
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Electrical, Computer, and Biomedical 
Engineering Faculty Publications 

Department of Electrical, Computer, and 
Biomedical Engineering 

1-2014 

Senior Project Design of a Two Meter Autonomous Sailboat Senior Project Design of a Two Meter Autonomous Sailboat 

Ben Williamsz 

Julia Kane 

Richard J. Hartnett 

Peter F. Swaszek 
University of Rhode Island, swaszek@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/ele_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Williamsz, B., Kane, J., Hartnett, R.J., Swaszek, P.F., "Senior Project Design of a Two Meter Autonomous 
Sailboat," Proceedings of the 2014 International Technical Meeting of The Institute of Navigation, San 
Diego, California, January 2014, pp. 594-600. 

Available at: https://www.ion.org/publications/abstract.cfm?articleID=11530 

This Conference Proceeding is brought to you by the University of Rhode Island. It has been accepted for inclusion 
in Electrical, Computer, and Biomedical Engineering Faculty Publications by an authorized administrator of 
DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to 
reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/ele_facpubs
https://digitalcommons.uri.edu/ele_facpubs
https://digitalcommons.uri.edu/ele
https://digitalcommons.uri.edu/ele
https://digitalcommons.uri.edu/ele_facpubs?utm_source=digitalcommons.uri.edu%2Fele_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.ion.org/publications/abstract.cfm?articleID=11530
mailto:digitalcommons-group@uri.edu


Senior Project Design of a Two Meter Autonomous Sailboat Senior Project Design of a Two Meter Autonomous Sailboat 

The University of Rhode Island Faculty have made this article openly available. The University of Rhode Island Faculty have made this article openly available. 
Please let us knowPlease let us know  how Open Access to this research benefits you. how Open Access to this research benefits you. 

This is a pre-publication author manuscript of the final, published article. 

Terms of Use 
This article is made available under the terms and conditions applicable towards Open Access Policy 
Articles, as set forth in our Terms of Use. 

This conference proceeding is available at DigitalCommons@URI: https://digitalcommons.uri.edu/
ele_facpubs/6 

http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/oa_policy_terms.html
https://digitalcommons.uri.edu/ele_facpubs/6
https://digitalcommons.uri.edu/ele_facpubs/6


Senior Project Design of a Two Meter  
Autonomous Sailboat 

 
Ben Williamsz, U.S. Coast Guard Academy 

Julia Kane, U.S. Coast Guard Academy  
Richard J. Hartnett, U.S. Coast Guard Academy 

Peter F. Swaszek, University of Rhode Island  
 

 
 
 
BIOGRAPHIES  
 
Ben Williamsz is a 2013 graduate of the U.S. Coast Guard 
Academy, and majored in Electrical Engineering.  He is 
currently an Ensign in the U.S. Coast Guard, serving 
aboard USCGC Harriet Lane in Portsmouth, VA.    

Julia Kane is a 2013 graduate of the U.S. Coast Guard 
Academy, and majored in Electrical Engineering.  ENS 
Kane received the ION sponsored student award for best 
navigation-related senior thesis, which documented the 
project efforts that ENS Williamsz and ENS Kane 
pursued together in the autonomous sailboat project.  She 
is currently serving aboard USCGC Kikui in Honolulu, 
HI.   

Richard J. Hartnett is a Professor in Electrical and 
Computer Engineering at the U.S. Coast Guard Academy 
in New London, CT, having retired as an O-6 from the 
USCG in the summer of 2009.  He received his BSEE 
degree from the U.S. Coast Guard Academy, the MSEE 
degree from Purdue University, and his Ph.D. in EE from 
the University of Rhode Island.  His research interests 
include efficient digital filtering methods, improved 
receiver signal processing techniques for electronic 
navigation systems, and autonomous vehicle design. 

Peter F. Swaszek is a Professor in the Department of 
Electrical, Computer, and Biomedical Engineering at the 
University of Rhode Island. His research interests are in 
statistical signal processing with a focus on digital 
communications and electronic navigation systems. He 
spent the 2007-08 academic year on sabbatical at the U.S. 
Coast Guard Academy working on a variety of RF 
navigation systems. 

