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Time-Dependent Probability Distributions [nln50]

Stochastic processes describe systems evolving probabilistically in time. Con-
sider a process characterized by the stochastic variable X(t). In general, the
time evolution of X(t) is encoded in a hierarchy of time-dependent joint
probability distributions:

P (x1, t1), P (x1, t1; x2, t2), . . . , P (x1, t1; x2, t2; . . . ; xntn), . . .

with time-ordering t1 ≥ t2 ≥ · · · ≥ tn ≥ · · · implied.

Attributes:

• P (x1, t1; x2, t2; . . .) ≥ 0,

•
∫

dx1P (x1, t1; x2, t2, . . .) = P (x2, t2; . . .),

•
∫

dx1P (x1, t1) = 1.

Conditional probability distribution: P (x1, t1|x2, t2) =
P (x1, t1; x2, t2)

P (x2, t2)
.

Attributes:

∫
dx2P (x1, t1|x2, t2) = P (x1, t1),

∫
dx1P (x1, t1|x2, t2) = 1.

More generally: P (x1, t1; . . . |x̄1, t̄1; . . .) =
P (x1, t1; . . . ; x̄1, t̄1; . . .)

P (x̄1, t̄1; . . .)
.

Autocorrelation function: 〈X(t1)X(t2)〉 =

∫
dx1

∫
dx2 x1x2P (x1, t1; x2, t2).

More generally:〈
[X(t1)]

m1 · · · [X(tn)]mn
〉

=

∫
dx1 · · ·

∫
dxn xm1

1 · · ·xmn
n P (x1, t1; . . . ; xn, tn).

Stationary processes:

• P (x1, t1; x2, t2; . . .) = P (x1, t1 + τ ; x2, t2 + τ ; . . .) for any τ ,

• P (x1, t1) = P (x1, 0) (time-independent),

• P (x1, t1|x2, t2) = P (x1, t1 − t2|x2, 0) (initial condition),

• 〈X(t1)X(t2)〉 = 〈X(t1 − t2)X(0)〉.

Equilibrium implies stationarity but not vice versa.



Degrees of Memory [nln51]

Identification of three types of stochastic processes.

The following time ordering is assumed: t1 ≥ t2 ≥ · · · ≥ t̄1 ≥ t̄2 ≥ · · · .

1. Future independent of present and past.
Completely factorizing process.
P (x1, t1;x2, t2; . . . |x̄1, t̄1; x̄2, t̄2, . . .) = P (x1, t1)P (x2, t2) · · · .

Example: Gaussian white noise: P (x, t) = (2πσ2)−1/2e−x
2/2σ2

,
〈X(t)〉 = 0, 〈X(t)X(t′)〉 = σ2δ(t− t′),∫
dτ〈X(t)X(t+ τ)〉eiωτ = σ2 = const (spectral density).

2. Future dependent on present only.
Markov process.
P (x1, t1;x2, t2; . . . |x̄1, t̄1; x̄2, t̄2, . . .) = P (x1, t1;x2, t2; . . . |x̄1, t̄1).

3. Future dependent on present and past.
Non-Markovian process.
P (x1, t1;x2, t2; . . . |x̄1, t̄1; x̄2, t̄2, . . .).

Comments:

• Type-2 processes are the main focus in parts 6 and 7 of this course.

• Connections discussed in part 8 of this course: (i) type-1 and type-
2 processes interlinked in Langevin equation, (ii) type-2 and type-3
processes interlinked in generalized Langevin equation.

• The same physical process may be described as a type-2 process or
a type-3 process depending on the level of description and the choice
variables.



Markovian or Non-Markovian I [nln52]

Consider a physical ensemble of particles sliding down some uneven slope,
driven by gravity as shown. Each particle starts with random initial velocity
at the top of the slope.

g

m

y

x
xxxx

−2 −1 0 1

We examine probability distributions with a one-component dynamical vari-
able x and probability distributions with a two-component dynamical vari-
able [x, v].

Which of the following probability distributions are broad and which are
sharp? Which conditions are redundant?

[ 1 ] P (x1, t1),

[ 2 ] P (x1, t1|x0, t0),

[ 3 ] P (x1, t1|x0, t0;x−1, t−1)

[ 4 ] P (x1, t1|x0, t0;x−1, t−1;x−2, t−2).

[ 5 ]P ([x1, v1], t1),

[ 6 ] P ([x1, v1], t1|[x0, v0], t0),

[ 7 ] P ([x1, v1], t1|[x0, v0], t0; [x−1, v−1], t−1)

Answers: [1], [2], [5] are broad. The last condition in [4], [7] is redundant.

Comment: The above answers are independent of whether attenuation is
absent or present as long as the motion is deterministic.



Markovian or Non-Markovian II [nln53]

Consider a dilute classical gas, i.e. a physical ensemble of free massive par-
ticles moving in a box. The particles move with constant velocity between
collisions. The average time between collisons is τc. Here we focus on the
motion of the particles in x-direction.

Short time intervals: t� τc (no collisions during any time interval)

(i) Probability distribution of two-component random variable [x, ẋ]:

P ([x1, ẋ1], t1|[x0, ẋ0], t0) = δ
(
ẋ1 − ẋ0

)
δ
(
x1 − x0 − ẋ0(t1 − t0)

)
.

