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Basins of Attraction for Two Species Competitive Model

with quadratic terms and the singular Allee Effect

A. Brett and M. R. S. Kulenović
Department of Mathematics,
University of Rhode Island,

Kingston, Rhode Island 02881-0816, USA

October 28, 2014

Abstract

We consider the following system of difference equations:

xn+1 =
x2
n

B1x2
n+C1y2

n

yn+1 =
y2
n

A2+B2x2
n+C2y2

n
, n = 0, 1, . . . ,

where B1, C1, A2, B2, C2 are positive constants and x0, y0 ≥ 0 are initial conditions. This
system has interesting dynamics and it can have up to seven equilibrium points as well as
a singular point at (0, 0), which always possesses a basin of attraction. We characterize
the basins of attractions of all equilibrium points as well as the singular point at (0, 0) and
thus describe the global dynamics of this system. Since the singular point at (0, 0) always
possesses a basin of attraction this system exhibits Allee’s effect.

Keywords: Allee effect, basin, competition, difference equation, global asymptotic stability, invariant manifold,

stable manifold.
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1 Introduction

The following difference equation is known as the Beverton-Holt model

xn+1 =
a xn

1 + xn
, n = 0, 1, . . . (1)

where a > 0 is the rate of change (growth or decay) and xn is the size of the population at the
n-th generation.

This model was introduced by Beverton and Holt in 1957. It depicts density dependent
recruitment of a population with limited resources which are not shared equally. The model
assumes that the per capita number of offspring is inversely proportional to a linearly increasing
function of the number of adults.

The Beverton-Holt model is well studied and understood and exhibits the following prop-
erties:

(a) Equation (1) has two equilibrium points 0 and a− 1 when a > 1.

(b) All solutions of Eq.(1) are monotonic (increasing or decreasing) sequences.

(b) If a ≤ 1, then the zero equilibrium is a global attractor, that is, lim
n→∞

xn = 0, for all

x0 ≥ 0.

(c) If a > 1, then the equilibrium point a− 1 is a global attractor, that is, lim
n→∞

xn = a− 1,

for all x0 > 0.

(d) Both equilibrium points are globally asymptotically stable in the corresponding regions
of parameters a ≤ 1 and a > 1, that is, they are global attractors with the property that
small changes of initial condition x0 result in small changes of the corresponding solution
{xn}.

All these properties can be derived from the explicit form of the solution of Eq.(1):

xn = 1
1/(a−1)+(1/x0−1/(a−1))1/an if a 6= 1

xn = 1
n+1/x0

, if a = 1.
(2)

See [28, 29, 46].
The following difference equation

xn+1 =
a x2

n

1 + x2
n

, n = 0, 1, . . . , (3)

which was introduced by Thompson [47] as a depensatory generalization of the Beverton-
Holt stock-recruitment relationship used to develop a set of constraints designed to safeguard
against overfishing, see [16] for further references. In view of the sigmoid shape of the function

f(u) = a u2

1+u2 Equation (3) is called the Sigmoid Beverton-Holt model. A very important feature
of the Sigmoid Beverton-Holt model is that, it exhibits the Allee effect, that is zero equilibrium
has a substantial basin of attraction, as we can see from the following results:

(a) Equation (3) has a unique zero equilibrium when a < 2;

(b) Equation (3) has a zero equilibrium and the positive equilibrium x̄ = 1/2, when a = 2;

(c) There exist a zero equilibrium and two positive equilibria, x− and x+, when a > 2;
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(d) All solutions of Eq. (3) are monotonic (increasing or decreasing) sequences.

(e) If a < 2, then the equilibrium point 0 is a global attractor, that is, limn→∞ xn = 0.

(f) If a = 2, then the equilibrium point 0 is a global attractor, with the basin of attraction
B(0) = (0, x̄) and x̄ = 1/2 is a non-hyperbolic equilibrium point with the basin of
attraction B(x̄) = [x̄,∞) ;

(g) If a > 2, then zero equilibrium and x̄+ are locally asymptotically stable, while x̄− is
repeller and the basins of attraction of the equilibrium points are given as:

B(0) = {x0 : 0 ≤ x0 < x−}
B(x+) = {x0 : x− < x0 <∞}.
In other words, the smaller positive equilibrium serves as the boundary between two
basins of attraction. The zero equilibrium has the basin of attraction B(0) and the model
exhibits the Allee effect;

(h) The equilibrium points 0 and x+ are globally asymptotically stable in the corresponding
basins of attractions B(0) and B(x+).

