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[nex14] Reconstructing probability distributions

Determine three probability distributions PX(x) from the following information:
(a) 〈Xn〉 = ann! for n ≥ 0,
(b) 〈〈Xn〉〉 = an(n− 1)! for n ≥ 1,
(c) 〈Xn〉 = an/(n + 1) for even n and 〈Xn〉 = 0 for odd n.

Solution:



[nex95] Probability distribution with no mean value

Consider the function PX(x) = x−1e−xI1(x) for 0 < x < ∞, where I1(x) is a modified Bessel
function.
(a) Show that PX(x) is normalized to unity.
(b) Produce a plot of PX(x) for 0 < x < 6.
(c) Show that a mean value 〈x〉 does not exist.
(d) Calculate the median value xm from

∫ xm

0
dxPX(x) = 1/2.

Solution:



[nex20] Variances and covariances.

A stochastic variable X can have values x1 = 1 and x2 = 2 and a second stochastic variable Y the
values y1 = 2 and y2 = 3. Determine the variances 〈〈X2〉〉, 〈〈Y 2〉〉 and the covariance 〈〈XY 〉〉 for
two sets of joint probability distributions as defined in [nln7]:
(i) P (x1, y1) = P (x1, y2) = P (x2, y1) = P (x2, y2) = 1

4 .
(ii) P (x1, y1) = P (x2, y2) = 0, P (x1, y2) = P (x2, y1) = 1

2 .

Solution:



[nex23] Statistically independent or merely uncorrelated?

Consider a classical spin, described by a 3-component unit vector

S = (Sx, Sy, Sz) = (sin θ cosφ, sin θ sinφ, cos θ).

Let us assume that the spin has a completely random orientation, meaning a uniform distribution
on the unit sphere. Show that the stochastic variables cos θ, φ are uncorrelated and statistically
independent, whereas the stochastic variables Sx, Sz are uncorrelated but not statistically inde-
pendent. This difference is testimony to the special role of canonical coordinates (here cos θ, φ) in
statistical mechanics.

Solution:



[nex96] Sum and product of uniform distributions

Consider two independent random variables X1, X2, both uniformly distributed on the interval
0 < x1, x2 < 1: P (xi) = θ(xi)θ(1 − xi), i = 1, 2, where θ(x) is the Heaviside step function. Use
transformation relations from [nln49] to calculate range and probability distribution of
(a) the random variable Y = X1 +X2,
(b) the random variable Z = X1X2.
Check the normalization in both cases. Plot PY (y) and PZ(z).

Solution:



[nex79] Exponential integral distribution

Consider two independent random variables X1, X2, one exponentially distributed, P1(x1) =
e−x1 , 0 < x1 < ∞, and the other uniformly distributed, P2(x2) = 1, 0 < x2 < 1.
(a) Determine the probability distribution PZ(z) of the random variable Z = X1X2 for 0 < z < ∞.
(b) Determine the asymptotic properties of PZ(z) for z → 0 and for z →∞.
(c) Calculate the moments 〈zn〉 of PZ(z).
(d) Plot PZ(z) for 0 < z < 6.

Solution:



[nex80] Generating exponential and Lorentzian random numbers

Given is a sequence of uniformly distributed random numbers x1, x2, . . . with 0 < xi < 1 as
produced by a common random number generator.
(a) Find the transformation Z = Z(X) which produces a sequence of random numbers z1, z2, . . .
with an exponential distribution:

PZ(z) =
1
ζ
e−z/ζ , ζ > 0.

(b) Find the transformation Y = Y (X) which produces a sequence of random numbers y1, y2, . . .
with a Lorentzian distribution:

PY (y) =
1
π

a

y2 + a2
, a > 0.

Solution:



[nex5] Random chords (Bertrand’s paradox)

Consider a circle of unit radius and draw at random a straight line intersecting it in a chord of
length L
(a) by taking lines through an arbitrary fixed point on the circle with random orientation;
(b) by taking lines perpendicular to an arbitrary diameter of the circle with the point of intersection
chosen randomly on the diameter;
(c) by choosing the midpoint of the chord at random in the area enclosed by the circle.
For each random choice determine the probability distribution P (L) for the length of the chord
and calculate the average length 〈L〉.

Solution:



[nex8] From Gaussian to exponential distribution

A random variable X has a continuous Gaussian distribution PX(x) with mean value 〈X〉 = 0
and variance 〈〈X2〉〉 = 1. Find the distribution function PY (y) for the stochastic variable Y with
values y = x2

1 + x2
2, where x1, x2 are independent realizations of the random variable X. Calculate

the mean value 〈Y 〉 and the variance 〈〈Y 2〉〉.

Solution:



[nex78] Transforming a pair of random variables

Consider two independent random variables X1, X2 that are uniformly distributed on the intervals
0 ≤ x1, x2 ≤ 1. Show that the transformed variables

Y1 =
√
−2 lnX1 cos 2πX2, Y2 =

√
−2 lnX1 sin 2πX2

obey independent normal distributions:

PY(y1, y2) =
1√
2π

e−y2
1/2 1√

2π
e−y2

2/2.

