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Inversion for sediment geoacoustic properties
at the New England Bight
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Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

~Received 15 May 2002; revised 25 June 2003; accepted 14 July 2003!

This article discusses inversions for bottom geoacoustic properties using broadband acoustic signals
obtained from explosive sources. Two different inversion schemes for estimating the compressional
wave speeds and attenuation are presented in this paper. In addition to these sediment parameters,
source–receiver range is also estimated using the arrival time data. The experimental data used for
the inversions are SUS charge explosions acquired on a vertical hydrophone array during the Shelf
Break Primer Experiment conducted south of New England in the Middle Atlantic Bight in August
1996. The modal arrival times are extracted using a wavelet analysis. In the first inversion scheme,
arrival times corresponding to various modes and frequencies from 10 to 200 Hz are used for the
inversion of compressional wave speeds. A hybrid inversion scheme based on a genetic algorithm
~GA! is used for the inversion. In an earlier study, Pottyet al. @J. Acoust. Soc. Am.108~3!, 973–986
~2000!# have used this hybrid scheme in a range-independent environment. In the present study
results of range-dependent inversions are presented. The sound speeds in the water column and
bathymetry are assumed range dependent, whereas the sediment compressional wave speeds are
assumed range independent. The variations in the sound speeds in the water column are represented
using empirical orthogonal functions~EOFs!. The replica fields corresponding to the unknown
parameters were constructed using adiabatic theory. In the second inversion scheme, modal
attenuation coefficients are calculated using modal amplitude ratios. The ratios of the modal
amplitudes are also calculated using time-frequency diagrams. A GA-based inversion scheme is
used for this search. Finally, as a cross check, the computed compressional wave speeds along with
the modal arrival times were used to estimate the source–receiver range. The inverted sediment
properties and ranges are seen to compare well within situ measurements and historical data.
© 2003 Acoustical Society of America.@DOI: 10.1121/1.1605391#

PACS numbers: 43.30.Pc, 43.30.Ma, 43.30.Bp@WLS#

I. INTRODUCTION

Acoustic propagation in shallow water is greatly influ-
enced by the properties of the bottom. Indirect methods for
the estimation of bottom properties have been given much
attention in underwater acoustics as direct measurements
~e.g., cores! are very hard to make. In this article we discuss
two different inversion schemes for the estimation of sedi-
ment compressional wave speeds and compressional attenu-
ation using broadband data. In inversion scheme I, sediment
compressional wave speeds are estimated using a hybrid in-
version scheme based on the dispersion behavior of broad-
band acoustic propagation. The application of this inversion
scheme to a range-independent environment is discussed in
detail by Pottyet al. ~2000! in a previous article. This hybrid
scheme is a combination of a genetic algorithm~GA! and the
Levenberg–Marquardt optimization method. Compressional
wave attenuation values are estimated using inversion
scheme II based on modal amplitude ratios. In addition to the
sediment properties, other parameters such as bathymetry,
source depth, receiver depth, range, and source level are also

treated as unknowns in this inversion scheme. The relative
importance of these parameters is assessed by a sensitivity
study. This latter inversion scheme is also carried out using a
GA.

When a broadband acoustic source is used in shallow-
water waveguide, the acoustic propagation exhibits disper-
sion effects. The group velocities, i.e., the speeds at which
energy is transported, differ for different frequencies and
modes. This dispersion effect can be observed by time–
frequency analysis of an acoustic signal recorded at suffi-
ciently large distance away from the source. The times of
arrivals of different modes at various frequencies can be di-
rectly extracted from these time–frequency distributions.
Lynch, Rajan, and Frisk~1991! successfully used dispersion
characteristics for the inversion of geoacoustic properties us-
ing linear perturbation methods. Nonlinear inverse methods
for estimating bottom properties were subsequently devel-
oped by Collinset al. ~1992!, Gerstoftet al. ~1996!, and oth-
ers. It should be noted that dispersion analysis of seismic
interface waves has been used extensively to determine the
shear properties of near-bottom ocean sediments~Jensen and
Schmidt, 1985; Caitiet al., 1994; Stollet al., 1994!. Turning
to the New England Shelf Break environment, Pottyet al.
~2000! have recently used global optimization methods fora!Electronic mail: potty@oce.uri.edu
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their geoacoustic inversion in the range-independent
shallow-water environment case. Their genetic algorithm-
based inversion gave good estimates for sediment compres-
sional wave speeds, which matched well with deep core data
@Atlantic Margin Coring ~AMCOR! Project# and shallow
gravity cores at the same location. In this article we extend
this inversion scheme to the mildly range-dependent environ-
ment using adiabatic theory.

The recovery of range-dependent structures in the ocean
environment has been a subject of interest in ocean acous-
tics. Tolstoyet al. ~1991! proposed a linearized matched field
processing approach to acoustic tomography, assuming adia-
batic normal-mode propagation for low-frequency signals re-
ceived on vertical arrays. Taroudakis and Marakaki~1997!
used GAs and modal phases to invert for a range-dependent
environment due to a cold eddy using adiabatic theory. Sid-
erius, Gerstoft, and Nielsen~1998! have used GAs for geoa-
coustic inversion in a range-dependent environment.

Turning to the estimation of medium attenuation, Tindle
~1982! and Zhouet al. ~1987! used modal amplitude ratios to
extract modal attenuation coefficients. Using this approach
they were able to model the nonlinear frequency dependence
of the acoustic attenuation in the upper sediment layer in a
shallow-water location in the Yellow Sea. Rajan, Frisk, and
Lynch ~1992! estimated modal attenuation coefficients using
various methods based on the pressure field or its Hankel
transform. The bottom attenuation profile is obtained from
these modal attenuation coefficients by solving an integral
equation using linear inverse theory. They also separated
contributions from other attenuating mechanisms~shear,
rough surface scattering, etc.!. In this article, an inverse
scheme for attenuation is presented which utilizes the com-
pressional wave-speed values determined using the
dispersion-based inversion. This scheme calculates the
modal attenuation coefficients based on modal amplitude ra-
tios and transmission loss data. In addition to modal attenu-
ation coefficients, source depth, receiver depth, range, and
source levels are treated as unknowns in the inversion and
checked for consistency.