ABSTRACT  
 
Here we describe an Electrical Engineering senior design 
project that was performed at the U.S. Coast Guard 
Academy (USCGA) in New London, CT, during the 
2012-2013 academic year.  The objective of this project 

was to design and prototype a fully autonomous sailboat 
capable of competing in the annual SailBot competition in 
the 2-meter class.  SailBot is a North American 
competition for robotic sailboats, and competition is held 
at the 1-meter, 2-meter, and “open class” (up to 4-meters 
in length).  While competition includes manual as well as 
autonomous events, our primary focus this year has been 
to design a vessel that is capable of autonomous 
navigation around a race course.  A secondary focus (also 
useful for testing) has been to include capability for 
manual navigation and sail trim.  The system employs 
MatlabTM  scripts, an Airmar weather sensor, and various 
servos (rudder and sail), to perform autonomous (or 
manual) navigation to a given GPS waypoint. This project 
encompasses all aspects of the engineering design 
process, from physically altering the platform to 
designing and testing a digital rudder controller.  This 
year's two-person team focused on adding autonomous 
functionality and robust controller design, while 
increasing the both hardware and software reliability.   

 

INTRODUCTION 
 

The SailBot project began several years ago as a joint 
effort between several Naval Architecture/Marine 
Engineering students and several Electrical Engineering 
students at the U.S. Coast Guard Academy.  Initial project 
requirements were to perform a complete design of a 2-
meter vessel that could be controlled (both rudder and sail 
trim) via radio control, and sail reliably for a period of 
several hours.  Since that time, USCGA’s SailBot has 
evolved to be a sleek 2-meter custom hull, constructed 
with carbon fiber over a foam core.  The sail plan is that 
of a traditional sloop-rig with a panel-cut Mylar-over-
Kevlar main sail, and a self-tacking jib on a carbon fiber 
mast.   

 
This year we focused on system identification and 
autonomous controller design, such that the vessel is now 
capable of fully autonomous sailing over a desired series 
of waypoints, over a 3km race course in open water.  In 

Proc. ION ITM, San Diego CA, Jan. 2014



addition, the vessel sends telemetry data while underway, 
so monitoring of navigation and controller performance is 
relatively easy.  Finally, manual control can be invoked at 
any point by toggling one switch on an RC controller.   

 
The sails and rudder for SailBot are actuated by two 
separate servos that are controlled via MatlabTM scripts 
running on a portable computer inside the 2-meter vessel.  
Data such as vessel heading, relative and true wind 
velocities, and GPS/WAAS positional information are 
provided by a single onboard sensor (Airmar PB200), and 
this NMEA-0183 data is transmitted to our onboard 
portable computer (and put into a MySQL database), for 
use by the sailing tactics algorithm, the sail trim algo-
rithm, and the proportional/integral controller for the 
rudder.  All data acquisition, control, and sailing tactics 
algorithms run at a 10Hz sampling rate.   

 
In addition to a technical description of USCGA’s SailBot 
vessel, we describe the process for system identification 
of the discrete-time step invariant equivalent transfer 
function of USCGA’s SailBot, and we describe the 
resulting transfer function (of rudder input to rate of turn 
output).  We present SimulinkTM simulations of the 
platform, and proportional/integral (PI) rudder controller 
performance.  For the presentation itself, we show video 
clips of the vessel in action, in various wind conditions, 
with heading and sail control being performed 
autonomously.  We also discuss future directions, 
including controller adaptation in varying wind conditions 
and sea states, plus sensor integration employing Kalman 
filters. 

DESIGN REQUIREMENTS AND CONSTRAINTS 
 

Design requirements for each class of SailBot are 
delineated in the SailBot competition guidelines. These 
requirements are broken down into two categories: the 
physical requirements for the boat, and the performance 
requirements for the competition.  
 
The physical requirements restrict the dimensions of the 
competing vessels. For the 2-meter class, the waterline 
length must not exceed 2 meters, the beam must not 
exceed 3 meters, and the draft must not exceed 1.5 meters. 
Additionally, the total height of the vessel may not exceed 
5 meters.  USCGA’s SailBot fits well within these 
dimensions. 

The competition itself is divided into four challenges: fleet 
racing, autonomous racing, station keeping and endurance 
racing.  In order to compete successfully, a vessel must be 
able to navigate all of these challenges under full 
autonomous mode (except during the fleet racing).  Point 
penalties are awarded for taking the vessel out of 
autonomous mode. From these individual challenges, our 
specific design requirements were:  

 The vessel must navigate to a given set of 
pre-defined GPS waypoints. 