The motion is deterministic. The conditional probability distribution is
sharp. The process thus described is Markovian. Any additional condition
[x−1, ẋ−1] associated with a prior time t−1 is redundant.

(ii) Probability distribution of one-component random variable x:

(a) If we insist on a Markovian description, by means of the conditional
probability distribution,

P1(x1, t1|x0, t0),

we obtain a broad distribution even though the process is deterministic.

(b) If we insist on a sharp distribution we must choose a non-Markovian
description, by means of the probability distribution with two conditions,

P2(x1, t1|x0, t0;x−1, t−1).

Any further condition x−2 associated with a prior time t−2 is again redundant.

The contraction of the level of description from [x, ẋ] as in (i) to x as in (ii)
of one and the same deterministic time evolution shifts information about
the process into memory (cf. [nln15]).

Long time intervals: t� τc (many collisions during every time interval)

(iii) Markov process P1(x1, t1|x0, t0) is probabilistic (not deterministic).

(iv) Non-Markov process P2(x1, t1|x0, t0;x−1, t−1) is also probabilistic.

Both conditional probability distributions are broad. The second condition
narrows P2 down relativ to P1 if t0 − t−1 is short. With increasing t0 − t−1

the effect of the second condition fades away.

[Illustrations on next page]



Short time intervals: t� τc (no collisions during any time interval)
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Contraction – memory – time scales [nln15]

microscopic dynamics ⇒ contraction ⇒ stochastic dynamics

future state determined focus on subset of future state determined

by present state alone dynamical variables by present and past states

deterministic time evolution ignoring memory of past
of dynamic variables ⇓ makes dynamics of selected

variables probabilistic

judicious choice: deterministic time evolution
slow variables and of probability distributions
long time scales and mean values

⇓ short memory of fast variables
⇒ has little impact on dynamics

of slow variables at long times

Comments:

• In a classical Hamiltonian system the deterministic time evolution per-
tains to canonical coordinates and functions thereof.

• The time rate of change of any such variable depends on the instanta-
neous values of all canonical coordinates.

• On the contracted level of description we seek a way of describing an
autonomous time evolution of a subset of variables.

• For that purpose the information contained in the instantaneous values
of the variables that do not belong to the subset is transcribed into
previous values of the variables that do belong to the subset.

• The autononmous time evolution of the variables belonging to the sub-
set thus includes memory of its previous values.

• Slow variables contribute long memory and fast variables contribute
short memory.

• If the subset contains all slow variables then any effects on its au-
tonomous time evolution contributed by the remaining variables involve
only short memory.

• Effects of short memory are more easily accounted for than effects of
long memory.



Markov Process: General Attributes [nln54]

Specification of Markov process:

• P (x, t0) (initial probability distribution),

• P (x1, t1|x2, t2) (conditional probability distribution).

The entire hierarchy of joint probability distributions (see [nln50]) can be
generated from these two ingredients if the process is Markovian.

Two times t1 ≥ t2:

P (x1, t1;x2, t2) = P (x1, t1|x2, t2)P (x2, t2).

Three times t1 ≥ t2 ≥ t3:

P (x1, t1;x2, t2;x3, t3) = P (x1, t1;x2, t2|x3, t3)P (x3, t3)

= P (x1, t1|x2, t2;x3, t3)P (x2, t2|x3, t3)P (x3, t3)

= P (x1, t1|x2, t2)P (x2, t2|x3, t3)P (x3, t3).

Comments:

• The step from the first to the second line uses the previous equation in
a reduced sample space (specified by one condition).

• The second condition in the middle line is redundant.

Integration over the variable x2 at intermediate time t2 yields

P (x1, t1;x3, t3)︸ ︷︷ ︸
P (x1, t1|x3, t3)P (x3, t3)

= P (x3, t3)

∫
dx2P (x1, t1|x2, t2)P (x2, t2|x3, t3).

Division by P (x3, t3) then yields the Chapman-Kolmogorov equation:

P (x1, t1|x3, t3) =

∫
dx2P (x1, t1|x2, t2)P (x2, t2|x3, t3), t1 ≥ t2 ≥ t3.

The Chapman-Kolmogorov equation is a functional equation between condi-
tional probability distributions with many different kinds of solutions.



Put differently ...

Any two non-negative and normalized functions P (x, t) and P (x1, t1|x2, t2)
represent a unique Markov process if they satisfy the following two conditions:

• P (x1, t1) =

∫
dx2P (x1, t1|x2, t2)P (x2, t2) (t1 ≥ t2),

• P (x1, t1|x3, t3) =

∫
dx2P (x1, t1|x2, t2)P (x2, t2|x3, t3) (t1 ≥ t2 ≥ t3).

The first condition implies that lim
∆t→0

P (x1, t+ ∆t|x2, t) = δ(x1 − x2).

Homogeneous process: P (x1, t+ ∆t|x0, t)
.
= P (x1|x0; ∆t) independent of t.