Our study is arranged as follows. Sediment compres-
sional wave speeds are first addressed in this study, using
inversion scheme I based on the group speed dispersion. Sec-
tion II A contains the details of this inversion scheme. Sec-
tion II B begins by presenting inversion scheme II for com-
pressional wave attenuation. This inversion scheme is
applied to synthetic data as well as field data from the Shelf
Break Primer Experiment. Next, the group speeds estimated
using the inversion scheme and the arrival times obtained
from the field data are used to estimate the source–receiver
ranges assuming range independence. Section II C briefly ex-
plains this source distance estimation method.

A mode-based sensitivity study, performed to assess the
relative influence of various parameters~compressional wave
speed, ocean sound speed, and water depth!, is discussed in
Sec. III A. Sensitivity of group speeds to these parameters is
discussed in Sec. III B and sensitivity of modal amplitude
ratios in Sec. III C. Section IV A presents the details of the
Shelf Break Primer Experiment. Section IV B contains the
description of the historic geoacoustic data pertaining to the

experimental region. Section V contains the major new re-
sults of this study. Section V A shows the results of compres-
sional speed inversion, Sec. V B discusses the results of
range estimation, and Sec. V C contains result of attenuation
estimates. Section VI summarizes and concludes the article.

II. INVERSION SCHEMES

We use a genetic algorithm~Goldberg, 1988! as the ba-
sic search tool for our inversion of sediment compressional
wave speeds and attenuation. The principle of the GA is
simple and closely resembles the genetic cycle. From all the
possible parameter vectors, an initial population of members
is randomly selected. The ‘‘fitness’’ of each member is com-
puted on the basis of an objective function. Based on the
fitness of the members, a set of ‘‘parents’’ is selected and
through a randomization procedure a set of ‘‘children’’ is
produced. These children replace the least fit of the original
population and the process iterates to develop an overall fit-
ter population. A hybrid scheme is used in the inversion for
sediment compressional wave speeds, where the best param-
eter vector obtained using the GA is further optimized using
a local search. The Levenberg–Marquardt algorithm
~Fletcher, 1980! was employed for this local search. By ap-
plying this method at the end of the GA search, we can both
assess the quality of the GA solution locally and also search
for a better solution. Error bounds on the parameters were
also estimated using two different approaches. During the
optimization using GA, all the population is stored and is
later used to estimatea posterioriprobabilities. In addition to
the best possible estimate, moments of thea posterioridis-
tributions such as mean and covariance can also be esti-
mated. This error estimation procedure is discussed in detail
by Gerstoft~1994! and Pottyet al. ~2000!. These error esti-
mates provide a measure of the convergence of the optimi-
zation procedure and can be used to make comparisons be-
tween retrieved parameters. Added to thisa posteriorierror
estimate, the quality of the inversion is also examined locally
by numerically calculating the standard deviation using the
Hessian matrix~Sen and Stoffa, 1995!. Elements of the Hes-
sian matrix are the second partial derivatives of the objective
function with respect to the model parameters. They are local
estimates that only characterize the region about the model at
which they are calculated and are numerically evaluated in
the neighborhood of the best solution. Hessian uncertainty
will represent the true uncertainty if the best solution corre-
sponds to the true model. The ability of the global ap-
proaches to efficiently navigate the multipeaked and noisy
search space and to converge to the true solution increases
the effectiveness of the Hessian approach. It should be noted
that this Hessian method assumes that the error surface is
Gaussian.

A. Method of inversion for sediment compressional
speeds: Inversion scheme I

In this section, we discuss our inversion for sediment
compressional wave speed. The sound speed in the water
column and bathymetry are considered range dependent,
whereas the sediment compressional wave speed is treated as
range independent in this inversion. This is because we have
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a priori information about the range dependence of the water
column sound speed and bathymetry. Shear effects in the
sediment are neglected, as shear speeds are expected to be of
the order of 150 m/s~Hamilton, 1980! for the type of sedi-
ments present at the experimental location. In the inversion
scheme to estimate the sediment compressional wave speeds,
the parameter vectors searched for consisted of coefficients
of empirical orthogonal functions~EOFs! of water column
sound speed, the bathymetry, and the source to receiver
range, in addition to the sediment compressional wave-speed
profile.

The objective function for the inversion was based on
the minimization of group speed differences, and was of the
form

E~m!5(
i

@di2Fi~m!#2

s i
2

. ~1!

In Eq. ~1!, E(m) is the objective function for the parameter
vectorm ands i is the standard deviation associated with the
ith data point. The numerator of this equation represents the
mismatch between the observed data (d,N31) and the pre-
diction @F(m),N31# of the forward model. A normal-mode
routine is used to calculate the predictions@F(m)#. The ma-
jor steps involved in this inversion scheme are shown in Fig.
1.

B. Method of inversion for the compressional wave
attenuation coefficient: Inversion scheme II

The compressional wave attenuation is estimated in this
paper assuming range-independent propagation. In a range-
independent environment, the acoustic pressure at ranger in
the far field can be expressed as a sum ofM normal modes

P~r ,z!5
eip/4

r~zs!A8pr
(

m51

M
cm~zs!cm~z!~e~ ikrm2bm!r !

Ak rm

,

~2!

where P(r ,z) is the acoustic pressure at a ranger and at
depthz, zs is the depth of the source,cm is the mth mode
function, k rm is the horizontal wave number, andbm is the
modal attenuation coefficient. At a given ranger from the
source, the ratio of the amplitude of the second mode to the

amplitude of the first mode can be written as

R21~ f !5Ak1

k2
Uc2~zs!c2~z!

c1~zs!c1~z!
Ue~b12b2!r . ~3!

Ratios of spectral amplitudes between other modes also can
be similarly expressed.

