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PHY204 Lecture 5 [rln5]

Electric Flux: Application (4)

Consider a positive point charge Q at the center of a spherical surface of radius R.
Calculate the electric flux through the surface.

• ~E is directed radially outward. Hence ~E is parallel to d~A everywhere on the surface.
• ~E has the same magnitude, E = kQ/R2, everywhere on the surface.
• The area of the spherical surface is A = 4πR2.

• Hence the electric flux is ΦE
.
=

∮
~E · d~A = EA = 4πkQ.

• Note that ΦE is independent of R.
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We begin this lecture with one more application of electric flux through a
closed surface. This one is designed to lead right into our next topic.

The electric field ~E of a positive point charge Q is radial in direction, pointing
outward. Its magnitude varies with distance by the inverse-square law.

We position that point charge at the center of a closed spherical surface of
radius R as shown and calculate the electric flux through that surface.

There is no need to divide the surface into tiles because two conditions are
satisfied: (i) The area vector of each tile has the same direction as the local
electric field, namely radially outward, (ii) the field strength is the same
everywhere on the surface.

The electric flux, therefore, is positive and its value is equal to the product of
the area of the spherical surface and the electric-field strength at that radius:

ΦE = AE = (4πR2)

(
kQ

R2

)
= 4πkQ =

Q

ε0
.

The most striking feature of this result is that the flux is independent of the
radius R. When we increase R, the area and the field strength change at
reciprocal rates.

It can be shown, with some additional effort, that the electric flux remains
the same if we position the charge Q elsewhere inside the spherical surface.
However, if the we position Q outside the sphere, then the flux through the
surface is identically zero.
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Gauss’s Law for Electric Field

The net electric flux ΦE through any closed surface is equal to the net charge Qin inside divided by the
permittivity constant ε0:

∮
~E · d~A = 4πkQin =

Qin

ε0
i.e. ΦE =

Qin

ε0
with ε0 = 8.854 × 10−12C2N−1m−2

The closed surface can be real or fictitious. It is called “Gaussian surface”.
The symbol

∮
denotes an integral over a closed surface in this context.

• Gauss’s law is a general relation between
electric charge and electric field.

• In electrostatics: Gauss’s law is equivalent
to Coulomb’s law.

• Gauss’s law is one of four Maxwell’s
equations that govern cause and effect in
electricity and magnetism.
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On the previous page, we have, effectively, discovered a law of nature that
is much more general than the situation might suggest. It is called Gauss’s
law for the electric field.

We have learned how to calculate electric flux through open or closed surfaces.
In the context of Gauss’s law, we are dealing with closed surfaces exclusively
and name them Gaussian surfaces.

Pick a Gaussian surface of any shape or size, real or fictitious, and position
it in a region of electric field. We express the flux through a closed surface
symbolically by the expression,

ΦE
.
=

∮
~E · d ~A.

Gauss’s law states the electric flux through a closed surface only depends on
the net charge inside:

ΦE =
Qin

ε0
.

By net charge we mean that, for example, that a proton and an electron add
up to zero net charge.

Any charges that are positioned outside the surface do produce an electric
field at the surface but their flux contributions through the surface always
add up to zero.

Gauss’s law is very general, as already mentioned. It holds even when charges
are in motion or when there are electric fields generated by means other than
electric charges (a topic to be discussed later).
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Gauss’ Law for Electric Field (Illustration)
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This slide shows an electric dipole, two particles with charges +q and −q
separated some distance from each other. The strength and direction of the
surrounding electric field is indicated by field lines.

Also shown in various shades of color are four closed surfaces, S1, . . . , S4,
here to be employed in the role of Gaussian surfaces.

If we were to calculate the electric flux ΦE through each of these four surfaces,
we would find the value +q/ε0 for S1, −q/ε0 for S2, and zero for S3 and S4.

The point to be emphasized is that we do not have to go through the trouble
of actually performing that calculation, because Gauss’s law gives us all four
answers almost for free.

It is easy enough to see from the general direction of the electric field that
the flux through S1 is positive and the flux through S2 negative, but it takes
a rather elaborate numerical integration to came up with the values ±q/ε0
for S1 and S2 and with zeros for S3 and S4.

Note that what matters in Gauss’s law is the net charge Qin inside. In the
case of S4, the net charge vanishes because Qin = q + (−q) = 0.
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Gaussian surface problem (1)

Two Gaussian surfaces SA and SB are shown in cross section.