 The vessel must, if necessary, tack and jibe 
to reach these waypoints. 

 The vessel must be able to navigate under 
remote control at any time. 

 The vessel must have enough endurance and 
watertight integrity to finish a 3km race in 
open water. 

 The vessel must send and receive telemetry 
data while underway. 

In addition to the above requirements, we built on previous 
iterations of SailBot.  Design decisions from these 
previous iterations persist in the current version of Sailbot. 

 
DESIGN APPROACH:  PHYSICAL PLATFORM 
AND SOFTWARE 

 
Although the design requirements of the SailBot 
competition are specific, they leave room for creativity in 
implementation.  We prioritized the performance 
characteristics that the SailBot competition requires in 
order to make numerous design decisions about the 
physical platform and the software.  
 
Airmar Sensor:  The previous iteration of SailBot had the 
Airmar weather sensor (Figure 1) mounted on the deck 
directly underneath the main sail, as an improvement over 
mounting on top of the mast.  Unfortunately the wind data 
was inaccurate due to the close proximity to the turbulent 
water, and due to the redirected laminar air flow from the 
sails.   

 
Figure 1 – Airmar PB-200 GPS/WAAS weather sensor. 

 
We determined that leaving the Airmar weather sensor 
mounted on the deck was not an acceptable option, so we 
considered three options:  shifting back to a mast-top 
mount, mounting it on a small mast on the bow of the 
boat, and mounting it on a small mast on the stern of the 
boat.  Returning the sensor to mast-top location was a 
concern because of its weight and the potential negative 
impact to the boat’s dynamic stability.  Adding weight so 
high would cause a large moment when the boat is heeled 
over.  Mounting the sensor on a small mast on the bow of 

Proc. ION ITM, San Diego CA, Jan. 2014



the boat proved unsuitable as well.  There is not a lot of 
reserve buoyancy in the bow, so when SailBot is sailing 
downwind in a breeze of over 10 knots, it tends to plow 
through the waves and submerge the bow.  Adding more 
weight would only worsen this problem.   
 
In the final design of SailBot, the Airmar sensor is located 
on a small mast on the stern of the vessel (Figure 2).  The 
sensor placement is high enough above the waterline, and 
far enough away from the sails to provide reasonably 
accurate wind speed/direction data.  This location also 
provides better GPS satellite constellation visibility. 
 

 
Figure 2 – Redesigned Airmar sensor support. 

 
Sheeting system:  Earlier versions of our SailBot vessel 
(up to Spring 2012) used a single pulley system to adjust 
both the main sail and the jib.  This was inadequate 
because the layout did not allow SailBot to let its sails out 
fully, significantly reducing the number possible points of 
sail.  In order to use the full range of sail trims, we 
redesigned the deck layout to more closely resemble a 
traditional sailboat, as shown in Figure 3. 
 

 
Figure 3 - SailBot deck layout (top view). 

 
Using the new layout, SailBot is able to use every sail 
trim, from close-hauled to a downwind run.  
 
One final problem remained, however, in that the sheets 
would frequently foul around the sail servo sheave, 
particularly when the sails were luffing and the sheets 
were not under tension.  In order to solve this problem, 
we designed a new sail servo sheave with a much larger 
diameter and deeper grooves so the sheets no longer foul 
themselves around the sheave.  We “printed” several 
copies of our new design from our 3-d printer, and this 
new design worked well.   

 
Hatch problems:  One of the primary problems with last 
year’s iteration of SailBot was the lack of watertight 

integrity.  Water easily leaked through the inspection 
porthole covers on the deck, which screwed on and off to 
allow access to the electronics within the hull.  We 
considered just replacing the circular inspection port 
covers, but instead we created our own design and used 
heavy-duty neoprene gasket material and fiberglass to 
seal rectangular holes in the deck.  The covers are easy to 
remove and replace, and they allow easy access to the 
electronics. 
 
Rigging admustments:  During the initial remote control 
tests of SailBot there was no tension on the leech of the 
jib.  When SailBot was sailing anything lower than a 
beam reach, the jib would luff, making it essentially 
useless.  In order to remedy this problem, we considered 
two different types of vang:  a traditional vang, mounted 
to the deck, and an inverted vang, attached to the forestay.  
A traditional, deck-mounted boom vang was not practical 
because there was such little clearance between the jib 
boom and the deck.  Instead SailBot relies on an inverted 
vang, which uses the forestay to push the boom down and 
provide leech tension (Figure 4.)   
 