Modal attenuation coefficients were inverted by mini-
mizing the difference between the theoretical spectral ratios
computed using Eq.~3! and the experimental spectral ratios
calculated from time–frequency diagrams in a least-squares
sense. The modal amplitude ratios corresponding to the first
three modes@R21( f ), R31( f ), and R23( f )] are obtained by
time–frequency analysis using wavelet-based methods. The
mode functions~c! and eigenvalues~k! are obtained using a
standard normal-mode routine. The sound-speed profile ob-
tained from the inversion done previously~Pottyet al., 2000!
is used for this purpose. The unknowns in the inversion
scheme are the source depth (zs), receiver depth~z!, the
range~r!, and the modal attenuation coefficients (b1 , b2 ,
andb3). As a check, transmission loss is calculated using the
inverted modal attenuation coefficients and compared with
experimental values. The source level of the explosion is also
treated as unknown. A genetic algorithm~GA! was used to
perform this inversion.

Having obtained the modal attenuation coefficients us-
ing this inversion, the compressional wave attenuation pro-
file is determined from the integral equation

k rmbm5E
0

`

a~z!k~z!ucm~z!u2dz, ~4!

wherek(z) is the wave number anda(z) is the attenuation
profile. We solve this equation using linear inverse theory
~Rajanet al., 1987!. The ability of this method to estimate
the attenuation profile depends primarily on the amplitudes
of the mode functions at various depths. The mode function
falls off exponentially with depth beyond the turning depth,
and hence this method will not be able to estimate the attenu-
ation coefficient reliably at depths much greater than the
turning depth. The steps involved in the inversion scheme are
shown in Fig. 2. This inversion scheme is first tested using
synthetic data generated for a known sound-speed profile and
attenuation.

FIG. 1. Steps involved in the inversion scheme I. The source–receiver range
is divided into five sections in which the bathymetry and water column
sound speeds are allowed to vary.

FIG. 2. Steps involved in the inversion scheme II. Sound speeds in the water
column and the compressional speeds in the sediment are obtained from a
previous inversion by Pottyet al. ~2000!.
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C. Method of estimating the source–receiver ranges
from mode arrival times

The source–receiver range~r! can be evaluated from the
arrival time difference between two frequencies at a single
mode or from two modes at a single frequency. This serves
as a cross check for the compressional wave-speed inver-
sions. The arrival time difference between two frequencies
for any given modei at ranger is given by

DTii ~ f !5F 1

Vg
i ~ f !

2
1

Vg
i ~ f H!

G r , ~5!

where f H is a reference frequency which is different fromf.
At a distancer, for the same frequency the arrival time dif-
ference between modej and modei is given by

DTji ~ f !5F 1

Vg
j ~ f !

2
1

Vg
i ~ f !

G r , iÞ j . ~6!

These equations are of the form

DT~ f !5@Kt~ f !#r , ~7!

in which DT is the experimental travel time differences@left-
hand side of Eqs.~5! and~6!# andKt is the theoretical group
slowness differences@the quantity within brackets in the
right-hand sides of Eqs.~5! and~6!#. The group speeds (Vg)
calculated theoretically using the compressional speed inver-
sion and arrival time differencesDT obtained from the ex-
perimental data are used to calculate the ranger. It should be
noted that these equations are applicable only to range-
independent environments, so that errors will be incurred if
the environment contains range dependence.

III. SENSITIVITY STUDY

A. Mode-based sensitivity study

In order to prepare for our inversion, the relative impor-
tance of sound speed in water column~cw!, compressional
speeds in four layers of sediments@cp1 ~0–6 m!, cp2 ~6–12
m!, cp3~12–18 m!, and cp4~18–24 m!# each 6 m thick, and
the water depth was analyzed using a mode-based sensitivity
study. These values were then compared with sensitivities
calculated based on group speed changes due to changes in
the above parameters. The mode-based sensitivity study is
described in detail by Kessel~1999! and is applicable to
weakly range-dependent environments. Some of the impor-
tant aspects of this study are included in this section.

A possible measure of sensitivity can be written in terms
of the change in the pressure field due to some environmen-
tal changes relative to a suitable norm as
DP(x,xs)/iP(x,xs)i . Here,P(x,xs) is the original pressure
and DP(x,xs) is the change in pressure. IfP8(x,xs) is the
new field corresponding to a small change in the environ-
ment, the change in pressure can be written as contributions
from modesm51,2,3,...,M .

DP~x,xs!5 (
m51

M

~Pm8 ~x,xs!2Pm~x,xs!!. ~8!

Here, xs5(r s ,zs) and x5(r ,z) define the positions of the
source and receiver wherer andr s are horizontal positions of
receiver and source, respectively.z and zs represent the re-
ceiver and source depths, respectively. The overall tendency
of the perturbationuDP(x,xs)u2 can be represented by the
incoherent mode sum

uDP~x,xs!u incoh
2 5 (

m51

M

uPm8 u21uPmu222 Re~Pm8 Pm* !, ~9!

in which * denotes complex conjugation. Noting that the
long-range horizontal phaseei jmR of the modes is the most
sensitive part of the field to changes in environment, we can
write

Pm8 ~x,xs!'Pm~x,xs!e
iDjmR, ~10!

where

Djm5jm8 2jm . ~11!

In order to evaluate the sensitivity for a given environmental
change, the local wave numberskm andkm8 corresponding to
original and modified environments, respectively, for each
modem are calculated. Corresponding changes in the modal
phase (Djm) are computed using these wave numbers

jm5
1

r 2r s
E

r s

r

km~r !dr, ~12!

and

jm8 5
1

r 2r s
E

r s

r

km8 ~r !dr. ~13!

It should also be noted that, if the medium absorbs energy,
thenjm is complex

jm5gm1 iam . ~14!

The perturbation in the field can now be written as

uDP~x,xs!u incoh
2 5 (

m51

M

uPm8 u2Vm~r ,r s!, ~15!

in which

Vm~r ,r s!511e22DamR22e2DamR cosDgmR. ~16!

It should also be noted that, in order to isolate the role of
long-range horizontal phase,Dam may be taken as zero. The
mean of this perturbation over a large number of source–
receiver positions will then be

uDP~x,xs!u incoh
2 5ip~r ,r s!i2V~r ,r s!, ~17!

in which V(r ,r s) is a weighted average over modes as
shown below~Kessel, 1999!

