
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Past Departments Faculty Publications (CEGR) College of Engineering 

2001 

Clustering of Points Randomly Distributed in Clustering of Points Randomly Distributed in n-Dimensional Space -Dimensional Space 

G. Sadasiv 
University of Rhode Island, sadasiv@ele.uri.edu 

Yirong Meng 

Follow this and additional works at: https://digitalcommons.uri.edu/egr_past_depts_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Sadasiv, G., & Meng, Y. (2001). Clustering of points randomly distributed in n-dimensional space. Physical 
Review E, 63(2), 027101. doi: 10.1103/PhysRevE.63.027101 
Available at: http://dx.doi.org/10.1103/PhysRevE.63.027101 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Past 
Departments Faculty Publications (CEGR) by an authorized administrator of DigitalCommons@URI. For more 
information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact 
the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/egr_past_depts_facpubs
https://digitalcommons.uri.edu/egr
https://digitalcommons.uri.edu/egr_past_depts_facpubs?utm_source=digitalcommons.uri.edu%2Fegr_past_depts_facpubs%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevE.63.027101
mailto:digitalcommons-group@uri.edu


Clustering of Points Randomly Distributed in Clustering of Points Randomly Distributed in n-Dimensional Space -Dimensional Space 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/egr_past_depts_facpubs/3 

https://digitalcommons.uri.edu/egr_past_depts_facpubs/3


Clustering of points randomly distributed in n-dimensional space

G. Sadasiv and Yirong Meng
Department of Electrical Engineering, University of Rhode Island, Kingston, Rhode Island 02881

~Received 29 August 2000; published 9 January 2001!

We consider clusters formed by points randomly distributed in space, each point being connected to its
nearest neighbor or to its nearest and next nearest neighbors. The size distribution of such clusters in
n-dimensional space is presented.

DOI: 10.1103/PhysRevE.63.027101 PACS number~s!: 64.60.Ak

I. INTRODUCTION

The formation of clusters and the resulting cluster size
distribution is of great interest in studying the processes of
aggregation, flocculation, and polymerization. Models of
cluster formation find applications in theoretical and experi-
mental research in many fields in physics, chemistry, biol-
ogy, and astronomy. They are also of importance in practical
applications as in the production of thin films for electronics
@1#. In studying the statistical mechanics of phase transitions
@2#, or percolation problems@3#, the starting model uses
nearest neighbor interactions between entities placed on a
lattice. In this connection, it is of interest to examine aggre-
gates formed by nearest neighbor connections of randomly
distributed points.

In this paper we present the results of such a study. We
consider dimensionless points randomly distributed in~es-
sentially infinite! space, i.e., the probability that a point is to
be found in an infinitesimal volumedv is proportional todv.
In clusters of type I~Fig. 1!, every point is considered as
connected to its nearest neighbor. In clusters of type II~Fig.
2!, every point is considered to be connected to its nearest
neighbor and its next nearest neighbor. All points that are
connected form a cluster. The number of points in a cluster is
the size of the cluster. We are interested in the cluster size
distribution inn-dimensional space.

An analytical result can be obtained for points in one-
dimensional space, and is given in the Appendix. For higher
dimensions we were unable to obtain an analytical solution
but we did computer simulations to find the cluster size dis-
tribution.

II. SIMULATION PROGRAM

In our simulation, each coordinate of a point in
n-dimensional space is obtained from the default random
number generator in aC11 library. The number of sample
points along one axis is chosen to be much less than the
range of random numbers. The probability of a point having
two neighbors at the same distance is negligible.

In order to reduce the calculations for finding the nearest
neighbor of any point, the collection is blocked into a square
lattice, the size of the unit cell being appropriately chosen so
as to have a sufficient number of points in each cell. In most
cases the block size was chosen to give an average of about
20 points per block. In this way only the ‘‘local area’’
around a point has to be searched to find its nearest neighbor.

Since we work with a finite number of points, and the
boundary should not influence the calculation, we used peri-
odic boundary conditions in our simulation to extend the
space. For points belonging to the blocks on the boundary,
we can extend the ‘‘local area’’ to the blocks on the opposite
edge. With this assumption, inn-dimensional space, if the
coordinates of two points are (a1 ,a2 , . . . ,an) and
(b1 ,b2 , . . . ,bn), the distance between these two points is

d5A(
i 51

n

$min@ uai2bi u,~12uai2bi u!#%2. ~1!