The two conditions thus become

• P (x1, t+ ∆t) =

∫
dx2P (x1|x2; ∆t)P (x2, t),

• P (x1|x3; ∆t13) =

∫
dx2P (x1|x2; ∆t12)P (x2|x3; ∆t23)

with ∆t13 = ∆t12 + ∆t23.

For initial condition P (x, 0) = δ(x− x0) we then have P (x, t) = P (x|x0; t).

2



Diffusion Process and Cauchy Process [nln55]

Here we portray two of the most common homogeneous Markov processes.

� Diffusion process: P (x|x0; ∆t) =
1√

4πD∆t
exp

(
−(x− x0)2

4D∆t

)
.

� Cauchy process: P (x|x0; ∆t) =
1

π

∆t

(x− x0)2 + (∆t)2
.

Both processes satisfy

•
∫ +∞

−∞
dxP (x|x0; ∆t) = 1 (normalization),

• lim
∆t→0

P (x|x0; ∆t) = δ(x− x0) (consistency),

• P (x1|x3; ∆t13) =

∫
dx2P (x1|x2; ∆t12)P (x2|x3; ∆t23) (C.-K. eq.) [nex26].

Q: Are the sample paths of the two processes continuous or discontinuous?

A: The sample paths are continuous in the diffusion process and discontinuous
in the Cauchy process [nex97].

Lindeberg criterion for continuous sample paths:

lim
∆t→0

1

∆t

∫
|x−x0|>ε

dxP (x|x0; ∆t) = 0

for any ε > 0 and uniformly in x0 and ∆t.

Interpretation: the probability for the final position x to be finitely different
from the initial position x0 goes to zero faster than ∆t as ∆t→ 0.

Computer generated sample paths for both processes are shown in [nsl1].

Q: Are the sample paths of the two processe differentiable?

A: In both processes the sample paths are nowhere differentiable [nex99].



[nex26] Markovian nature of diffusion process and Cauchy process.

Demonstrate that the diffusion process and the Cauchy process are Markov processes by showing
that the respective conditional probability densities

P (x|x0; ∆t) =
1√

4πD∆t
exp

(
− (x− x0)2

4D∆t

)
, P (x|x0; ∆t) =

1
π

∆t
(x− x0)2 + (∆t)2

satisfy the (integral) Chapman-Kolmogorov equation

P (x1|x3; ∆t13) =
∫
dx2 P (x1|x2; ∆t12)P (x2|x3; ∆t23) with ∆t13 = ∆t12 + ∆t23.

What property of the characteristic function Φ(k,∆t) =
∫
d(x− x0)eik(x−x0)P (x|x0; ∆t) is instru-

mental in this context?

Solution:



Computer generated sample paths [nsl1]

Prescription:

• Select Markov process: P (x|x0; ∆t).

• Choose ∆t sufficiently small (e.g. smaller than linewidth of graph).

• Produce sequence of (uniformly distributed) random numbers.

• Transform random numbers to fit P (x|x0; ∆t) (see [nex80]).

• Use transformed random numbers as increments for sample path.

W (t): Diffusion process (continuous) generated from

P (x|x0; ∆t) =
1√

4πD∆t
exp

(
−(x− x0)2

4D∆t

)
.

X(t): Cauchy process (discontinuous) generated from

P (x|x0; ∆t) =
1

π

∆t

(x− x0)2 + (∆t)2
.

[from Gardiner 1985]



[nex97] Lindeberg condition for diffusion and Cauchy processes

Show that the Lindeberg condition for continuity of sample paths,

lim
∆t→0

1
∆t

∫
|x−x0|>ε

dxP (x|x0; ∆t) = 0,

is satisfied by the diffusion process but violated by th Cauchy process. They are specified, respec-
tively, by the conditional probability distributions,

P (x|x0; ∆t) =
1√

4πD∆t
exp

(
− (x− x0)2

4D∆t

)
, P (x|x0; ∆t) =

1
π

∆t
(x− x0)2 + (∆t)2

.

The condition requires that the probability for the final position x to deviate a finite distance from
the initial position x0 vanishes faster than the time step ∆t in the limit ∆t→ 0.

Solution:



Differential Chapman-Kolmogorov Equation [nln56]

Focus on particular solutions of the (integral) Chapman-Kolmogorov equa-
tion that satisfy three conditions:

(i) lim
∆t→0

1

∆t
P (x, t+ ∆t|x0, t) = W (x|x0; t) > 0,

(ii) lim
∆t→0

1

∆t

∫
|x−x0|<ε

dx(x− x0)P (x, t+ ∆t|x0, t) = A(x0, t) + O(ε),

(iii) lim
∆t→0

1

∆t

∫
|x−x0|<ε

dx(x− x0)2P (x, t+ ∆t|x0, t) = B(x0, t) + O(ε).

Comments:

• Integrals such as in (ii) and (iii) but with higher moments vanish,

• W (x|x0; t) > 0 describes jumps,

• A(x0, t) describes drift,

• B(x0, t) describes diffusion.

Under assumptions including the ones stated above the following differential
Chapman-Kolmogorov equation can be derived from its integral counterpart
[see e.g. Gardiner 1985]:

∂

∂t
P (x, t|x0, t0) = − ∂

∂x

[
A(x, t)P (x, t|x0, t0)

]
+

1

2

∂2

∂x2

[
B(x, t)P (x, t|x0, t0)

]
+

∫
dx′

[
W (x|x′; t)P (x′, t|x0, t0)−W (x′|x; t)P (x, t|x0, t0)

]
.