The two dimensional analogue of Eq. (1) is the uncoupled system

xn+1 = axn

1+xn

yn+1 = byn
1+yn

, n = 0, 1, . . . ,
(4)

where a, b are positive parameters. The dynamics of System (4) can be derived from dynamics
of each equation. Therefore, this system has an explicit solution given by (2).

Two species can interact in several different ways through competition, cooperation or host-
parasitoid interactions. For each of these interactions, we obtain variations of System (4) all of
which may require different mathematical analysis.

One such variation that exhibits competitive interaction is the following model, known as
the Leslie-Gower model, which was considered in Cushing et al. [10]:

xn+1 = axn

1+xn+c1yn

yn+1 = byn
1+c2xn+yn

, n = 0, 1, . . . ,
(5)

where all parameters are positive and the initial conditions are non-negative. The global dy-
namics of System (5) was completed in [31]. Several variations of System (5) where the com-
petition of two species was modeled by linear fractional difference equations were considered in
[7, 8, 23, 24, 34, 36, 37]. An interesting fact is that none of these models exhibited the Allee
effect.

The two dimensional analogue of System (3) is the following uncoupled system

xn+1 =
ax2

n

1+x2
n

yn+1 =
by2n

1+y2n
, n = 0, 1, . . . ,

(6)

where a, b are positive parameters. The dynamics of System (6) can be derived from the
dynamics of each equation in the system. Since each equation in System (6) has three possible
dynamic scenarios, then System (6) possesses nine dynamic scenarios.

A variation of System (6) that exhibits competitive interactions is the system:

xn+1 =
x2
n

B1x2
n+C1y2n

yn+1 =
y2n

A2+B2x2
n+C2y2n

, n = 0, 1, . . . ,
(7)
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where B1, C1, A2, B2, C2 > 0. This system will be considered in the remainder of this paper.
We will show that System (7) has similar but more complex dynamics than System (6). We
will see that like System (6) the coupled system (7) may possess 1, 3, 5, or 7 equilibrium points
in the hyperbolic case and 2, 4, or 6 equilibrium points in the non-hyperbolic case. In each of
these cases we will show that the Allee effect is present, although (0, 0) is outside of the domain
of definition of System (7). We will precisely describe the basins of attraction of all equilibrium
points and the singular point (0, 0). We will show that the boundaries of the basins of attraction
of the equilibrium points are the global stable manifolds of the saddle or the non-hyperbolic
equilibrium points. See [2, 3, 4, 23, 24, 32, 36, 37] for related results and [25] for dynamics
of competitive system with a singular point at the origin. The biological interpretation of a
related system is given in [40, 41] and similar system is treated in [6]. The specific feature of
our results is that no equilibrium point in the interior of the first quadrant is computable and
so our analysis is based on geometric analysis of the equilibrium curves.

2 Preliminaries

Our proofs use some recent general results for competitive systems of difference equations of
the form: {

xn+1 = f(xn, yn)
yn+1 = g(xn, yn),

(8)

where f and g are continuous functions and f(x, y) is non-decreasing in x and non-increasing
in y and g(x, y) is non-increasing in x and non-decreasing in y in some domain A.

Competitive systems of the form (8) were studied by many authors in [10, 8, 13, 14, 15, 17,
19, 20, 22, 22, 27, 30, 31, 35, 36, 37, 39, 43, 45, 48, 49] and others.

