical width: ∼ 10nm,

– lamellae separated by amorphous regions,

– individual polymer may be part of more than one lamella.

• Spherulites:

– typical size: ∼ µm

– formed by sheaves of lamellae,

– grow as fibrils from central nucleus.

Illustrations of lamellae and spherulites in [psl10].

The texture of the hierarchical structure depends on whether the nucleation
is faster, comparable, or slower than the lateral growth from the nucleus.



Hierarchical Strucure of Crystalline Polymers [psl10]

[from Hamley 2007]

[from Jones 2002]



Lamellar Growth: Lateral vs Linear [pln55]

Chain-folded lamellae are not equilibrium structures.

Lamellae of width l grow laterally at temperature T < Tm(l) < Tm(∞),

• Tm(∞): bulk melting temperature,

• Tm(l): threshold temperature of lateral growth,

• lim
l→∞

Tm(l) = Tm(∞).

Change in free energy when one stem of volume la2 is added to lamella:

∆g = − Lm

Tm(∞)
(la2)∆T + 2a2σf , (1)

• Lm: latent heat of melting per unit volume,

• ∆T = Tm(∞)− T : amount of undercooling,

• σf : interfacial energy per unit area,

• Lm/Tm(∞): entropy density of polymer stem in coil conformation.

Condition for lateral growth: ∆g < 0 implying l > lc at given ∆T .

Threshold width lc(∆T ) or threshold temperature Tm(l) inferred from crite-
rion ∆g = 0 [pex37]:

lc(∆T ) =
2σfTm(∞)

Lm∆T
, Tm(l) = Tm(∞)

[
1− 2σf

Lmlc

]
. (2)



Fastest lateral lamellar growth occurs at preferred width l∗ (to be deter-
mined). Criterion involves a free energy barrier:

• To join the lamella, a stem of width l must straighten out; the uncoiling
reduces the entropy, ∆S < 0, thus raises the free energy, T |∆S| > 0.

• The joining of straightened out stem to lamella reduces the enthalpy,
∆H < 0, thus lowers the free energy by the same amount.

• Net change of free energy: ∆g = T |∆S| − |∆H| < 0.

• Entropy: |∆S|/kB = l/l0 (emprirical model).

Transition rates:

• melt → crystal: uMC =
1

τ
exp

(
−T |∆S|

kBT

)
,

• crystal → melt: uCM =
1

τ
exp

(
−T |∆S| −∆g

kBT

)
.

Empirical model for reference time scale borrowed from [pln24]: Vogel-Fulcher
relaxation time near glass transition:

τ = τ0 exp

(
B

T − T0

)
. (3)

Rate of crystal growth:

u
.
= uMC − uCM =

1

τ
exp

(
−T |∆S|

kBT

)[
1− exp

(
∆g

kBT

)]
|∆g|�kBT −1

τ
exp

(
−|∆S|

kB

)
∆g

kBT
. (4)
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Velocity of crystal growth, v
.
= ua, at given T using (1) and (4) [pex37]:

v(l) = v0e
−l/l0

[
l

lc
− 1

]
, v0 =

2σfa
3

τkBT
. (5)

Fastest growth from (dv/dl)l∗ = 0 [pex37]:

⇒ l∗ = lc + l0,
v(l∗)

v0

=
l0
lc
e−1−lc/l0 . (6)

With deeper quench, meaning larger undercooling ∆T , the lamellar width l∗

of fastest growth becomes thinner.

Evaluate fastest-growth velocity (5) using (3) [pex37]:

v(l∗) =
l0a

3Lme
−1

kBTτ0Tm(∞)
exp

(
−B

T − T0

)
︸ ︷︷ ︸

(i)

[
Tm(∞)− T

]
exp

(
− 2σfTm(∞)

l0Lm[Tm(∞)− T ]

)
︸ ︷︷ ︸

(ii)

.

(i) factor controlling mobility of polymer in melt,

(ii) factor controlling thermodyanmic driving fore.

The final morphology is far from equilibrium. In practice, the morphology
with the lowest free energy not really attainable.