Charge q1 is on the inside of SA and SB.

Charge q2 is on the inside of SB only.

The electric fluxes produced by charges q1 and q2 through SA and SB are Φ(A)
E = 5C/ε0 and Φ(B)

E = 3C/ε0.

Find the electric charges q1 and q2.

S
S

q q
1 2

A

B
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Suppose we have two particles with unknown charges q1 and q2 positioned
as shown. Also shown in cross section are two Gaussian surfaces SA and SB.
Surface SA contains particle 1 only. Surface SB contains both particles.

Somebody went through the trouble of measuring the electric flux through
each surface, which turned out to be positive in both cases.

The fluxes are not expressed in the usual SI unit [Nm2/C], but in the equiv-
alent unit [C/ε0], which has the advantage that it tells us directly what
the charge inside the Gaussian surface is, namely QA = 5C inside SA and
QB = 3C inside SB.

Since q1 is the only charge inside SA we thus conclude that q1 = QA = 5C.
Given that both particles are inside SB we infer that QB = q1+q2. The charge
of the second particle must, therefore, be negative: q2 = 3C− 5C = −2C.
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Gaussian surface problem (2)

The electric fluxes through the Gaussian surfaces SA and SB are Φ(A)
E = 1C/ε0 and Φ(B)

E = 3C/ε0, respectively.

q
1

q2 q
3

S
B

SA

=2C

Find the electric charges q2 and q3.
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In this variation of the same problem, we have three particles and again two
Gaussian surfaces. Each surface contains two particles.

Given is the charge of the first particles, q1 = 2C, and the electric flux
through both surfaces, again in units which tell us directly the net charge
each surface contains: QA = 1C inside SA and QB = 3C inside SB.

What are the values of the charges q2 and q3? We begin with surface SA,
which contain only one unknown charge. Gauss’s law tells us that QA =
q1 + q2, from which we conclude that q2 = −1C.

Gauss’s law also tells us that QB = q2 + q3 Having already determined q2,
we infer that q3 = 4C.
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Gaussian surface problem (4)
Three point charges q1, q2, q3 produce electric fluxes through the three Gaussian surfaces as indicated.

ε0ε0

ε0

1C/
2C/

5C/

q
1

q
2

q
3

(a) Find the net charge Q = q1 + q2 + q3.
(b) Find the individual charges q1, q2, q3.

tsl48

Here the charges q1, q2, q3 of all three particles are unknown. What are their
values if we are given the electric flux through three Gaussian surface that
each contain two particles?

We are now sufficiently experienced that we do no longer need to name the
surfaces. We can tell from what we see that

q1 + q2 = 1C, q1 + q3 = 5C, q2 + q3 = 2C.

We have three linear algebraic equations for three unknown. We can solve
them in many different ways.

Here is one way: subtract the third equation from the second, then add
the result to the first equation. We thus obtain q1 = 2C. Substitution of this
result in to the first and second equations then yields q2 = −1C and q3 = 3C,
respectively.

The result for part (a), which follows from part (b),

Q = 2C− 1C + 3C = 4C,

can also be calculated without first calculating the charges q1, q2, q3 individ-
ually.

We note that each particle is inside two of the three surfaces. If we add the
three fluxes, then, according to Gauss’s law, we are adding the contents of
all three surfaces, which is twice the sum of all three charges. Therefore, we
can write,

(1 + 2 + 5)
C

ε0
=

2(q1 + q2 + q3)

ε0
=

2Q

ε0
⇒ Q = 4C.
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Calculating~E from Gauss’s Law: Strategy
Design the Gaussian surface such that it reflects the symmetry of the problem at hand.

• Use concentric Gaussian spheres in problems with spherically symmetric charge distributions.
The electric field is perpendicular to the Gaussian sphere (~E ‖ d~A).

• Use coaxial Gaussian cylinders in problems with cylindrically symmetric charge distributions.
The electric field is perpendicular to the curved surface (~E ‖ d~A) and parallel to the flat surfaces (~E ⊥ d~A).

• Use Gaussian cylinders with axis perpendicular to planar charge distributions.
The electric field is parallel to the curved surface (~E ⊥ d~A) and perpendicular to the flat surfaces (~E ‖ d~A).