Initial condition: P (x, t0|x0, t0) = δ(x− x0).

Special cases:

• Drift equation: first term only. [nex29]

• Fokker-Planck equation: first and second terms only.

• Master equation: third term only.

• Diffusion process has W = 0, A = 0, B 6= 0. [nex27]

• Cauchy process has W 6= 0, A = 0, B = 0. [nex98]



Fokker-Planck Equation [nln57]

Extraction through systematic approximation of a (specific) Fokker-Planck
equation from the (unspecific) Chapman-Kolmogorov equation for a homo-
geneous Markov process with continuous sample path.

Chapman-Kolmogorov equation: P (x|x0; t+ τ) =

∫
dx′P (x|x′; τ)P (x′|x0; t).

Introduce a function R(x) that is differentiable and vanishes at the bound-
aries of the range of x.∫

dxR(x)
∂

∂t
P (x|x0; t) = lim

τ→0

1

τ

∫
dxR(x)

[
P (x|x0; t+ τ)− P (x|x0; t)

]
(1)

= lim
τ→0

1

τ

∫
dxR(x)

[∫
dx′P (x|x′; τ)P (x′|x0; t)− P (x|x0; t)

]
(2)

= lim
τ→0

1

τ

∫
dxP (x|x0; t)

[ ∫
dx′R(x′)P (x′|x; τ)−R(x)

]
(3)

= lim
τ→0

1

τ

∫
dxP (x|x0; t)

∫
dx′P (x′|x; τ)

×
[
(x′ − x)R′(x) +

1

2
(x′ − x)2R′′(x) + . . .

]
(4)

= lim
τ→0

1

τ

∫
dxR(x)

[
− ∂

∂x

∫
dx′(x′ − x)P (x′|x; τ)P (x|x0; t)

+
1

2

∂2

∂x2

∫
dx′(x′ − x)2P (x′|x; τ)P (x|x0; t) + . . .

]
. (5)

(1) Construct partial time derivative;

(2) use Chapman-Kolmogorov equation;

(3) switch variables x, x′;

(4) expand function R(x) at position x;

(5) integrate by parts.

Since the above equation must hold for any R(x) with the attributes men-
tioned the Fokker-Planck equation follows.

∂

∂t
P (x|x0; t) = − ∂

∂x
A(x)P (x|x0; t) +

1

2

∂2

∂x2
B(x)P (x|x0; t)

with drift and diffusion coefficients

A(x) = lim
τ→0

1

τ

∫
dx′(x′ − x)P (x′|x; τ),

B(x) = lim
τ→0

1

τ

∫
dx′(x′ − x)2P (x′|x; τ).



[nex29] Drift equation.

The Fokker-Planck equation with no diffusive term reads

∂

∂t
P (x, t|x0, 0) = − ∂

∂x
[A(x, t)P (x, t|x0, 0)],

Show that this drift equation has has a solution of the form

P (x, t|x0, 0) = δ
(
x− xS(t)

)
,

where xS(t) is the solution of the (deterministic) equation of motion dx/dt = A(x, t) with initial
condition xS(0) = x0.

Comment: In the 6N -dimensional phase space of a classical system of N interacting particles, the
drift equation for a phase point x is the Liouville equation. There exists a solution of the form
δ
(
x − xS(t)

)
, representing the motion of a phase point through phase space. The function xS(t)

is the solution of the canonical equations, which have the form dx/dt = A(x, t). The function
A(x, t) is constructed from the Poisson bracket of x with the system Hamiltonian.

Solution:



[nex28] Master equation for a continuous random variable.

The master equation,

∂

∂t
P (x|x0; t) =

∫
dx′[W (x|x′)P (x′|x0; t)−W (x′|x)P (x|x0; t)],

describes the time evolution of probability distributions for pure jump processes. The rate at which
P (x|x0; t) evolves in time is governed by two contributions: a positive contribution from jumps
x′ → x taking place at the rate W (x|x′) and a negative contribution from jumps x → x′ taking
place at the rate W (x′|x). The goal of this exercise is to derive the master equation from the
ansatz

P (x|x′; ∆t) = ∆tW (x|x′) + δ(x− x′)[1−∆t

∫
dx′′W (x′′|x′)],

for the conditional probability distribution assumed to hold for infinitesimal time intervals ∆t. In
this ansatz, the first term represents the probability density for transitions x′ → x 6= x′ during ∆t
and the second term the probability density for no transitions occurring within ∆t.

Hint: Start from the (integral) Chapman-Kolmogrov equation for P (x|x0; t) and construct the
partial time derivative via lim∆t→0[P (x|x0; t+ ∆t)− P (x|x0; t)]/∆t. Then substitute the ansatz.