III. SIMULATION RESULTS FOR TYPE I CLUSTERS

The distribution of clusters of different sizes in various
dimensions is summarized in Table I. The data are obtained
by running the program 1000 times with 1000 sample points
per run for clusters in one dimension, 20 times with 100 000
sample points per run for clusters in two dimensions, 30
times with 100 000 sample points per run for clusters in three
dimensions, and 10 times with 200 000 sample points per run
for clusters in four dimensions.

The ratios of the number of points which belong to a
given size cluster to the total number of points are shown in
Table II. The results are also shown in Fig. 3~a! and Fig.
3~b!. The following characteristics may be noted.~1! In any
dimension, the distribution has maximum value for clusters
of size 2 and decreases rapidly. The rate of decrease is
greater than exponential but less than Gaussian@1,b,2 in
Eq. ~2!#. ~2! With increasing dimension, the probability for
smaller clusters decreases and for larger clusters increases.
~3! In all cases, the size 3 clusters have more points than any
other size clusters@shown in Fig. 3~b!#.

By applying linear regression analysis to the results
shown above, we found that the cluster size distributionf (z)
in n dimensions is given approximately by

f ~z!5A exp$2@~z22!/k#b%, ~2!

wherez52,3,4, . . . is thesize of the cluster, andA,k,b are
parameters which have different values in different dimen-
sions. The best fitting parameter values are shown in Table
III.
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IV. SIMULATION RESULTS FOR TYPE II CLUSTERS

In two dimensions, bigger clusters are formed. But these
clusters are still isolated islands, as shown in Fig. 2. When
the simulation was run 10 times with 10 000 points per run,
the results were roughly as follows for each run: there were
about 100 clusters of three points, decreasing to 12 clusters
of 10 points, then two or three clusters in the range 10 to 40
points per cluster. The rest of the points were scattered in
various sized single clusters ranging all the way to clusters
with a few hundred points.

There is a striking change, reminiscent of a phase transi-
tion, when going to higher dimensions. The result of four
simulations with 1 000 000 sample points in three dimen-
sions is as follows. With the exception of a few small iso-
lated islands, the points collapse into one large cluster that
contains more than 92% of all the points. The next largest
cluster contains less than 0.01% of the total number of
points.

This trend is more marked on going to four dimensions.

The result of one simulation with 100 000 points shows more
than 97 000 points in one large cluster, with the next largest
cluster having fewer than 40 points.

We obtain the very interesting result that, for random
points in three or higher dimensions, if a point is connected
to it’s nearest neighbor and next nearest neighbor, almost all
the points in space are connected together.

APPENDIX: THEORETICAL ANALYSIS FOR CLUSTERS
OF TYPE I IN ONE DIMENSION

In one dimension, we can put all points in order to form a
sequence. To find the nearest neighbor of a point, only two
distances need to be compared, the distance to its left neigh-
bor (r le f t) and the distance to its right neighbor (r right). We
denote this point by ‘‘1’’ if (r le f t,r right) or by ‘‘0’’ if
(r le f t.r right). Then, a sizeN cluster can be expressed by the
sequence shown in Fig. 4, which includesm continuous ‘‘0’’

FIG. 1. Cluster of type I in two dimensions, 1000 sample points.
Every point is connected to its nearest neighbor to form clusters

FIG. 2. Clusters of type II in two dimensions, 1000 sample
points. Every point is connected to its nearest and next nearest
neighbor to form clusters.

TABLE I. The ratios of numbers of given size clusters to the total number of clusters for type I clusters
in one to four dimension~s!. The values are the averages of the results of several runs. The mean square
deviations referred to the average are also calculated.

Size 1D 2D 3D 4D

2 0.399566.8% 0.368560.66% 0.350160.55% 0.336860.58%
3 0.333867.9% 0.302060.63% 0.284060.92% 0.273360.58%
4 0.1711612% 0.177061.2% 0.176861.3% 0.174860.51%
5 0.0668621% 0.087761.7% 0.096761.6% 0.101561.6%
6 0.0211638% 0.039262.5% 0.049062.2% 0.055661.9%
7 0.0059673% 0.016264.8% 0.023763.0% 0.029262.9%
8 0.00136150% 0.006168.4% 0.011064.9% 0.014961.8%
9 0.00036310% 0.0021615% 0.005069.0% 0.007263.3%
10 , 0.0001 0.0008621% 0.0021613% 0.003462.7%
11 0.0002625% 0.0009617% 0.001768.7%
12 0.0001661% 0.0003634% 0.0008611%
13 , 0.0001 0.0002641% 0.0003616%
14 0.0001680% 0.0002629%
15 , 0.0001 0.0001670%
16 , 0.0001
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points followed byN2m continuous ‘‘1’’ points (m is an
integer in the range 1 toN21). The boundaries of the cluster
exist between ‘‘1 0.’’