Since the magnitude of the electric field ~E is constant along both curved surfaces, the integral
∮
~E · d~A

reduces to ±EA, where A = 4πr2 (sphere) or A = 2πRL (cylinder).
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We now wish to employ Gauss’s law for the calculation of the electric field
generated by electrically charged, extended objects. We have pursued the
same goal in the previous lecture, by using Coulomb’s law.

The use of Gauss’s law for the same purpose makes the calculation much
simpler if certain symmetry conditions are satisfied.

We shall consider charge distribution with spherical, cylindrical, and planar
symmetry.

The key for the practicality of this method is that we choose Gaussian surface
in a shape that matches the symmetry of the given charge distribution and
to position the Gaussian surface in such a way that electric flux can be
determined as a function of the (unknown) electric field with no need of
integration.

The itemized list on the slide explains and graphically illustrates what the
smart choices are for the three kinds of symmetry. The power of this method
will become clear as we move to specific applications.
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Calculating~E from Gauss’s Law: Point Charge

• Consider a positive point charge Q.
• Use a Gaussian sphere of radius R centered at the location of Q.
• Surface area of sphere: A = 4πR2.

• Electric flux through Gaussian surface: ΦE =
∮
~E · d~A = E(4πR2).

• Net charge inside Gaussian surface: Qin = Q.

• Gauss’s law
∮
~E · d~A =

Qin

ε0
becomes E(4πR2) =

Q
ε0

.

• Electric field at radius R: E =
1

4πε0

Q
R2 =

kQ
R2 .
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We have mentioned before that Gauss’s law is more general than Coulomb’s
law. That means we can derive Gauss’s law from Coulomb’s law for all
situations where the latter is valid. We have done that for one case on the
first page of this lecture.

We cannot derive Coulomb’s law from Gauss’s law for all situations, only
for special situations pertaining to electrostatics. A point charge Q at rest
represents a situation that qualifies.

The electric field of a point charge Q is radial. We have a configuration with
spherical symmetry. We put a Gaussian sphere of radius R around the point
charge such that the charge is at the center.

The electric field ~E then has the same magnitude at all points on the sphere
and its direction is the same as that of the area vector d ~A of an infinitesimal
tile anywhere on the surface. We are thus justified to calculate the electric
flux through the Gaussian sphere as the product of the area of the sphere
and the (unknown) electric field at radius R.

Gauss’s law then relates that flux to the charge inside, which we know to be
the point charge Q that generates the electric field E. Solving that relation
for the electric field thus recovers Coulomb’s law from Gauss’s law.
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Calculating~E from Gauss’s Law: Charged Wire

• Consider a uniformly charged wire of infinite length.
• Charge per unit length on wire: λ (here assumed positive).
• Use a coaxial Gaussian cylinder of radius R and length L.

• Electric flux through Gaussian surface: ΦE =
∮
~E · d~A = E(2πRL).

• Net charge charge inside Gaussian surface: Qin = λL.

• Gauss’s law
∮
~E · d~A =

Qin

ε0
becomes E(2πRL) =

λL
ε0

.

• Electric field at radius R: E =
1

2πε0

λ

R
.
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Here we calculate the electric field generated by a very long, uniformly
charged wire. We have done that in the previous lecture, using Coulomb’s
law. Here we use Gauss’s law instead.

We have a configuration with cylindrical symmetry. The (unknown) electric
field points radially outward from the positively charged wire with given
charge per unit length λ.

A Gaussian surface that matches the symmetry is a can of length L and
radius R positioned such that its axis coincides with a stretch of wire as
shown. The can has two flat surfaces and a curved surface.

There is no electric flux through the two flat surfaces. The electric field is
tangential to those surfaces, thus perpendicular to the local area vectors.
This produces vanishing dot products ~E · d ~A.

The magnitude of the electric field is the same at all points on the curved
surface of the can. Its direction is the same as the local area vector. There-
fore, the electric flux is the product of the (unknown) field E and the area A
of the curved surface.

The curved surface can be unbent into rectangle with sides L and 2πR, the
length and the circumference of the can, respectively.

The charge inside the can is readily identified. Gauss’s law then relates the
charge inside the can to the flux through the can. It produces an equation
that we solve for the unknown E.

The result agrees with that previously found. With the method employed
here the calculation is much simpler.
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Calculating~E from Gauss’s Law: Charged Plane Sheet

• Consider a uniformly charged plane sheet.
• Charge per unit area on sheet: σ (here assumed positive).
• Use Gaussian cylinder with cross-sectional area A placed as shown.