[extracted in part from Jones 2002]
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[pex37] Lateral growth of polymer lamellae

Consider a polymer chain modelled as a chain of cubes with side a undergoing lateral lamellar
growth at a temperature T = Tm(∞)−∆T below the bulk melting temperature Tm(∞).
(a) If Lm is the latent heat of melting per unit volume and σf the interfacial energy per unit area,
reason that

∆g = −Lmla2
∆T

Tm(∞)
+ 2a2σf (1)

is the change in free energy when a stem of length l is added to a preexisting lamella. Note that
Lm/Tm(∞) can be interpreted as the configurational entropy per unit volume lost in the process.
Then show that spontaneous growth at given ∆T only takes place if l > lc = 2σfTm(∞)/Lm∆T
or T < Tm(l) = Tm(∞)[1− 2σf/Lml].
(b) If the melt → crystal and crystal → melt transition rates can be written in the form umc =
τ−1e−εmc/kBT and ucm = τ−1e−εcm/kBT , respectively, where τ is a convenient reference time scale,
and the energy barrierers are εmc = T |∆S| and εcm = T |∆S| −∆g, respectively, and if we assume
that the entropy change is simply proportional to the length of the stem, |∆S|/kB = l/l0, then we
can write the velocity of lateral lamellar growth as v(l) = (umc − ucm)a. Show if we also assume
that |∆g|/kBT � 1 we obtain

v(l) = v0e
−l/l0

[
l

lc
− 1

]
, v0 =

2σfa
3

τkBT
. (2)

Plot v/v0 versus l/l0 for a scenario with l0/lc = 2. Identify the stem length l∗ for which lamellar
growth is fastest and determine the maximum growth velocity v∗/v0 for that scenario. Connect
that point in the curve by a horizontal and a vertical dashed line to the axes.
(c) Use the Vogel-Fulcher relaxation time, τ = τ0 exp(B/(T − T0)) from [pln14] to evaluate (2) at
l = l∗ and bring it into the form shown in [pln55].

[adapted from Jones 2002]

Solution:



Gelation of Polymers [pln56]

Gelation taking place in colloidal aggregates of any type is known under the
name sol-gel transition.

Gelation of polymers in solution involves the formation of a macroscopic
network of cross links.

Characterizations of gels:

• structural disorder with randomness in the conformation of polymers
and in the positions of cross links,

• rubber-like elasticity and potential for glass transition,

• potential for containing high volume fraction of liquid solvent,

• distinction between rubbers (dry gels) and gels proper that contain
solvent,

• distinction between chemical gels and physical gels,

• chemical gels are mostly thermo-irreversible; cross links are formed e.g.
by thermo-setting or vulcanisation [psl11],

• physical gels are mostly-thermo-reversible; cross links are formed e.g.
by micro-crystallisation or microphase separation [psl12].

Percolation model of gelation:

Molecules are represented by points on a lattice. Nearest-neighbor bonds
are added randomly with random clusters of growing size emerging. The
percolation threshold is associated with the appearance of a cluster spanning
the lattice.

Some relevant questions:

• What minimum fraction of bonds produces an infinite cluster?

• How does the average cluster size depend on the fraction of active
bonds?

• What fraction of bonds belong to the infinite cluster?



Chemical Gels [psl11]

Thermosetting gel consisting of short polymers with reactive endgroups and
multifunctional hardener molecules

Vulcanisation of long, entangled polymers (e.g. polyisoprene) by chemical
bonding (e.g. using sulphur) of adjacent chains.

[from Jones 2002]



Physical Gels [psl12]

Thermoreversible gelation via physical links between long polymers in the
form of microcrystals.

Thermoreversible gelation of long triblock copolymers (with short and iden-
tical endblocks) via microphase separation.

[from Jones 2002]



Rubber Elasticity [pln64]

Consider a dry chemical gel of cross-linked polymers (see [psl11]).

Model of deformation free-energy density:

f(E) =
1

2
nckBT

[∑
αβ

E2
αβ − 3

]
.

• nc: number of segments between cross links per unit volume,

• E: deformation gradient tensor (see pln63]).

Consider two principal types of deformation:

1. Shear deformation:

E =

 1 γ 0
0 1 0
0 0 1

 ⇒ f(γ) =
1

2
nckBTγ

2,

shear strain: e = γ � 1,

shear stress: σ
.
= Ge =

∂f

∂γ
= nckBTγ,

shear modulus: G = nckBT .

2. Tensile deformation (with incompressibility constraint):

E =

 λ−1/2 0 0
0 λ−1/2 0
0 0 λ

 ⇒ f(λ) =
1

2
G

(
λ2 +

2

λ
− 3

)
,

tensile strain: ε� 1 from λ = 1 + ε,

tensile stress:1 σ
.
= Y ε = λ

∂f

∂λ
= G

(
λ2 − 1

λ

)
 3Gε,

Young modulus: Y = 3G = 3nckBT .

[gleaned from Doi 2013]

1The factor λ arises due to the shrinking of the cross section upon elongation.