V~r ,r s!5
1

ip~r ,r s!i2 (
m51

M

upmu2Vm~r ,r s!. ~18!

If we use N source–receiver positionsxs
n5(r s ,zs

n) and xn

5(r ,zn) (n51,2,3,...,N), respectively, then

uPmu25
1

N (
n51

N

uPm~xn,xs
n!u2, ~19!
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and

ip~r ,r s!i25upmu2 ~20!

(r s ,zs) and (r ,z) are the horizontal and vertical positions of
the source and receiver such that the rangeR5ur 2r su.

The top panel in Fig. 3 shows the sensitivities of these
parameters for frequencies of 50, 100, and 150 Hz. The
sound-speed profile obtained by the compressional wave-
speed inversion scheme~Pottyet al., 2000! was used for this
analysis. The sediment compressional speeds at depths 0–6
m ~cp1!, 6–12 m~cp2!, 12–18 m~cp3!, and 18–24 m~cp4!
were changed by630 m/s, water depth by64 m, and ocean
sound speed~cw! by 63 m/s. These sensitivity values are
scaled relatively, larger values indicating higher sensitivity
for the changes in the parameters as mentioned above. For
the given changes in compressional speeds, ocean sound
speed, and water depth the sensitivities are nearly equal. Wa-
ter depth variations have equal sensitivities for the three fre-
quencies considered, which are comparable to the sensitivi-
ties of all the other parameters in magnitude. The
sensitivities also show the expected dependence on fre-
quency. At the lower frequency~50 Hz! changes in compres-
sional speeds at deeper sediment depths are very sensitive,
whereas at 150 Hz the sensitivity is very low at deeper sedi-
ment depths. At higher frequencies, the ocean sound speed
and water depth are more sensitive than deep sediment com-
pressional speeds. At 50 Hz, sound speed in the water col-
umn has comparatively less effect than the other parameters.

B. Sensitivity of group speeds

The bottom panel in Fig. 3 shows the sensitivities cal-
culated based on the changes in group speeds corresponding
to changes in parameters mentioned earlier. The magnitudes

of these changes were same as in the mode-based sensitivity
study. The group speeds seem to be more sensitive to
changes in water depth and compressional wave speeds at
depths 0–6, and 6–12, and 12–18 m. Unlike the mode-based
sensitivity study, frequencies 100 and 150 Hz are more ef-
fective at depths 0–6 and 6–12 m. This may be due to the
fact that more modes are included at higher frequencies com-
pared to 50 Hz. These results are identical to the results of
the sensitivity study reported by Pottyet al. ~2000!.

C. Sensitivity of modal amplitude ratios

A sensitivity study was performed to understand the ef-
fect of model parameters on the spectral amplitude ratios.
Figures 4 and 5 show the influences of source depth, receiver
depth, modal attenuation coefficient, and range on modal
amplitude ratios. This analysis was done using the sound-
speed profile obtained from the inversion for sediment com-
pressional speeds~Potty et al., 2000!. Figure 4 shows the
variation of modal amplitude ratios with changes in source
depth~11.5 m!, receiver depth~11.5 m!, range~11.5 km!,
and modal attenuation coefficient~130%! from the baseline
model. The baseline model corresponds to a source depth of
18 m, receiver depth of 66 m, and at a range of 41 km.
Figure 5 shows the variations in modal amplitude ratios with
changes in source depth~21.5 m!, receiver depth~21.5 m!,
range~21.5 km!, and modal attenuation coefficient~230%!
from the baseline model. The changes in the modal ampli-
tude ratio of mode 3 to mode 1 seem to be comparatively
higher than the ratios of modes 2 to 1 and modes 2 to 3. The
effect of receiver depth variation is more prominent when
compared to source depth variation~Figs. 4 and 5!. A 630%
change in modal attenuation coefficient produces far higher
variations in modal amplitude ratios, when compared to rea-
sonable changes in range and source depth. Considering the

FIG. 3. Sensitivity of sediment compressional speeds at 0–6 m~parameter
1!, 6–12 m~parameter 2!, 12–18 m~parameter 3!, 18–24 m~parameter 4!.
Parameter 5 corresponds to changes in water depth and parameter 6 indi-
cates ocean sound-speed variations. Top panel shows the sensitivities calcu-
lated based on the mode-based sensitivity study. Sensitivities shown in the
bottom panel were calculated based on the changes in group speeds.

FIG. 4. Effect of variations in the source depth, receiver depth, range, and
modal amplitude ratio on the spectral ratios. Solid line indicates variations
due to 1.5-m source depth increase from baseline, dotted line indicates
1.5-m increase in receiver depth, dash dot line 30% increase in beta, and
dashed line indicates 1.5-km increase in range. The top, middle, and bottom
panels show the ratio of modes 1 and 2, modes 1 and 3, and modes 2 and 3,
respectively.
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influence of source depth, depth of receiver, and range, all
three of these parameters were included as unknowns in the
inversion scheme for determining the modal attenuation co-
efficients.

IV. PRIMER FIELD STUDY

A. General description of the Shelf Break PRIMER
experiment

In the summer of 1996, a number of oceanographic and
acoustic measurements were taken on the shelf break south
of New England in the Middle Atlantic Bight~Fig. 6!. De-
tails of the experiment, with emphasis on bottom inversion,
are discussed by Pottyet al. ~2000!. The SUS component of
the experiment involved acquisition of broadband acoustic
data on two vertical line arrays~VLAs! on the northeast~NE!
and northwest~NW! corners of the experimental area. The
SUS charges were of type MK61 and consisted of 0.82 kg of
TNT set to detonate at a depth of 18 m. About 80 charges
were dropped on the continental shelf and slope in water
depths varying from 85 to 300 m. In this study acoustic
signals from SUS explosions in the shelf area received at the
NE VLA are used to invert for geoacoustic parameters. The
positions of these SUS drops and the location of the NE VLA
are shown in Fig. 7. The three SUS explosions D2, D4, and
D6 are part of the down-slope run, whereas C6 and C9 are
part of the cross-slope run. Signals received from these shots
on the NE vertical array were analyzed in the present study
for compressional wave speed. The NE VLA consisted of 16
hydrophones spanning the water column from a depth of
45.42 to 92.72 m. Data were acquired on the receivers at a
sampling frequency of 1395.1 samples/second. Signals from
D1 and D2 are used to calculate the modal attenuation coef-
ficients.