Here we give some basic notions about monotonic maps in the plane.
We define a partial order �se on R2 (so-called South-East ordering) so that the positive

cone is the fourth quadrant, i.e. this partial order is defined by:(
x1

y1

)
�se

(
x2

y2

)
⇔
{

x1 6 x2

y1 > y2.
(9)

Similarly, we define North-East ordering as:(
x1

y1

)
�ne

(
x2

y2

)
⇔
{

x1 6 x2

y1 6 y2.
(10)

A map F is called competitive if it is non-decreasing with respect to �se, that is, if the
following holds: (

x1

y1

)
�
(
x2

y2

)
⇒ F

(
x1

y1

)
� F

(
x2

y2

)
. (11)

For each v = (v1, v2) ∈ R2
+, define Qi(v) for i = 1, .., 4 to be the usual four quadrants based

at v and numbered in a counterclockwise direction, e.g., Q1(v) = {(x, y) ∈ R2
+ : v1 ≤ x, v2 ≤

y}.
For S ⊂ R2

+ let S◦ denote the interior of S.
The following definition is from [45].

Definition 1 Let R be a nonempty subset of R2. A competitive map T : R → R is said to
satisfy condition (O+) if for every x, y in R, T (x) �ne T (y) implies x �ne y, and T is said to
satisfy condition (O−) if for every x, y in R, T (x) �ne T (y) implies y �ne x.
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The following theorem was proved by DeMottoni-Schiaffino [11] for the Poincaré map of
a periodic competitive Lotka-Volterra system of differential equations. Smith generalized the
proof to competitive and cooperative maps [43].

Theorem 1 Let R be a nonempty subset of R2. If T is a competitive map for which (O+)
holds then for all x ∈ R, {Tn(x)} is eventually componentwise monotone. If the orbit of x has
compact closure, then it converges to a fixed point of T . If instead (O−) holds, then for all
x ∈ R, {T 2n} is eventually componentwise monotone. If the orbit of x has compact closure in
R, then its omega limit set is either a period-two orbit or a fixed point.

It is well known that a stable period-two orbit and a stable fixed point may coexist, see
Hess [18].

The following result is from [45], with the domain of the map specialized to be the cartesian
product of intervals of real numbers. It gives a sufficient condition for conditions (O+) and
(O−).

Theorem 2 Let R ⊂ R2 be the cartesian product of two intervals in R. Let T : R → R be a
C ′ competitive map. If T is injective and detJT (x) > 0 for all x ∈ R then T satisfies (O+). If
T is injective and detJT (x) < 0 for all x ∈ R then T satisfies (O−).

Theorems 1 and 2 are quite applicable as we have shown in [5], in the case of competitive
systems in the plane consisting of rational equations.

The following result is from [32], which generalizes the corresponding result for hyperbolic
case from [31]. Related results have been obtained by H. L. Smith in [43].

Theorem 3 Let R be a rectangular subset of R2 and let T be a competitive map on R. Let
x ∈ R be a fixed point of T such that (Q1(x)∪Q3(x))∩R has nonempty interior (i.e., x is not
the NW or SE vertex of R).

Suppose that the following statements are true.

a. The map T is strongly competitive on int((Q1(x) ∪Q3(x)) ∩R).

b. T is C2 on a relative neighborhood of x.

c. The Jacobian matrix of T at x has real eigenvalues λ, µ such that |λ| < µ, where λ is
stable and the eigenspace Eλ associated with λ is not a coordinate axis.

d. Either λ ≥ 0 and

T (x) 6= x and T (x) 6= x for all x ∈ int((Q1(x) ∪Q3(x)) ∩R) ,

or λ < 0 and
T 2(x) 6= x for all x ∈ int((Q1(x) ∪Q3(x)) ∩R).

Then there exists a curve C in R such that

(i) C is invariant and a subset of Ws(x).

(ii) the endpoints of C lie on ∂R.

(iii) x ∈ C.

(iv) C the graph of a strictly increasing continuous function of the first variable,

(v) C is differentiable at x if x ∈ int(R) or one sided differentiable if x ∈ ∂R, and in all cases
C is tangential to Eλ at x,
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(vi) C separates R into two connected components, namely

W− := {x ∈ R : ∃y ∈ C with x � y}

and
W+ := {x ∈ R : ∃y ∈ C with y � x}.

(vii) W− is invariant, and dist(Tn(x),Q2(x))→ 0 as n→∞ for every x ∈ W−.