Solution:



[nex99] Non-differentiability of sample paths

The non-differentiability of sample paths of stochastic processes can be investigated by calculating
the probability that for any value of x the slope lim∆t→0 |∆x/∆t| is greater than any chosen value
κ > 0. Calculate

lim
∆t→0

P[|∆x/∆t| > κ] =
∫
|x−x0|>κ∆t

dxP (x|x0; ∆t)

for the diffusion process and the Cauchy process,

P (x|x0; ∆t) =
1√

4πD∆t
exp

(
− (x− x0)2

4D∆t

)
, P (x|x0; ∆t) =

1
π

∆t
(x− x0)2 + (∆t)2

.

For comparison, calculate the same probability for the deterministic drift process,

P (x|x0; ∆t) = δ(x− x0 − v∆t).

Draw your own conclusions from the results. State a necessary criterion for a sample path to be
differentiable at a given value of x. Which process satisfies your criterion?

Solution:



Predominantly Small Jumps [nln58]

Jump processes are most commonly described by a master equation,

∂

∂t
P (x, t|x0) =

∫
dx′[W (x|x′)P (x′, t|x0)−W (x′|x)P (x, t|x0)].

If the transition rates favor small jumps such that their expansion in powers
of jump size captures the essence of the process at hand we can extract a
Fokker-Planck equation from the master equation.

Express transition rates as functions of jump size ξ
.
= x′ − x:

W (x′|x) = W̄ (x; ξ), W (x|x′) = W̄ (x′;−ξ).

Rewrite master equation:

∂

∂t
P (x, t|x0) =

∫
dξ

[
W̄ (x + ξ;−ξ)P (x + ξ, t|x0)− W̄ (x; ξ)P (x, t|x0)

]
.

Expand first term to second order:

W̄ (x;−ξ)P (x, t|x0)+ξ
∂

∂x

[
W̄ (x;−ξ)P (x, t|x0)

]
+

1

2
ξ2 ∂2

∂x2

[
W̄ (x;−ξ)P (x, t|x0)

]
.

Introduce jump moments:

αm(x)
.
=

∫
dξ ξmW̄ (x; ξ) =

∫
dx′(x′ − x)mW (x′|x).

Substitution of expansion into master equation yields Fokker-Planck equa-
tion:

∂

∂t
P (x, t|x0) = − ∂

∂x

[
α1(x)P (x, t|x0)

]
+

1

2

∂2

∂x2

[
α2(x)P (x, t|x0)

]
.

Comments:

• Convergent jump moments necessitate predominance of small jumps.

• The jump moments α1(x) and α2(x) only capture partial information
contained in the transition rates W (x|x′), namely information associ-
ated with effective drift and effective diffusion.



Time Evolution of Mean and Variance [nln59]

Consider a stochastic process specified by the master equation

∂

∂t
P (x, t|x0) =

∫
dx′[W (x|x′)P (x′, t|x0)−W (x′|x)P (x, t|x0)].

Jump moments are extracted from the transition rates via

αm(x)
.
=

∫
dx′(x′ − x)mW (x′|x)

and assumed to be convergent at least for m = 1, 2 (see [nln58]).

Evaluate
∫
dxx[m.eq.] and

∫
dxx2[m.eq.] to express the rate at which the first

and second moments of x vary in time as follows:

d

dt
〈x〉 =

∫
dx

∫
dx′(x′ − x)W (x′|x)P (x, t|x0),

d

dt
〈x2〉 =

∫
dx

∫
dx′(x′2 − x2)W (x′|x)P (x, t|x0).

Use x′2 − x2 = (x′ − x)2 + 2x(x′ − x) and the definition of jump moments to
derive the following equations of motion:

d

dt
〈x〉 = 〈α1(x)〉,

d

dt
〈x2〉 = 〈α2(x)〉+ 2〈xα1(x)〉.

Comments:

• If the jump moments are known and expandable in powers of x the ex-
pectation values on the right-hand sides become functions of 〈x〉, 〈x2〉, . . .
• In general, this leads to an infinite hierarchy of equations of motion for

all moments 〈xm〉,m = 1, 2, . . ..

• In special cases, the ODEs for 〈x〉 and 〈x2〉 form a closed set. Then
they can be solved with no further approximations.

• The same equations of motions hold if the first two jump moments
are replaced by the drift and diffusion coefficents of a Fokker-Planck
equation, A(x) and B(x), respectively (see nln58]).

• Solvable cases are worked out in [nex30], [nex32].



[nex32] Jump moments of discrete variables

Consider the master equation

d

dt
P (n, t) =

∑
m

[W (n|m)P (m, t)−W (m|n)P (n, t)]

of an integer random variable n for two stochastic processes:
(a) Random walk: W (n|m) = σδn+1,m + σδn−1,m.
(b) Poisson process: W (n|m) = λδn−1,m.
Calculate the jump moments αl(m) =

∑
n(n−m)lW (n|m) for l = 1, 2.

Then calculate the time evolution of the mean value 〈n〉 and the variance 〈〈n2〉〉, consistent with
the initial condition P (n, 0) = δn,0. Rather than first calculating P (n, t), solve the equations of
motion for the expectation values: d〈n〉/dt = 〈α1(n)〉, d〈n2〉/dt = 〈α2(n)〉+ 2〈nα1(n)〉.

Solution:



[nex30] Equations of motion for mean value and variance.