 
Figure 4 – Inverted vang modification. 

 
Another adjustment that we made to the rigging was a 
removable 25% reef in the main sail.  With the full rig, 
SailBot was significantly overpowered in anything over 
10 knots of breeze.  Now we are able to test SailBot in a 
greater range of weather conditions.   
 
Software (Data Storage):  One of the essential 
components of SailBot’s software is a central data 
repository.  While there were several different options for 
storing the necessary data, this year we chose to use a 
MySQL database (as opposed to flat text file structures or 
the Matlab workspace environment itself), in order to 
allow multiple scripts to access the data simultaneously.  
Using a database structure allowed multiple processes to 
access data at once and provided for easy sorting and 
analysis.  We chose MySQL specifically because it is 

Proc. ION ITM, San Diego CA, Jan. 2014



open-source software and the MySQL Workbench 
environment offers a simple and easily understandable 
user interface.  
 
Software (Modularity):  For a marine system, SailBot is a 
reasonably high dynamic platform, and requires a 
reasonably high sampling rate in order to do an adequate 
job of data acquisition to support digital control of 
heading and sail trim.  In order to improve sampling rate, 
we chose to separate SailBot’s software functionality into 
three distinct modules (as opposed to using a single 
sequential Matlab script).  SailBot relies on Windows 
XP’s thread management to divide processor power and 
execute all three code modules simultaneously (Figure 5), 
and we are now able to run the data acquisition and 
control algorithms at a 10Hz sampling rate.  This sample 
rate has proved to be sufficient for our design.   
 

Current Software
• Windows XP SP3

• 3 Matlab scripts running 
concurrently

• Data Acquisition
• Navigation Algorithm
• Rudder/Sail Trim Controller

• MySQL Database
• High throughput (10Hz)
• Universal access
• Hosted on onboard computer
• Accessible to shore-side 
computer via 802.11 network

 
Figure 5 – Software description summary. 

 
Software (Rudder Controller Design):   
 
Our first step in designing SailBot’s rudder controller was 
to perform a “system identification,” in order to 
characterize the open-loop dynamics of the SailBot 
platform.  Our intent was to obtain a discrete-time step 
invariant equivalent of the open-loop continuous time 
SailBot transfer function, with rudder angle as input, and 
rate of turn as output.  Here the original idea was to 
provide SailBot with random rudder commands, measure 
the actual rudder angle, and measure rate of turn at a 
10Hz rate, under sail.  In theory that idea would work, 
however we felt that sailing in random directions at 
random points of sail would produce inconsistent results.  
Instead, we chose to implement a simple proportional 
controller, with proportionality constant of Kp=0.4, and 
identify the open-loop system dynamics from within a 
closed loop system (Figure 6), which produced data 
shown in Figure 7.  This indirect method of measuring 
rate of turn for a given rudder command worked very 
well, and we used least-squares approximation methods to 
obtain a transfer function (rudder angle input to heading 

output).  Using methods from [1], the final step invariant 
equivalent transfer function (rudder angle input to 
heading output) for the SailBot platform was identified to 
be  
 

21

4321

9921.09921.11

0068.00021.00102.00169.00118.0
)( 







zz

zzzz
zH

 

Rudder Controller and Description of 
System Identification

Proportional Controller KP = 0.4

 
Figure 6 – Simple proportional controller used for system 

identification. 
 

 
Figure 7 – Data used for system identification. 

 
By running SimulinkTM simulations with the transfer 
function above, we noticed that there was steady state 
error, and overshoot of less than 10 percent.  We decided 
that a proportional-integral (PI) controller would be most 
suitable for SailBot, to eliminate the problem of steady-
state heading error.  Using root-locus techniques and 
SimulinkTM simulations, we arrived at final values for 
proportional (Kp) and integral (Ki) coefficients of 0.5 and 
0.002, respectively, for our PI heading controller.  This 
controller provided zero steady-state heading error, and 
overshoot of less than 10 percent. 
 