The acoustic signal received at the VLA is analyzed us-
ing wavelet-based methods to produce time–frequency dis-
persion diagrams. The advantage of analyzing the signal with
wavelets as analyzing kernels is that it enables us to study
features of the signal locally with a detail matched to their
scale, i.e., broad features on a large scale and fine features on
a small scale. This enables us to get the time of arrivals
corresponding to higher modes with good resolution. This
becomes important since the higher modes penetrate farther
into the sediment and hence enable us to invert for deeper
sediment properties. The arrival times corresponding to spec-
tral peaks for the various modes at different frequencies are
picked from the time–frequency scalograms. It should be
noted that there might be multiple peaks corresponding to
bubble pulses generated by the explosion. This sometimes
makes the identification of the peaks and their corresponding
arrival times difficult for various modes. This is a serious
problem for the early arrivals above 70 Hz where the arrivals
corresponding to various modes are closer.

Figure 8 shows the modal dispersion for four SUS sig-
nals ~D2, D4, C6, and C9! received at 45.42 m at the NE
VLA. The SUS signals C6 and C9 are closer to the VLA
compared to the other two, and hence the arrivals are not as
well spread out in time. From these wavelet scalograms ar-
rival time data corresponding to individual modes can be
extracted, especially those corresponding to late arrivals. The
arrival pattern is similar at other depths, except that the rela-
tive strengths of the modes differ at these depths. Modes 1 to
9 can be identified from the time–frequency diagram for
SUS signal D2. It can also be noted that overall the indi-
vidual modes are identifiable and well separated, which in-
dicates no major coupling of energy between modes while
they propagate. This feature facilitated good quality inver-
sions using this data.

B. Geoacoustic data at the PRIMER site

During the Shelfbreak PRIMER experiment oceano-
graphic parameters such as temperature and salinity were
monitored using various methods includingSEASOAR

~Gawarkiewiczet al., 2001! measurements. These measure-
ments were useful in generating background sound-speed
profiles for the ocean and also the empirical orthogonal func-
tions ~EOFs! used to represent the sound-speed variations in
the ocean. The region adjacent to the PRIMER experimental
site has been investigated for sediment properties extensively
by many investigators. A detailed review of these studies is
presented by Pottyet al. ~2000!. The top layer of sediment in
the experimental site consists of fine-grained sediments be-
low which sands of fine or medium grain size are found.
Only one deeper core~AMCOR Project site 6012! is avail-
able within the experimental area. This AMCOR site is
down-slope in the southwest corner of the experimental site.
Compressional wave-speed profiles have been computed us-
ing this core data based on the Biot–Stoll model. Another
nearby site is AMCOR 6010, which is on the shelf at a shal-
lower water depth southwest of the experimental site.
Trevorrow and Yamamoto~1991! have computed the com-
pressional wave-speed profile at this location. Comparing
these two sites, it can be observed that the surface fine-

FIG. 5. Effect of variations in the source depth, receiver depth, range, and
modal amplitude ratio on the spectral ratios. Solid line indicates variations
due to 1.5-m source depth decrease from baseline, dotted line indicates
1.5-m decrease in receiver depth, dash dot line 30% decrease in beta, and
dashed line indicates 1.5-km decrease in range. The top, middle, and bottom
panels show the ratio of modes 1 and 2, modes 1 and 3, and modes 2 and 3,
respectively.

1879J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003 Potty et al.: Geoacoustic inversions at New England Bight



grained layer becomes thinner along the slope. The mean
velocity in the top 10 m of the sediment measured using
seismic methods was approximately 1650–1675 m/s
~McGinnis and Otis, 1979!.

In order to get more data for the top few meters of the
sediment, gravity cores were taken in three locations on the
shelf at water depths of approximately 90 m, and two more
in deeper water depths on the slope~Fig. 7!. These cores
penetrated down to a maximum depth of 1.5 m in the shelf
locations. Beyond this depth the core encountered sandy
sediments and refused to penetrate further. For the slope lo-
cations the penetration was less due to the presence of the
sandy layer at shallower depths. The cores were logged at the
Marine Geomechanics Laboratory at the University of Rhode
Island to obtain the compressional wave speed, bulk density,
and attenuation profiles. It should be noted that these gravity
cores give geoacoustic parameters for the top 1–2 m of the
sediment only. The present inversion gives compressional
speed values down to 25 m depth with reasonable quality.

Hence, the gravity cores are useful only to a limited extent
for comparison and validation of the present inversion. How-
ever, the gravity core data will be much more important for
propagation at higher acoustic frequencies.

V. RESULTS AND DISCUSSION

A. Compressional wave-speed inversion: Inversion
scheme I

We now pursue the inverse problem. To begin with, the
acoustic signals from the SUS charge explosions received at
the VLA are now analyzed to evaluate the time–frequency
distribution. A signal recorded on a single hydrophone from
SUS explosion D2 is shown in Fig. 9. Frequency dispersion
is clearly observable even in the raw time series, especially
for the later arrivals. We can observe high-frequency late
arrivals at 3.5 s after the onset and some low frequencies
arriving earlier at around 2.5 s. A Morlet wavelet, commonly
used in geophysics and acoustical analysis~Badiey et al.,

FIG. 6. Location of the PRIMER ex-
perimental study.
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1994!, is then used to produce the time–frequency diagram
of the signal as shown in Fig. 10. It is seen that the arrivals
corresponding to 3.5 and 2.5 s observed in the time series
belong to mode 4 and mode 2, respectively. The continuous
lines shown in this figure correspond to the theoretical group
speed values obtained by the inversion scheme. It should
also be noted that, by looking at the time–frequency dia-
grams for all the receiving hydrophones at various depths
along the array, we can extract arrivals for most of the
modes. That is, we do not lose modes due to the receiver
being in a modal null. The times of arrivals corresponding to
the various modes over our range of frequencies were peak
picked and used as data for the inversion. The widths of the
spectral peaks corresponding to 95% of peak value were also
estimated from the time–frequency diagrams. These widths
were assumed to represent the uncertainty in the data. Acous-

tic signals from SUS explosions D2, D4, D6, C6, and C9
were analyzed for time–frequency behavior. All these explo-
sions are in the shelf region and the bathymetry is gently
varying. The modes are well defined and there is not much
indication of mode coupling.