Consider the Fokker-Planck equation for a stochastic process,

∂

∂t
P (x, t|x0) = − ∂

∂x
[A(x)P (x, t|x0)] +

1
2
∂2

∂x2
[B(x)P (x, t|x0)],

where x0 is the initial value of all sample paths, implying P (x, 0|x0) = δ(x−x0). Use the equations
of motion,

d

dt
〈x〉 = 〈A(x)〉, d

dt
〈x2〉 = 〈B(x)〉+ 2〈xA(x)〉,

to calculate the time-dependence of the mean value 〈x〉 and the variance 〈〈x2〉〉 for two processes
with initial conditions as dictated by P (x, 0|x0) = δ(x− x0):
(i) Uniform drift and diffusion process: A(x) = v, B(x) = 2D.
(ii) Ornstein-Uhlenbeck process: A(x) = −κx, B(x) = γ.

Solution:



Markov processes: map of specifications [nln16]

(9)

Chapman−Kolmogorov equation

Fokker−Planck equation

master equation

Chapman−Kolmogorov equation

drift equation diffusion equation

differential

master equation

equation of motion
for mean, variance  

(1)

(2)

(3)
(4)

(5)

(6)

(7)
(8)

(1) Chapman-Kolmogorov equation imposes restrictions on permissible func-
tions P (x, t|x0) but does not suggest a classification of processes.

(2) Particular solutions that are specified by

– A(x, t) describing drift,

– B(x, t) describing diffusion,

– W (x|x′; t) describing jumps.

(3) Jump processes exclusively.

(4) Processes with continuous sample paths, satisfying Lindeberg criterion
(drift and diffusion, no jumps).

(5) Master equation with any W (x|x′; t) specifies a Markov process. Nat-
ural starting point for processes with discrete stochastic variables.

(6) Transition rates W (x|x′; t) of master equation approximated by two
jump moments provided they exist. Approximation captures drift and
diffusion parts (on some scale).

(7) Drift and diffusion determine mean 〈〈x〉〉 and variance 〈〈x2〉〉 via equa-
tions of motion for jump moments.

(8) Deterministic process have no diffusive part: B(x, t) = 0.

(9) Purely diffusive processes have no drift: A(x, t) = 0.



[nex85] Detailed balance condition and thermal equilibrium

Consider a statistical mechanical system specified by a Hamiltonian H(x). Here the random field
x = (x1, x2, . . .) specifies the microstate. At thermal equilibrium, the macrostate is specified by
the probability distribution ρ(x) = Z−1 exp[−βH(x)]. Now consider a Markov process specified
by the master equation

∂

∂t
P (x, t) =

∑
x′

[W (x|x′)P (x′, t)−W (x′|x)P (x, t)] .

Show that the equilibrium distribution ρ(x) satisfies the detailed balance condition W (x′|x)ρ(x) =
W (x|x′)ρ(x′) for the Metropolis algorithm and the heat bath algorithm, which are specified, respec-
tively by the transition rates [∆H ≡ H(x′)−H(x)]:

W (x′|x)dt =
{

e−β∆H if ∆H ≥ 0
1 if ∆H ≤ 0 , W (x′|x)dt =

e−β∆H

1 + e−β∆H
.

Solution:



Markov Chains [nln61]

Transitions between values of a discrete stochastic variable taking place at
discrete times:

X = {x1, . . . , xN}; t = sτ, s = 0, 1, 2, . . .

Notation adapted to accommodate linear algebra:

P (xn, t)→ P (n, s), P (xn, t0 + sτ |xm, t0)→ P (n|m; s).

Time evolution of initial probability distribution:

P (n, s) =
∑
m

P (n|m; s)P (m, 0).

Nested Chapman-Kolmogorov equations:

P (n|m; s) =
∑
i

P (n|i; 1)P (i|m; s− 1)

=
∑
ij

P (n|i; 1)P (i|j; 1)P (j|m; s− 2)

=
∑
ijk

P (n|i; 1)P (i|j; 1)P (j|k; 1)P (k|m; s− 3) = . . .

Matrix representation:

Transition matrix: W with elements Wmn = P (n|m; 1).

Probability vector: ~P (s) =
(
P (1, s), . . . , P (N, s)

)
.

Time evolution via matrix multiplication: ~P (s) = ~P (0) ·Ws.

General attributes of transition matrix:

• All elements represent probabilities: Wmn ≥ 0;
Wmm: system stays in state m;
Wmn with m 6= n: system undergoes a transition from m to n.

• Normalization of probabilities:
∑
n

Wmn = 1

• A transition m→ n and its inverse n→ m may occur at different rates.
Hence W is, in general, not symmetric.



Regularity:

A transition matrix W is called regular if all elements of the matrix product
Ws are nonzero (i.e. positive) for some exponent s.

Regularity guarantees that repeated multiplication leads to convergence:

lim
s→∞

Ws = M =


π1 π2 · · · πN
π1 π2 · · · πN
...

...
...

π1 π2 · · · πN


Further multiplications have no effect:

W ·M =

 W11 · · · W1N
...

...
WN1 · · · WNN

 ·
 π1 · · · πN

...
...

π1 · · · πN

 = M.