N13 distances should be considered to calculate the rela-
tive probability of the sequence shown in Fig. 4. The rela-
tions between them are

r 0,r 1 , r 1.r 2.•••.r m.r m11 , r m11,r m12

3,•••,r N,r N11 , r N11.r N12 , 0,r i,`.

~A1!

If Eq. ~A1! is satisfied and if the distance distribution of
nearest neighbors isf (r ), the relative probability of a sizeN
cluster withm ‘‘0’’ points can be expressed by

Pm
N5E

0

`

f ~r 0!dr0E
r 0

`

f ~r 1!dr1•••E
r N

`

f ~r N11!drN11

3E
0

r N11
f ~r N121!drN12 . ~A2!

Then the relative probability of a sizeN cluster is

Pr~N!5 (
m51

N21

Pm
N . ~A3!

From the definition of cluster type I,f (r ) satisfies the
classical distance distribution of nearest neighbors@4#. In one
dimension,

f ~r !52r exp~22rr ! ~A4!

wherer is the average density. Inserting Eq.~A4! into Eq.
~A2! and settingx52rr , we get

Pm
N1Pm21

N 5Cm

N2m11

~N2m12!!
, ~A5!

FIG. 3. ~a! Size distribution of type I clusters in 1–4 dimen-
sion~s!. ~b! Point distribution of type I clusters in 1–4 dimension~s!.
The conditions of the simulation are the following: run program
1000 times with 1000 points per run in one dimension, 20 times
with 100 000 points per run in two dimensions, 30 times with
100 000 points per run in three dimensions, and 10 times with
200 000 points per run in four dimensions. FIG. 4. Cluster of type I in one dimension.

TABLE II. The ratios of the numbers of points in different size clusters to the total number of points for
type I clusters.

Size 1D 2D 3D 4D

2 0.2666 0.2291 0.2075 0.1928
3 0.3338 0.2816 0.2525 0.2347
4 0.2279 0.2200 0.2096 0.2002
5 0.1111 0.1363 0.1432 0.1453
6 0.0421 0.0731 0.0871 0.0954
7 0.0137 0.0353 0.0492 0.0585
8 0.0035 0.0151 0.0261 0.0341
9 0.0010 0.0060 0.0134 0.0187
10 0.0001 0.0024 0.0062 0.0099
11 0.0001 0.0007 0.0029 0.0053
12 ,0.0001 0.0003 0.0012 0.0027
13 ,0.0001 0.0006 0.0012
14 0.0002 0.0006
15 0.0001 0.0003
16 ,0.0001 0.0002
17 0.0001

BRIEF REPORTS PHYSICAL REVIEW E 63 027101

027101-3



Cm5E
0

`

exp~2x0!dx0E
x0

`

exp~2x1!dx1E
0

x1

3exp~2x2!dx2•••E
0

xm21
exp~2xm!dxm

5
m

~m11!!
. ~A6!

WhenN is odd,

Pr~N!5 (
m51

N21

Pm
N5 (

m52,4, . . . ,N21

N21

Cm

N2m11

~N2m12!!

5 (
m52,4, . . . ,N21

N21 m

~m11!!

N2m11

~N2m12!!
. ~A7!

WhenN is even,

Pr~N!5 (
m51

N21

Pm
N5 (

m51,3, . . . ,N21

N21

Cm

N2m11

~N2m12!!
2P0

N

5 (
m51,3, . . . ,N21

N21 m

~m11!!

N2m11

~N2m12!!
1

N12

~N13!!
.

~A8!

The absolute probability of a sizeN cluster is

Pabsolute~N!5
Pr~N!

(
N52

`

Pr~N!

. ~A9!

The result is shown in Table IV.
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TABLE III. Best fitting formula for size distribution of type I
clusters.

Dimension Cluster size distribution functionf (z)

1 0.3995 expF2Sz22

2.16D
1.69G

2 0.3685 expF2Sz22

2.36D
1.49G

3 0.3501 expF2Sz22

2.49D
1.39G

4 0.3368 expF2Sz22

2.48D
1.28G

TABLE IV. Size distribution of type I clusters in one dimension
from expression~A9!.

Cluster size Theoretical probability

2 0.40000000
3 0.33333333
4 0.17142857
5 0.06666667
6 0.02116402
7 0.00571429
8 0.00134680
9 0.00028219

10 0.00005328
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