Software (Sail Controller Design):  In the rudder 
controller it was relatively simple to implement a closed-
loop controller since it is possible to get feedback in the 
form of heading error.  With the sail controller, however, 

18:02:52 18:05:45 18:08:38 18:11:31 18:14:24 18:17:16 18:20:09
0

100

200

300

400

 

 

Heading

Desired Course

Proc. ION ITM, San Diego CA, Jan. 2014



we had no way to get feedback relative to boom position, 
so we chose to implement an open-loop controller with 
four discrete states.  SailBot’s sail controller algorithm 
determines what its sail trim should be by comparing the 
heading to the true wind direction.  One of four sail trim 
states is then chosen, and the software then sends the 
appropriate command to the sail winch servo. 
 
Software (Navigation Algorithm):  In order for SailBot to 
compete in the autonomous portions of the competition, it 
needs to be able to sail autonomously to a selected 
waypoint (latitude/longitude).  Our navigation algorithm 
uses true wind direction and current GPS location to 
determine the optimal course to a waypoint, taking into 
account the fact that no sailing vessel is capable of sailing 
directly into the wind.  In designing this algorithm, we 
used the increment and iterate method, beginning with a 
very simple algorithm, testing it, and then adding 
increased functionality.   
 
Our first step was to make sure that SailBot could 
compare its current location with the waypoint 
coordinates and determine the correct course on a beam 
reach.  Once we were satisfied that our main navigation 
algorithm was providing the correct desired course to the 
waypoint to the rudder controller, we moved on to the 
sailing tactics.   
 
SailBot cannot sail within 55º of the true wind direction.  
Although it is capable of trimming the sails to sail directly 
downwind, we elected to not sail within 30º of straight 
downwind because we were worried that small shifts in 
breeze could cause SailBot to tack unintentionally.  When 
the course directly to the waypoint was too close to the 
wind direction or too close to a downwind run, the logic 
in SailBot’s navigation algorithm determines when it is 
appropriate to tack or jibe.  It does this by comparing the 
course to the waypoint with the wind direction.  
Whenever the course to the waypoint is not within 55º of 
the wind direction or within 30º of a downwind run (the 
“go zone”), SailBot will steer directly to the waypoint.  
When the course is within the previously stated angles, 
Sailbot will simply continue on the same tack, sailing at 
the closest angle possible that does not put it into the “no-
go zone.”  As soon as it can sail directly to the waypoint 
on the opposite tack, SailBot will either execute a tack or 
a jibe.  We tested SailBot multiple times, forcing it to sail 
at all points of sail, to pre-determined waypoints under 
autonomous control, and the algorithms performed 
flawlessly.   
  
RESULTS 
 
Our final SailBot vessel design is shown in Figure 8.  
Discussion of results will be described in separate 
sections on the rudder controller, sail controller, and the 
navigation computation algorithm.   

 
Figure 8 – SailBot final design. 

 
Rudder Controller:  Our final rudder controller is a 
proportional-integral design as described in the design 
process.  The final version of the controller uses a 
proportionality coefficient of .5 and an integral coefficient 
of .002.  Figure 9 shows actual results after rounding a 
waypoint, showing the actual heading response to a 
desired course change of roughly 170 degrees.  Note that 
we were able to eliminate steady state error, and there are 
no oscillations in the controller response.  

Desired course

Actual heading

Figure 9 – SailBot rudder controller performance showing 
response to a desired course change of 170 deg. 

 

Proc. ION ITM, San Diego CA, Jan. 2014



Sail Controller:  SailBot’s sail controller is a basic open-
loop system that resolves relative wind direction into one 
of four discrete sail trims, corresponding to each point of 
sail.  Recognizing that we do not want to trim the sail 
based on noisy measurements of the true wind, the sail 
trim algorithm uses a low pass filtered “true wind” 
(Figure 10) as the single input.  This simple algorithm 
provides a reliable way of trimming the sail for up and 
downwind courses, and while it is likely a suboptimal 
algorithm, it performs flawlessly and allows for fully 
autonomous sailing.   

 Figure 10 – SailBot’s true wind and low pass filtered 
wind measurements. 

 
Navigation Algorithm:  Sailbot’s navigation algorithm is a 
basic “bearing-to-waypoint” optimized solution. It 
operates by performing real-time calculations of the 
vessel’s current bearing to the desired GPS waypoint, and 
matching the desired heading to it as closely as possible.  
 