The asymptotic distribution is stationary.
The stationary distribution does not depend on initial distribution:

lim
s→∞

~P (s) = ~P (0) ·M = ~π =
(
π1, π2, . . . , πN

)
.

All elements of the stationary distribution are nonzero.

The computation of the stationary distribution ~π via repeated multiplication
of the transition matrix with itself works well for regular matrices.

More generally, transition matrices may have stationary solutions that de-
pend on the initial distribution or stationary solutions that are not asymp-
totic solutions of any kind.

2



Eigenvalue problem:

The eigenvalues Λ1, . . . ,ΛN of W are the solutions of the secular equation:

det
(
W − ΛE

)
= 0, Eij = δij.

For an asymmetric W not all eigenvalues Λn are real. We must distinguish
between left eigenvectors ~Xn and right eigenvectors ~Yn:

~Xn ·W = Λn
~Xn, n = 1, . . . , N with ~Xn

.
=
(
Xn1, . . . , XnN

)
W · ~Yn = Λn

~Yn, n = 1, . . . , N with ~Yn =

 Y1n
...

YNn

 .

The two eigenvector matrices are orthonormal to one another:

X ·Y = E, where X
.
=

 ~X1
...
~XN

 , Y
.
=
(
~Y1, . . . , ~YN

)
.

All eigenvalues Λn of the transition matrix W satisfy the condition |Λn| ≤ 1.

There always exists at least one eigenvalue Λn = 1.

The right eigenvector for Λn = 1 is ~Yn =

 1
...
1

.

The left eigenvector for Λn = 1 is a stationary distribution ~Xn =
(
π1, . . . , πN

)
.

If W is regular then the eigenvalue Λn = 1 is unique and its left eigenvector
is the asymptotic distribution ~Xn = ~π, independent of the inital condition.
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Ergodicity:

In an ergodic transition matrix W any two states are connected, directly or
indirectly, by allowed transitions. Regularity implies ergodicity but not vice
versa.

A block-diagonal transition matrix,

W =



W1,1 · · · W1,n 0 · · · 0
...

...
...

...
Wn,1 · · · Wn,n 0 · · · 0

0 · · · 0 Wn+1,n+1 · · · Wn+1,N
...

...
...

...
0 · · · 0 WN,n+1 · · · WN,N


implies non-ergodicity because inter-block transitions are prohibited.

Absorbing states:

If there exists a state n that allows only transitions into it but not out of
it then row n of the transition matrix has diagonal element Wnn = 1 and
off-diagonal elements Wnn′ = 0 (n′ 6= n).

For an ergodic system we then have

lim
s→∞

~P (0) ·Ws = ~π = (0, . . . , 0, 1, 0, . . . , 0),

with the 1 at position n.

Detailed balance:

The detailed balance condition postulates the existence of a stationary dis-
tribution ~π satisfying the relations

Wmnπm = Wnmπn, n,m = 1, . . . , N.

Detailed balance requires that Wmn = 0 if Wnm = 0. Microscopic (quantum
or classical) dynamics guarantees that this requirement is fulfilled.

The detailed balance condition, if indeed satisfied, can be used to determine
the stationary distribution.
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Applications:

B House of the mouse: two-way doors only [nex102]

B House of the mouse: some one-way doors [nex103]

B House of the mouse: one-way doors only [nex104]

B House of the mouse: mouse with inertia [nex105]

B House of the mouse: mouse with memory [nex43]

B Mixing marbles red and white [nex42]

B Random traffic around city block [nex86]

B Modeling a Markov chain [nex87]
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Master Equation with detailed balance [nln12]

Master equation with time-independent transition rates W (n|m) = Wmn:

∂

∂t
P (n, t) =

∑
m

[WmnP (m, t)−WnmP (n, t)] =
∑
m

LmnP (m, t),

where Lmn = Wmn − δmn
∑

n′ Wnn′ = Wmn − δmn.

This set of linear, ordinary differential equations can be transformed into an
eigenvalue problem with the ansatz P (m, t) = ϕme

−λt:

Left eigenvector problem:
∑
m

Lmnϕ
(α)
m = −λ(α)ϕ(α)

n , α = 1, 2, . . .

Right eigenvector problem:
∑
n

Lmnχ
(α)
n = −λ(α)χ(α)

m , α = 1, 2, . . .

Biorthonormality: ~ϕ(α) · ~χ(β) =
∑
n

ϕ(α)
n χ(β)

n = δαβ.

A stationary solution P (n) requires the existence of a solution of the eigen-
value problem with λ = 0. The stability of P (n) requires that all other
eigenvalues λ have positive real parts.

Detailed balance condition: WmnP (m) = WnmP (n).

Symmetric matrix: Smn
.
= Lmn

√
P (m)

P (n)
.

Symmetrized eigenvalue problem:

ϕ̄(α)
n

.
=

1√
P (n)

ϕ(α)
n ⇒

∑
m

Smnϕ̄
(α)
m = −λ(α)ϕ̄(α)

n .

χ̄(α)
n

.
=

√
P (n)χ(α)

n ⇒
∑
n

Smnχ̄
(α)
n = −λ(α)χ̄(α)

m .