• Electric flux through Gaussian surface: ΦE =
∮
~E · d~A = 2EA.

Net charge charge inside Gaussian surface: Qin = σA.

• Gauss’s law
∮
~E · d~A =

Qin

ε0
becomes 2EA =

σA
ε0

.

• Electric field at both ends of cylinder: E =
σ

2ε0
= 2πkσ

(pointing away from sheet).
• Note that E does not depend on the distance

from the sheet.
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We can use the can from the previous page as the Gaussian surface for the
calculation of the electric field generated on both sides of a large, plane,
uniformly charged sheet. We know the result already from the previous
lecture, where we used a method based on Coulomb’s law.

Here again, reproducing the result takes much less effort when we employ
Gauss’s law. Symmetry dictates that the field is pointing away from a pos-
itively charged sheet with uniform charge per unit area σ. Symmetry does
not require the field to be uniform. Therefore, we must allow the possibility
that the field strength depends on distance from the sheet.

When we position the can symmetrically across the sheet as shown, then
there is zero electric flux through its curved surface. The two flat surfaces
have equal electric flux, being equidistant from the sheet.

The flux through the can is equal to the (unknown) electric field E at the
distance of the flat surfaces from the sheet, multiplied by the area 2A of the
two flat surfaces.

The charge inside the can is proportional to the area of the sheet enclosed
by the can, which is A again.

The next step relates flux through the can with charge inside the can as
Gauss’s law demands. That relation solved for the unknown E reproduces
the familiar result, which is independent of the distance from the sheet, thus
confirming that the electric field is indeed uniform.

Note also that the can in this application, unlike in the previous one, does
not have to be cylindrical in shape. Important is that it has two parallel flat
surfaces of any shape joined by an orthogonal surface at their perimeters.

Also, neither in this nor in the previous application did the length of the can
matter. In the next application it will matter.
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Calculating~E from Gauss’s Law: Charged Slab

• Consider a uniformly charged slab.
• Charge per unit volume on slab: ρ.
• Use Gaussian cylinder as shown.

• Total electric flux: ΦE = 2|Ez|A.

• Net charge inside: Qin =

{
2ρA|z| (|z| ≤ a)
2ρAa (|z| ≥ a)

• Gauss’s law: 2|Ez|A =





2ρA|z|
ε0

(|z| ≤ a)

2ρAa
ε0

(|z| ≥ a)

• Electric field: Ez =





− ρa
ε0

(z ≤ −a)

ρz
ε0

(−a ≤ z ≤ a)

ρa
ε0

(z ≥ a)
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Here we continue with the same technique to analyze the case of a large slab
of width 2a. The uniform charge per unit volume ρ is assumed to be positive.
The can from the previous page is once again a convenient shape of Gaussian
surface.

The slab is positioned in the xy plane. Hence the electric field only has a
z-component and is directed away from the slab. We allow its strength to be
dependent on the distance from the xy-plane. The electric flux, therefore, is
as stated in the fourth item on the slide.

For the analysis via Gauss’s law, we must distinguish two cases:

• If the length of the can is larger than the width of the slab, we are
determining the electric field at positions ±z outside the slab. In this
case the charge inside the can is independent of the positions of the flat
surfaces. The application of Gauss’s law then predicts an electric field
that is uniform again, independent of the distance from the slab.

• If the length of the can is smaller than the width of the slab, we are
determining the electric field at positions ±z inside the slab. In this
case the charge does depend the positions of the flat surfaces. The
application of Gauss’s law then predicts an electric field that varies
linearly with distance from the center of the slab.

The function Ez is plotted on the lower right. Negative (positive) values
mean a field directed left (right).
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Gaussian surface problem (3)

A proton, a neutron, and an electron are placed in different boxes. The electric fluxes through the three
Gaussian surfaces are as indicated, where e stands for the elementary charge.

e/ε0
e/ε0 zero

A B C

Name the particle in each box.
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This is the quiz for lecture 5.

We return to unknown charged particles inside Gaussian surfaces with known
electric flux through them. In this instance, we have three boxes, each con-
taining an elementary particle, either a proton with charge +e, an electron
with charge −e, or a neutron with no electric charge.

Which particle is in which box?
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