Forward propagation was modeled using adiabatic
theory. In this inversion scheme, the propagation path is di-
vided into five sections. Sediment properties in each section
are assumed range independent. Up to nine layers of sedi-
ments with different compressional speeds and unequal
thickness were considered. Close to the sediment–water in-
terface the layers were very thin compared to deeper depths
where penetration of acoustic energy is very low. Empirical
orthogonal functions~EOFs! were generated using ocean
sound-speed profiles at various locations in the propagation
path calculated usingSEASOAR temperatures. Four EOF co-
efficients were used to represent the variations at each sec-
tion. The water depth at each section and the source–receiver

FIG. 7. Location of the SUS charges analyzed in this study. D1, D2, D4, and
D6 are part of the down-slope run, whereas C1, C6, and C9 are from the
cross-slope run. Locations of the gravity cores and the AMCOR drill site are
also shown.

FIG. 8. Dispersion diagrams for four SUS signals received at a depth of
45.42 m. The arrival times are arbitrary. Locations of these SUS drops are
shown in Fig. 7.

FIG. 9. SUS signal received at the top hydrophone at 45.42-m depth. The
source to receiver range is 41 km.

FIG. 10. Comparison of arrival times for SUS signal from D2. The continu-
ous lines are the theoretical group speed curves calculated using the inver-
sion.
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range were also included as unknowns in the inversion
scheme for compressional wave speeds. Hence, at each sec-
tion four EOF coefficients, compressional wave speeds at
nine layers, water depth, and range were used to model the
environmental and geometric properties. Shear effects in the
sediments were neglected. A normal-mode program~Porter
and Reiss, 1984! was used to calculate the eigenvalues and
mode shapes at each section. The group speed values for
various frequencies and modes were calculated and matched
with the experimentally observed group speeds. A GA was
used to minimize the difference between the modeled and
observed group speed values in a least-square sense via the
objective function@Eq. ~1!#. The GA was used with a sto-
chastic universal sampling selection algorithm, real muta-
tion, and discrete recombination. Three separate runs were
made to verify the robustness of the model. The sampled
model space is stored and used to calculate thea posteriori
error estimates. The procedure for the calculation of the error
estimates is described in detail by Pottyet al. ~2000!.

Figure 11~left panel! shows the path-averaged compres-
sional wave speeds obtained by the inversion using signals
from SUS D2. Compressional wave-speed profiles corre-
sponding to the mean and best parameters obtained by the
GA inversion are plotted along with the AMCOR profile for
comparison. The inversion agrees with the AMCOR profile
reasonably well considering the fact that the AMCOR loca-
tion is approximately 40 km down slope. The mean and best
profiles agree closely for the top 25 m, indicating good con-
vergence at these depths. Figure 11~right panel! shows the
improvements achieved by the application of our hybrid
method. It can be noted that the application of Levenberg–
Marquardt methods did not produce appreciable improve-
ment in this case, especially in the top 25 m. Figure 12
shows the standard deviations computed usinga posteriori
analysis and Hessians. The standard deviation is of the order
of 15–20 m/s in the top 25 m. Down to a depth of 20 m, the
Hessians are very high, which indicates very good conver-
gence and explains the lack of success of the hybrid method.

It can also be noted that the standard deviation calculated
using these two different methods matches very well. Both
the methods show very large errors in the 20–25-m depths.
The hybrid method was effective at these depths, as it re-
duces the errors in this region. It should be noted that uncer-
tainty generally increases with depth due to reduced modal
penetration at greater depths. Uncertainty calculated by dif-
ferent methods showed this trend at depths greater than 30
m. We also see fluctuations in uncertainty at depths lower
than 30 m. This may be due to the fact that different modes
penetrate to different depths and hence sample different lay-
ers of sediment. This will be more pronounced as we go
deep, as the inversion there is based on relatively smaller
number of modes.

Figure 13 shows the compressional speed profile in the
top 1.4 m of the sediment. Core data obtained from the grav-

FIG. 11. Sediment compressional speeds obtained by GA inversion~left
panel! and hybrid inversion~right panel!. Compressional speeds calculated
using the AMCOR data are also shown.

FIG. 12. Standard deviation of the sound-speed estimates computed bya
posteriori error analysis. Local estimates calculated using Hessians are also
shown.

FIG. 13. Sediment compressional speeds obtained by hybrid inversion.
Compressional speeds calculated using the gravity core data are also shown.
The range-independent inversion shown in the figure is from Pottyet al.
~2000!.
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ity cores at locations 1, 2, and 3~Fig. 7! and the range-
independent inversion~Potty et al., 2000! are also shown in
that figure. Improvement in the inversion due to adiabatic
modeling is evident, especially in the top 1 m of thesedi-
ment. Figure 14 shows the comparison of the sound speeds
in the water column at six range points along the propagation
path. Each profile is offset by 50 m/s for clarity of presenta-
tion, and hence only the difference between the two profiles
is relevant. There is some disagreement between the two
profiles, which is reflected in the group speed comparisons
~Fig. 15!. It should be noted that only four EOF coefficients
were included to model the sound-speed fluctuations in the
water column. Figure 15 shows the comparison of group
speeds computed using the inversion and experimental data.
Agreement is good for the late modal arrivals except for
mode 1. There is appreciable difference in early arrivals,
which may be due to the inferior ocean sound-speed values.
It should also be noted that early arrivals are difficult to

identify and separate and are prone to data errors compared
to late arrivals. Later arrivals are more important to sediment
inversions as they interact more with the bottom.