Solution:



[nex3] Gaussian shootist versus Lorentzian shootist

The shots of two marksmen on a square-shaped target of dimensions 20cm×20cm are found to be
distributed with probability densities

P1(x, y) = C1e
−(x2+y2), P2(x, y) =

C2

1 + x2 + y2
,

where r =
√

x2 + y2 is the distance from the center of the target, and C1, C2 are normalization
constants. Answer the following questions separately for each marksman.
(a) What is the probability that a given shot that hits the target is at least 1cm high (y > 1cm)?
(b) Given that a shot that hits the target is at least 1cm high (y > 1cm), what is the probability
that it is also at least 1cm to the right (x > 1cm)?

Solution:



[nex16] Moments and cumulants of the Poisson distribution.

Calculate the generating function G(z) ≡ 〈zn〉 and the characteristic function Φ(k) ≡ 〈eikn〉 for
the Poisson distribution

P (n) =
an

n!
e−a, n = 0, 1, 2, . . .

From Φ(k) calculate the cumulants 〈〈nm〉〉. From G(z) calculate the factorial moments 〈nm〉f and
the factorial cumulants 〈〈nm〉〉f .

Solution:



[nex17] Maxwell velocity distribution

In the original derivation of the velocity distribution f(vx, vy, vz) for a classical ideal gas, Maxwell
used the following ingredients: (i) The Cartesian velocity components vx, vy, vz (interpreted as
stochastic variables) are statistically independent. (ii) The distribution f(vx, vy, vz) is spherical
symmetric. (iii) The mean-square velocity follows from the equipartition theorem. Determine
f(vx, vy, vz) along these lines.

Solution:



[nex18] Random bus schedules.

Three bus companies A,B,C offer schedules in the form of a probability density f(t) for the
intervals between bus arrivals at the bus stop:

A : f(t) = δ(t− T ), B : f(t) =
1
T
e−t/T , C : f(t) =

4t
T 2

e−2t/T .

(i) Find the probability P0(t) that the interval between bus arrivals is larger than t.
(ii) Find the mean time interval τB between bus arrivals and the variance thereof.
(iii) Find the probability Q0(t) that no arrivals occur in a randomly chosen time interval t.
(iv) Find the probability density g(t) of the time a passenger waits for the next bus from the
moment he/she arrives at the bus stop.
(v) Find the average waiting time τP of passengers and the variance thereof.

Solution:



[nex106] Life expectancy of the young and the old

The distribution of lifetimes in some population is f(t) = (4t/T 2)e−2t/T .
(a) Show that f(t) is properly normalized and that the parameter T is the average lifetime of
individuals.
(b) Calculate the conditional probability distribution Pc(t|τ) for the remaining lifetime of individ-
uals of age τ . Use the expression constructed in [nex38].
(c) If we define the life expectancy Tτ as the average remaining lifetime for an individual of age τ
calculate Tτ as a function of T and τ .
(d) What is the life-expectancy ratio T∞/T0 of the very old and the very young.

Solution:



[nex38] Life expectancy of the ever young

The probability distribution of lifetimes in some population is f(t) with an average lifetime

T =

∫ ∞

0

dt t f(t)

for individuals.
(a) Show that the conditional probability distribution for the remaining lifetime of individuals of
age τ is

Pc(t|τ) =
f(t)

C(τ)
θ(t− τ), C(τ)

.
=

∫ ∞

τ

dt f(t),

where θ(t) is the Heaviside step function.
(b) If we define the life expectancy Tτ as the average remaining lifetime for an individual of age τ
express Tτ in terms of Pc(t|τ).
(c) Find the function f(t) for a population (e.g. free neutrons) whose life expectancy is independent
of the age of the individual, i.e. for the case where Tτ = T holds. Then infer an explicit expression
for the conditional probability distribution Pc(t|τ).

Solution:



[nex35] Random frequency oscillator

Consider a physical ensemble of classical harmonic oscillators with randomly distributed angular
frequencies: PΩ(ω) = 1

2Θ(1 − |ω|). At time t = 0 all oscillators are excited in phase with unit
amplitude: Y (t) = cos(ωt).
(a) Find the average displacement 〈Y (t)〉 and its variance 〈〈Y 2(t)〉〉 as functions of t. What are
the long-time asympotic values of these two quantities?
(b) Find the autocorrelation function 〈Y (t + τ)Y (t)〉 for arbitrary t, τ and its asymptotic τ -
dependence for t→∞.
(c) Show that the probability distribution of Y for mπ ≤ t < (m+ 1)π is

P (y, t) =
m

t
√

1− y2
Θ(1− |y|) +

1

t
√

1− y2
Θ(ymax − y)Θ(y − ymin),

where ymax = 1, ymin = cos t if m = 0, 2, 4, . . . and ymax = cos t, ymin = −1 if m = 1, 3, 5, . . ..
Find the asymptotic distribution P (y,∞).

Solution:
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