(viii) W+ is invariant, and dist(Tn(x),Q4(x))→ 0 as n→∞ for every x ∈ W+.

The following result is a direct consequence of the Trichotomy Theorem of Dancer and
Hess, see [31] and [18], and is helpful for determining the basins of attraction of the equilibrium
points.

Corollary 1 If the nonnegative cone of � is a generalized quadrant in Rn, and if T has no
fixed points in the ordered intervalI(u1, u2) other than u1 and u2, then the interior of I(u1, u2)
is either a subset of the basin of attraction of u1 or a subset of the basin of attraction of u2.

The next results gives the existence and uniqueness of invariant curves emanating from a
non-hyperbolic point of unstable type, that is a non-hyperbolic point where second eigenvalue
is outside interval [−1, 1]. Similar result for a non-hyperbolic point of stable type that is a
non-hyperbolic point where second eigenvalue is in the interval (−1, 1) follows from Theorem
3.

Theorem 4 Let R = (a1, a2)× (b1, b2), and let T : R → R be a strongly competitive map
with a unique fixed point x̄ ∈ R, and such that T is continuously differentiable in a neighborhood
of x̄. Assume further that at the point x̄ the map T has associated characteristic values µ and
ν satisfying 1 < µ and −µ < ν < µ.

Then there exist curves C1, C2 in R and there exist p1,p2 ∈ ∂R with p1 <<se x̄ <<se p2 such
that

(i) For ` = 1, 2, C` is invariant, north-east strongly linearly ordered, such that x̄ ∈ C` and
C` ⊂ Q3(x̄) ∪ Q1(x̄); the endpoints q`, r` of C`, where q` �ne r`, belong to the boundary
of R. For `, j ∈ {1, 2} with ` 6= j, C` is a subset of the closure of one of the components
of R \ Cj. Both C1 and C2 are tangential at x̄ to the eigenspace associated with ν.

(ii) For ` = 1, 2, let B` be the component of R \ C` whose closure contains p`. Then B` is
invariant. Also, for x ∈ B1, Tn(x) accumulates on Q2(p1)∩ ∂R, and for x ∈ B2, Tn(x)
accumulates on Q4(p2) ∩ ∂R.

(iii) Let D1 := Q1(x̄) ∩R \ (B1 ∪ B2) and D2 := Q3(x̄) ∩R \ (B1 ∪ B2).
Then D1 ∪ D2 is invariant.

Corollary 2 Let a map T with fixed point x̄ be as in Theorem 4. Let D1, D2 be the sets as in
Theorem 4. If T satisfies (O+), then for ` = 1, 2, D` is invariant, and for every x ∈ D`, the
iterates Tn(x) converge to x̄ or to a point of ∂R. If T satisfies (O−), then T (D1) ⊂ D2 and
T (D2) ⊂ D1. For every x ∈ D1 ∪ D2, the iterates Tn(x) either converge to x̄, or converge to a
period-two point, or to a point of ∂R.

5



3 Local Stability of Equilibrium Points

First we present the local stability analysis of the equilibrium points. It is interesting that the
local stability analysis is the more difficult part of our analysis.

The equilibrium points of system (7) satisfy the following system of equations:

x = x2

B1x2+C1y2

y = y2

A2+B2x2+C2y2
, n = 0, 1, . . . .

(12)

All solutions of system (12) with at least one zero component are given as: Ex (x, 0) where

x = 1
B1
, Ey (0, y) where y = 1

2C2
, and Ey±

(
0, y±

)
where y± = 1±

√
1−4C2A2

2C2
. The equilibrium

point Ey (0, y) exists when 1 = 4C2A2, and Ey±
(
0, y±

)
exists when 1 > 4C2A2.