Figure 16 shows the compressional sound-speed profiles
obtained by this inversion scheme using SUS signals corre-
sponding to D4, D6, C6, and C9. The locations of these SUS
charges are shown in Fig. 7. D4 and D6 belong to the down-
slope run, whereas the other two~C6 and C9! belong to the
cross-slope run. The compressional wave speeds correspond-
ing to the two AMCOR cores~6010 and 6012! are also
shown in these figures. The variations in compressional wave
speeds are not much, and in most cases they are within the
standard errors. This was expected as the propagation paths
for these four SUS signals are close to each other. Figure 17
shows the mean compressional speed profile on the shelf.

FIG. 14. Sound speeds in the water column obtained by GA inversion. The
profiles at various sections are shown with sound-speed axis shifted by a
small amount. Sound-speed profiles computed usingSEASOAR data are also
shown.

FIG. 15. Comparison of group speeds calculated using the inversion and
experimental values of arrival times.

FIG. 16. Compressional speed profiles obtained by the inversion using SUS
signals from D4, D6, C6, and C9. The continuous and dashed lines represent
the sound-speed profile corresponding to the best and the mean inversions,
respectively. The dotted line and the diamonds represent the AMCOR 6012
and 6010 data, respectively.

FIG. 17. Mean compressional speed profile in the shelf region. The shaded
region corresponds to one standard deviation on either side of the mean.
This mean profile is obtained using the inversions of SUS signals from
various shots.
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This mean profile is obtained using the inversion results cor-
responding to various SUS shots deployed in the shelf re-
gion. The mean compressional speed in the top 2 m of the
sediment is of the order of 1550 m/s, which agrees well with
the gravity core data. At greater depths the compressional
speeds are of the order of 1700 m/s, which matches the av-
erage AMCOR-6012 data. The standard error in all the cases
was of the order of 20–25 m/s in the top 15 to 20 m.

B. Source–receiver range estimation results

The differences in arrival times for various frequencies
for a given mode and for various modes at a given frequency
are calculated from the time–frequency distribution of the
acoustic signal using Eqs.~5! and ~6!. The group speed val-
ues for various modes and frequencies are calculated using
the compressional speed profile obtained from the adiabatic
inversion. For two SUS charge explosions~C6 and C9!, the
experimental arrival time differences are plotted against the
group slowness differences@Eqs. ~5! and ~6!#. It should be
noted that these equations are strictly applicable only for
range-independent propagation. The slopes of the lines ob-
tained from these equations give the range for these SUS
explosions~Fig. 18!. The ranges were obtained as 33.6 and
28 km. These values are very close to the experimentally
measured distance between the deployment locations of
these SUS charges and the VLA~34.7 and 29.4 km, respec-
tively!. It should be noted that this estimation of range is

based on range independence. The agreement between the
estimated and actual ranges supports our assumption of
range independence.

C. Results of attenuation inversions: Inversion
scheme II

1. Synthetic data

The inversion scheme II~Fig. 2! for obtaining the com-
pressional wave attenuation was tested using synthetic data.
Synthetic time series is generated for the sound-speed profile
shown in Fig. 19. The attenuation coefficient for the sedi-
ment is assumed constant and equal to 0.05 dB/l. Density
also was assumed constant at 1.7 g/cc. The source was
placed at a depth of 30 m and the receiver was at 40 km at a
depth of 50 m. Acoustic pressure was generated for frequen-
cies 10 to 200 Hz using the parabolic equation~PE!-based
propagation codeRAM ~Collins, 1997!. The time series thus
obtained was analyzed using wavelets to separate individual
mode arrivals. The arrivals obtained at 50 Hz are shown in
Fig. 20. Modes 1, 2, and 3 can easily be identified in this
figure. The ratios of pressure amplitudes are then calculated
for use in the inversion scheme. Figure 21 shows the attenu-
ation profile obtained using synthetic data. It can be noted
that the inversion was successful in estimating the attenua-
tion coefficient as the inversion closely matches the true at-
tenuation value. It should also be noted that the synthetic
data were noise-free and hence the spectral peaks were well
separated and easily identifiable.

2. SUS data

This inversion scheme was next used to obtain the
modal attenuation coefficients using the SUS data. The data
from two explosions~D1 and D2! were chosen for this in-
version. Signals received at the NE VLA at depths of 45.42,
53.12, 66.32, and 79.52 m were used. The propagation paths
from these SUS explosions to the VLA are in a uniform
depth of water and thus are assumed to be range indepen-

FIG. 18. Source–receiver range estimation for SUS charge C6~top panel!
and C9~bottom panel!. The estimated range is very close to the deployment
range of 34.7 and 29.4 km, respectively. DeltaT(f )@DT( f )# and K t( f ) are
defined in Sec. II C.

FIG. 19. Sound-speed profile used to generate synthetic time series for
attenuation inversion.
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dent. This ignores any intrinsic medium range variability,
which could be a source of some error. The time series from
SUS D1 and D2 received at the VLA was analyzed using a
Morlet wavelet. Figure 9 shows one such acoustic signal
from SUS D2 received at the middle hydrophone at 66.32-m
depth. Figure 10 shows the scalogram of this signal. It can be
seen from this figure that in the 20- to 80-Hz region most of
the acoustic energy is contained in the first three modes.
Also, the first and second modes are well separated in this
frequency band so that spectral ratios can be easily found.
Figure 22 shows the normalized acoustic pressure amplitudes
at frequencies 30, 40, and 50 Hz from the explosion D1.
Spectral ratiosR21, R31, andR32 are calculated using these
mode amplitudes and are then used in the inversion to find
the modal attenuation coefficients. It should be noted that at
70 Hz and higher, it is very difficult to identify the individual
modal peaks, which makes the attenuation estimates less re-

liable at these frequencies. After obtaining the modal attenu-
ation coefficients the attenuation profilea(z) was calculated
by solving the integral equation~4!. Inversion was carried
out for frequencies in the range of 30–70 Hz and the results
for frequency 30, 40, and 50 Hz are shown in Fig. 23. The
attenuation profile calculated using gravity core data is also
shown for comparison. Gravity core data are available only
for a short depth of 1.5 to 2 m. The results agree reasonably
well for the frequency shown in this figure and for other
frequencies in the range 30–70 Hz. At higher frequencies the
quality of the estimates becomes poor, which results in a
comparatively larger disagreement. It should also be noted
that the inversions corresponding to explosions D1 and D2
are in close agreement, as seen in the figure.