SailBot’s tacking and jibing angles are pre-set to 55 and 
150 degrees off of the true wind direction, respectively. 
When the bearing to the waypoint falls within these 
angles (i.e., when SailBot cannot sail directly to the 
waypoint), the navigation algorithm keeps SailBot either 
as close to or as far from the wind as possible until the 
waypoint bearing is outside the tacking or jibing angle on 
the opposite tack. Figure 11 shows the results of an 
upwind test of the navigation algorithm (winds out of 177 
degrees true), and demonstrates SailBot’s ability to tack 
itself upwind to a waypoint.  At the same time, Figure 11 
also highlights a limitation of not calculating 
environmental state variables such as set and drift (vector 
velocity for current), since the final leg towards the 
“finish” point is bowed toward the south, presumably 
because of water current. 
 
Despite the fact that SailBot will reliably navigate to any 
waypoint, the bearing-to-waypoint optimization that we 
implemented is not optimal. 
 

-72.0907 -72.0906 -72.0905 -72.0904 -72.0903 -72.0902 -72.0901 -72.09
41.3738

41.3739

41.374

41.3741

41.3742

41.3743

41.3744

41.3745

41.3746
GPS locations (North Up)

Longitude (West)

La
tit

ud
e 

(N
)

W
in

d

Figure 11 - Autonomous navigation upwind. 
 

FUTURE WORK 

Software:  Although SailBot is now fully capable of 
autonomous navigation, there is considerable room for 
further development and optimization.  The primary focus 
will be to increase the efficiency and robustness of the 
autonomous navigation algorithm.   
 
More specifically, in order to avoid hitting marks on the 
challenge course, a function should be implemented to 
automatically navigate SailBot around marks rather than 
navigating directly to them.  One suggestion for solving 
this problem is to automatically navigate to imaginary 
GPS waypoints a given radius from the desired waypoint.   
 
In addition, SailBot’s current navigation algorithm does 
not calculate various state variables that are essential for 
optimizing a route to a given waypoint. Performing a 
mathematical estimate of state variables such as current, 
crab angle, and rudder offset will help future versions of 
SailBot sail more efficiently. 
 
We also recognize that collision detection and avoidance 
are important features for any autonomous vehicle, and it 
would be desirable to load applicable chart data into the 
navigation algorithm to avoid marked obstacles and shoal 
water.   
 
Hardware:  Physical improvements can be made to 
SailBot to make it both faster and more controllable.  One 
such change would be to increase the size and efficiency 
of the rudder.  By decreasing the chord length and 
increasing the overall draft of the rudder, SailBot’s 
control algorithms could more reliably sail a given 
heading.  In addition, this new rudder would improve the 
sailing characteristics in high-wind conditions.  
 

12:05:45 12:06:28 12:07:12 12:07:55 12:08:38 12:09:21 12:10:04 12:10:48 12:11:31
100

150

200

250

300

350

 

 

Filtered Wind

True Wind

Proc. ION ITM, San Diego CA, Jan. 2014



CONCLUSIONS 

SailBot is now a robust platform, capable of completing a 
competition challenge.  Valuable lessons were learned 
about real-world, real-time digital control of a continuous 
time system.   
 
ACKNOWLEDGMENTS 
 
We would like to thank all EE faculty at USCGA for their 
dedicated support in this project.  We would also like to 
thank ETCS Ken McKinley, who helped us overcome 
multiple challenges with our onboard electronics.  This 
project would also not have been possible without the 
support of Mr. Jack Neades, the offshore sailing coach at 
the U.S. Coast Guard Academy.  Mr. Neades spent 
countless hours of his personal time helping us to improve 
SailBot’s physical platform, and giving us advice on how 
to improve the performance of the vessel.  Thanks also to 
the entire waterfront staff for allowing us to use their 
facilities to work on and test our project, and for their help 
and expertise.   
 
DISCLAIMER AND NOTE 
 
The views expressed herein are those of the authors and 
are not to be construed as official or reflecting the views 
of the U.S. Coast Guard or Department of Homeland 
Security. 
 
REFERENCES 
 
[1] Phillips, C. and Nagle, T., Digital Control System 

Analysis and Design, 3rd edition, Prentice Hall, Inc., 
New York, 1995.   

Proc. ION ITM, San Diego CA, Jan. 2014


	Senior Project Design of a Two Meter Autonomous Sailboat
	Citation/Publisher Attribution

	Senior Project Design of a Two Meter Autonomous Sailboat
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	Microsoft Word - ION NTM 2014-SAILBOT_final.docx