[pex60] Elasticity of balloon during inflation

Consider a rubber balloon in the shape of a sphere during inflation. At some instant during
quasistatic inflation the balloon has radius R and the material thickness is h. Upon further
inflation the radius increases to R′ = λR. If we assume that the material is incompressible the
thickness must decrease to h′ = λ−2h.
(a) Infer from this information the structure of the deformation gradient tensor E(λ) and the
expression for the (tensile) deformation free-energy density f(λ) (with guidance from [pln64]).
The total free energy then has two terms, one associated with the elasticity of the rubber material
and the other associated with the elasticity of the gas inside the balloon:

Ftot = 4πR2hf(λ) − 4π

3
R3(∆p)(λ3 − 1),

where ∆p is the excess pressure inside the balloon. The opposite signs of the two terms are
consistent with the fact that a change in volume converts one kind of elastic energy into the other
kind.
(b) The equilibrium condition that balances the rubber elastic force and pressure is ∂Ftot/∂λ = 0.
Infer from this condition the dependence of excess pressure ∆p on the extent of inflation λ = R′/R.
(c) Plot the scaled excess pressure R∆p/Gh versus λ over the range 1 < λ < 3 and draw your
conclusions from the resulting curve.

[adapted from Doi 2013]

Solution:



Polymer Gel [pln65]

Mixture of polymer network and solvent. Swelling or shrinking of gel de-
scribed quantitatively via deformation free-energy density.

Deformation free energy

Volume increase: Vg → Vgλ1λ2λ3, λi > 1.

Free-energy density:

fgel(λ1, λ2, λ3) = fela(λ1, λ2, λ3) + fmix(λ1, λ2, λ3). (1)

• Elastic part is an application of [pln63] [pln64].

fela(λ1, λ2, λ3) =
1

2
G0

(
λ21 + λ22 + λ23 − 3

)
. (2)

• Mixing part is worked out in [pex14].

fmix(λ1, λ2, λ3) =
φ0

φ
fsol(φ), (3)

fsol(φ) =
kBT

vc

[
(1− φ) ln(1− φ) + χφ(1− φ)

]
,

φ0

φ
= λ1λ2λ3,

– vc: is the volume of solvent molecules,

– χ > 0: interaction constant controlling phase separation [pln32].

Swelling equilibrium

Application to isotropically swelling gel: λ1 = λ2 = λ3
.
= λ = (φ0/φ)

1/3.

fgel(φ) =
3

2
G0

[(
φ0

φ

)2/3

− 1

]
+
φ0

φ
fsol(φ). (4)

Equilibrium condition, ∂fgel/∂φ = 0, is worked out in [pex13]:1

G0

(
φ

φ0

)1/3

= πsol(φ), πsol(φ) =
kBT

vc

[
− ln(1− φ)− φ− χφ2

]
. (5)

Balance of forces:

• osmotic pressure (right) represents expanding force,

• gel elasticity (left) represents restoring force.

1Note that swelling is associated with a decrease in polymer volume fraction φ.



[pex14] Polymer gel free-energy density of mixing

A dry gel of volume fraction φ0 and volume Vg swells, when immersed in a solvent, to volume
Vgλ1λ2λ3. Hence its volume fraction decreases to the value φ = φ0/λ1λ2λ3. From [pln47] we pull
the expression for the free-energy density of a polymers solution and set N →∞ in the first term
on account of the cross-linking, yielding the expression

fsol(φ) =
kBT

vc

[
(1− φ) ln(1− φ) + χφ(1− φ)

]
.

From these ingredients derive the following expression for the free-energy density of mixing:

fmix(λ1, λ2, λ3) =
φ0
φ

[
fsol(φ)− fsol(0)

]
−

[
fsol(φ0)− fsol(0)

]
 

φ0
φ
fsol(φ),

where the simplified expression to be used in [pln65] disregards terms that are not affected by
swelling and uses fsol(0) as a reference value.

[adapted from Doi 2013]

Solution:



[pex13] Swelling equilibrium of polymer gel I

The swelling equilibrium of a polymer gel is a combination of thermal, chemical, and mechanical
equilibrium. We take the expression for the free-energy density,

fgel(φ) =
3

2
G0

[(
φ0
φ

)2/3

− 1

]
+
φ0
φ
fsol(φ), fsol(φ) =

kBT

vc

[
(1− φ) ln(1− φ) + χφ(1− φ)

]
,

from [pln65] and implement the equilibrium condition at constant temperature, ∂fgel/∂φ = 0.
Show that the result becomes

G0

(
φ

φ0

)1/3

= πsol(φ), πsol(φ) =
kBT

vc

[
− ln(1− φ)− φ− χφ2

]
,

where we use the expression for osmotic pressure derived in [pln28] in the slightly adapted rendition,

πsol(φ)
.
= φf ′sol(φ)− fsol(φ).