The attenuation coefficients are on the order of 0.04 to
0.045 dB/l. In Fig. 24 the attenuation estimates~in dB/m!
obtained by the present study are plotted along with previ-
ously available data reported by other investigators~Stoll,
1985!. The shaded strip in this figure corresponds to the at-

FIG. 20. Normalized magnitudes of the acoustic pressure for modes 1, 2,
and 3 obtained using time–frequency analysis.

FIG. 21. Attenuation estimates obtained using the inversion scheme for the
synthetic data. The true attenuation in this case was 0.05 dB/l. Model at-
tenuation coefficients were obtained from the inversion scheme and attenu-
ation profile was estimated by linear inversion.

FIG. 22. Magnitudes of the acoustic pressure for SUS signal D1. Ratios
between amplitudes of modes 1, 2, and 3 are used in the inversion scheme.

FIG. 23. Attenuation coefficient profile at 30, 40, and 50 Hz.
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tenuation values calculated using the Biot model~Badiey
et al., 1998! for sediments of the silt type. It should be noted
that the amount of data at frequencies lower than 1 kHz is
very small compared to higher frequencies. Values corre-
sponding to our inversion range from 0.0009 to 0.0015 dB/m
in the frequency range 30 to 70 Hz. These values are well
below the values found by Hamilton~1972! for these fre-
quencies. It should be noted that the Hamilton values were
found by extrapolating the higher frequency findings based
on linear first-power frequency dependence. If we calculate
the value of attenuation coefficient with a value ofk50.5
~corresponding to very fine sand! from Hamilton~1972!, and
use the relationship

a5k fn ~n51!, ~21!

we get a value of 0.0025 dB/m for attenuation coefficient at
a frequency of 50 Hz. The actual field values may be less
than this since, in both sands and silts, the attenuation versus
frequency relationship becomes nonlinear at low frequencies
~Kibblewhite, 1989!. This behavior is intimately related to
the permeability of the sediment. Moreover, errors based on
such extrapolation will be further compounded by the fact
that, at low frequencies, propagation will also be controlled
by deeper underlying structures rather than by the near-
surface sediments alone. The vertical resolution length cal-
culated was of the order of 4 m in thepresent inversion. The
attenuation values then correspond to an average over a
depth of 4 m, and surface sediments and deeper sandy sedi-
ments also. Another mechanism which can cause propaga-
tion at lower frequencies to be strongly attenuated is the
presence of shear waves. However, this effect will be impor-
tant only if the shear waves are on the order of 600 m/s. In
the present study shear wave effects are probably not an

important factor, as the shear speeds calculated using core
data are on the order of 150 m/s.

Rogerset al. ~1993!, Mitchel and Focke~1983!, and
Zhao ~1985! have reported attenuation values lower than
Hamilton’s predictions and closer to the present inversion.
AMCOR-6010 site, which is southwest of the experimental
location but in much shallower waters, consists of mostly
silty sand silty clay overlying sand and a sandy clay layer.
Rogerset al. ~1993! have calculated the values of attenuation
in the frequency range of 50 to 60 Hz fromin situ measure-
ments here. These values are 0.000 717 5 dB/m at 50 Hz and
0.001 09 dB/m at 75 Hz. Reflection data from the water–
sediment interface measured by Mitchel and Focke~1983!
yielded attenuation values of similar magnitude in deep
ocean sediments in the 20–400-Hz frequency range. These
values are also shown in Fig. 24. Zhao~1985! has reported a
value of 0.0022 dB/m for attenuation coefficient at a site in
the Yellow Sea off China’s east coast at a water depth of 28.5
m. This value corresponds to a sand–silt–clay sediment at a
frequency of 80 Hz. Even though these values correspond to
different geographical locations, they all fall in the range of
values closer to our inversion at these low frequencies.

Figure 25 shows the dispersion diagrams for synthetic
data using the compressional speeds and attenuation obtained
by the inversion. These are compared with the dispersion
diagram for the experimental data. The synthetic data are
noise-free and hence the individual modes are well sepa-
rated. The first four modes are strong in both the real and
synthetic data. Modes 5 and 6 are clearly identifiable in the
synthetic data as these are noise-free as opposed to the real
data. The pressure levels compare reasonably well. The
source level for the explosive charge was evaluated using the
method detailed by Urick~1983!. The depths of receivers,
depth of sources, and range obtained by the inversion are
shown in Table I. They seem to agree well with the values
noted at deployment.

FIG. 24. Attenuation estimates~dB/m! obtained from present inversion. The
historical data in the figure is taken from Stoll~1985!.

FIG. 25. Time–frequency diagrams of the synthetic and field data are shown
in the top and bottom panels, respectively. The compressional wave speed
and attenuation values from the inversion were used to generate the syn-
thetic data.
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VI. CONCLUSIONS

Sediment compressional speeds were evaluated using
hybrid optimization schemes using broadband SUS data.
Propagation was modeled using adiabatic mode theory. The
inversions compare well with AMCOR and gravity core data.
Compressional attenuation was obtained using another inver-
sion scheme based on spectral ratios. This inversion scheme
was tested using synthetically generated data. The attenua-
tion values obtained fall within the reported compressional
attenuation values in the frequency range 30–70 Hz. Source/
receiver ranges were also estimated assuming approximate
range independence, and agree well with measured values.

The possibilities of range variations in the bottom com-
pressional wave speeds will be investigated further in an-
other study. The up-slope propagation from the shots from
the slope region will be more complicated because of the
severe range variations in bathymetry, the range-dependent
shelf break front, and probable variations in the bottom com-
pressional wave speeds.
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