Given that ϕ̄
(α)
n = χ̄

(α)
n it follows that ϕ

(α)
n = P (n)χ

(α)
n .

Given that
∑

n Lmn = 0 it follows that the right eigenvector of Lmn with
eigenvalue λ = 0 has components χn = 1. The corresponding left eigenvector
then has components ϕn = P (n).

The symmetric matrix S has only real, non-negative eigenvalues. Hence
λ = 0 is the smallest eigenvalue. Variational methods are applicable.



[nex39] Regression theorem for autocorrelation functions.

The regression theorem for autocorrelation functions of a Markov process reads

〈X(t)X(t0)〉 =
∫

dx

∫
dx′xx0P (x, t; x0, t0) =

∫
dx0〈X(t)|[x0, t0]〉x0P (x0, t),

where 〈X(t)|[x0, t0]〉 ≡
∫

dx xP (x, t|x0, t0) is the definition of a conditional average.
(a) Show that if limt0→−∞ P (x, t|x0, t0) = PS(x) independent of t, x0, then the autocorrelation
function in a stationary process is

〈X(t)X(t′)〉S = lim
t0→−∞

〈X(t)X(t′)|[x0, t0]〉 =
∫

dx

∫
dx′xx′P (x, t|x′, t′)PS(x′).

(b) Apply the regression theorem to calculate 〈X(t)X(t′)〉S for the Ornstein-Uhlenbeck process at
stationarity.

Solution:



Birth-death processes [nln18]

Specification:

• Birth rates: typically proportional to population present.

• Death rates: typically proportional to population present, may be en-
hanced due to self-inflicted stress.

• Interaction rates: typically proportional to products of populations,
with positive sign if impact is favorable and negative sign if impact is
unfavorable.

Models for population dynamics:

• particles diffusing through walls,

• particles undergoing radioactive decay,

• molecules undergoing chemical reactions,

• organisms multiplying and dying,

• host-parasite interaction,

• predator-prey interaction,

• animals subject to environmental stress

Levels of description:

• Deterministic time evolution.
Description via differential equations.
Contingency encoded in initial conditions.

• Probabilistic time evolution without memory.
Description via master equation.
Contingency encoded in initial conditions and in time evolution.

• Probabilistic time evolution with memory.
Incorporation of learning, heredity, adaptation.
Contingency encoded in initial conditions, in time evolution, and in
rules that govern time evolution.

The future is open to a higher degree in each successive level of description.



Birth and death of single species [nln19]

Class of processes described by a master equation for some discrete variable
n with nonzero transition rates W (m|n) limited to m = n+1 and m = n−1:

d

dt
P (n, t) =

∑
m

[
W (n|m)P (m, t)−W (m|n)P (n, t)

]
,

W (m|n) = T+(n)δm,n+1︸ ︷︷ ︸
birth rate

+T−(n)δm,n−1︸ ︷︷ ︸
death rate

.

The master equation is a difference-differential equation. If T±(n) are poly-
nomials, the master equation can be converted into a linear PDE for the
generating function G(z, t)

.
=

∑
n z

nP (n, t):

∂

∂t
G(z, t) =

L∑
l=0

Al(z)
∂l

∂zl
G(z, t),

where L is the highest polynomial order in T±(n).

The notion of nonlinear birth/death rates pertains to quadratic or higher-
order terms in T±(n). The PDE for G(z, t) and the master equation for
P (n, t) remain linear. The relative ease of solving linear birth-death processes
is associated with the relative ease of solving first-order linear PDEs.

In the context of a deterministic description of the time evolution, nonlinear
birth/death rates translate into nonlinear differential equations.

Not all choices of transition rates T±(n) permit a stationary solution,

lim
t→∞

P (n, t) = Ps(n).

• Runaway populations can be held in check by death rates that are of
higher polynomial order than the birth rates.

• Extinction of populations can be held in check by allowing births out
of zero population.



Birth-death master equation: stationary state [nln17]

Master equation:
d

dt
P (n, t) =

∑
m

[
W (n|m)P (m, t)−W (m|n)P (n, t)

]
.

Transition rates: W (m|n) = T+(n)δm,n+1︸ ︷︷ ︸
birth rate

+T−(n)δm,n−1︸ ︷︷ ︸
death rate

.

⇒ d

dt
P (n, t) = T+(n−1)P (n−1, t)+T−(n+1)P (n+1, t)−

[
T+(n)+T−(n)

]
P (n, t).

Stationary state: P (n,∞) = Ps(n).

Detailed-balance condition: T−(n)Ps(n) = T+(n−1)Ps(n−1), n = 0, 1, 2, . . .

Recurrence relation: Ps(n) =
T+(n− 1)

T−(n)
Ps(n− 1).

Prerequisites:

• T−(0) = 0 (no further deaths at zero population),

• T+(0) > 0 (spontaneous birth from nothing must be permitted if death
of last individual is permitted).

Solution: Ps(n) = Ps(0)
n∏

m=1

T+(m− 1)

T−(m)
.

Probability of zero population, Ps(0), determined by normalization condition:

∞∑
n=0

Ps(n) = 1.

Condition for extreme values (e.g. peak position) in Ps(n):

T+(n− 1) = T−(n).
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