[adapted from Doi 2013]

Solution:



[pex12] Swelling equilibrium of polymer gel II

The swelling equilibrium as established in [pex13] depends on temperature directly, via the factor
kBT/vc, and indirectly, via the interaction parameter χ in the expression for osmotic pressure. The
lattice-gas origin of that expression (see [pln32]) predicts that χ ∼ T−1. Use this information to
rewrite the condition of swelling equilibrium in the form

φ1/3 =
T

T1

[
− ln(1− φ)− φ− T2

T
φ2

]
, (1)

where T1, T2 are independent reference temperatures, which allow us to explore the T -dependence
of the swelling in a two-dimensional parameter space.
(a) Extract from Eq. (1) an explicit function T (φ).
(b) Invert that function into a function φes(T ) for the special case of extreme swelling (φ� 1).
(c) Plot a curve φ vs T for the general case over the range 0 ≤ T ≤ 2 and parameter values
T1 = 0.001, T2 = 0.5. Interpret the curve in the light of the function φes(T ), which is expected to
be accurate only at low φ.

Solution:



[pex11] Polymer gel compressed uniaxially

Consider a rectangular slab of polymer gel with volume fraction φ0 when dry and φ1 < φ0 when
immersed and swelled in solvent. Now this swelled slab is being compressed uniaxially (in z-
direction), causing an elongation in x-direction and y-direction. We expect the volume of the slab
to be reduced somewhat in the process and the volume fraction somewhat increased, implying that
some amount of solvent will be squeezed out of the gel.
We construct the free-energy-density of the compressed polymer gel using the expression developed
in [pln65] with λ1 = λ2 = (φ0/φ1)1/3λx and λ3 = (φ0/φ1)1/3λz to account for the change in
reference state from dry gel to immersed gel:

fgel =
1

2
G0

[(
φ0
φ1

)2/3 (
λ2z + 2λ2x

)
− 3

]
+
φ0
φ
fsol(φ).

The uniaxial compression will be described by λx > 1 and λz < 1. In order to find the equilibrium
polymeric volume fraction φ of the uniaxially compressed state as a function of length ratio λz in
the direction of the compression force we take two steps:
(i) Express λx as a function of λz and φ using conservation of polymeric volume.
(ii) Find a relation between φ andf λz from the extremum condition ∂fgel/∂φ = 0. Confirm that
compression, λz < 1, leads to an increase in φ, implying smaller volume of the slab of polymeric
gel.

[adapted from Doi 2013]

Solution:



[pex38] Percolation on Bethe lattice

The Bethe lattice with coordination number z is a tree-like structure emanating from a central
node out to infinity. Each node bonds with one node down the tree and z − 1 nodes up the tree.
The figure shows three generations of bonds for z = 3. The number of nodes or bonds in generation
k is Nk = z(z − 1)k−1. Now we connect nodes randomly with probability f , meaning that any
bond is active with probability f and inactive with probability 1 − f . Note that the number of
nodes out to any generation of is equal to the number of bonds.
(a) Show and reason that the threshold fraction of active bonds that produce an infinite cluster
with non-vanishing probability is

fc =
1

z − 1
.

(b) If P is the probability that a node is connected to infinity and Q the probability that a node
is not connected to infinity via a specific neighbor then show that the following relation holds:

P = f − fQz

(c) Next show that Q is the solution of the polynomial equation,

Q = 1 − f + fQz−1.

(d) The gel fraction is equal to the fraction of active bonds that are part of the infinite network.
That fraction is P/f . Plot the gel fraction P/f vs f for 0 < f < 1 and z = 3, 4, 5 as three curves
in the same graph.

[adapted from Jones 2002]

[image from Wikipedia]

Solution:



[nex40] Random walk in Las Vegas: chance and necessity

A gambler with $1 in his pocket starts playing a game against a casino with infinite monetary
resources. In each round of the game, the gambler wins $1 (with probability p) or loses $1 (with
probability 1− p). The game ends when the gambler is bankrupt.
(a) Express the probability PC that the gambler goes bankrupt eventually as a function of p.
(b) Plot PC versus p for 0 < p < 1.
(c) For what value of p is it a fair game in the sense that the gambler has a 50% chance of staying
in the game forever?

Solution:
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