The equilibrium points with strictly positive coordinates satisfy the following system of
equations

B1x
2 + C1y

2 − x = 0

A2 +B2x
2 + C2y

2 − y = 0.
(13)

From (13) we have that all real solutions of the system (13) belong to the positive quadrant,
since B1x

2 + C1y
2 = x > 0 and A2 + B2x

2 + C2y
2 = y > 0. By eliminating y from (13) we

obtain

x4 (B2C1 −B1C2) 2 + 2C2x
3 (B2C1 −B1C2) + x2 (2A2B2C

2
1 + B1 (C1 − 2A2C1C2) + C2

2

)
+ C1x (2A2C2 − 1) + A2

2C
2
1 = 0. (14)

The next result gives the necessary and sufficient conditions for Eq.(14), and so System (12)
to have between zero and 4 solutions. As we show in Section 4.2 the global dynamics depends
on the number of the equilibrium points with positive coordinates.

Lemma 1 Let

∆3 = 16A2
2B

4
1C

2
1 (1 − 4A2C2) 2 − 4B3

1C1 (4A2C2 − 1)
(
32A3

2B2C
2
1 − 8A2

2C
2
2 + 6A2C2 − 1

)
+ B2

1

(
256A4

2B
2
2C

4
1 + 128A3

2B2C
2
2C

2
1 − 8A2

(
3B2C

2
1 + C3

2

)
+ 16A2

2

(
4B2C

2
1C2 + C4

2

)
+ C2

2

)
+ 2B2B1C1

(
4A2

(
−64A2

2B2C2C
2
1 + 4A2

(
3B2C

2
1 + 4C3

2

)
− 13C2

2

)
+ 9C2

)
+ B2

(
256A3

2B
2
2C

4
1 + B2C

2
1 (16A2C2 (9 − 8A2C2) − 27) + 4C3

2 (4A2C2 − 1)
)

(15)

∆2 = −2B3
1C1 (2A2C2 − 1) (4A2C2 − 1) + B2

1

(
32A2

2B2C2C
2
1 − 4A2

(
3B2C

2
1 + C3

2

)
+ C2

2

)
− 4B2B1C1

(
A2

(
4A2B2C

2
1 + C2

2

)
− C2

)
−B2

(
B2C

2
1 (9 − 8A2C2) + 2C3

2

)
(16)

and
∆1 = 4A2B1C1C2 − 2C1 (2A2B2C1 + B1) + C2

2 .

Assume that B2C1 6= B1C2. Then the following holds:

a) If ∆3 > 0, ∆2 > 0, and ∆1 > 0, then the Eq. (14) has four simple real roots.

b) If ∆3 > 0 and ∆2 ≤ 0 ∨ (∆2 > 0 ∧∆1 ≤ 0) then the Eq. (14) has no real roots.

c) If ∆3 < 0 then Eq. (14) has two simple real roots.

d) If ∆3 = 0 and ∆2 < 0 then the Eq. (14) has one real double roots.

e) If ∆3 = 0 and ∆2 > 0 then the Eq. (14) has two real simple roots and one real double
root.
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f) If ∆3 = 0, ∆2 = 0 and ∆1 > 0 then the Eq. (14) has two real double roots.

g) If ∆3 = 0, ∆2 = 0 and ∆1 < 0 then the Eq. (14) has no real roots.

h) If ∆3 = 0, ∆2 = 0 and ∆1 = 0 then the Eq. (14) has one real root of multiplicity four.

Proof. The discrimination matrix [50] of f(x) = Ax4 +Bx3 +Cx2 +Dx+E and f ′(x) is given
by

Discr(f, f ′) =



A B C D E 0 0 0
0 4A 3B 2C D 0 0 0
0 A B C D E 0 0
0 0 4A 3B 2C D 0 0
0 0 A B C D E 0
0 0 0 4A 3B 2C D 0
0 0 0 A B C D E
0 0 0 0 4A 3B 2C D


.

Let Dk denote the determinant of the submatrix of Discr(f̃ , f̃ ′), formed by the first 2k rows
and the first 2k columns, for k = 1, 2, 3, 4 where

f̃(x) = x4 (B2C1 −B1C2) 2 + 2C2x
3 (B2C1 −B1C2) + x2 (2A2B2C

2
1 + B1 (C1 − 2A2C1C2) + C2

2

)
+ C1x (2A2C2 − 1) + A2

2C
2
1 . (17)

So, by straightforward calculation one can see that

D1 =4 (B2C1 −B1C2) 4,

D2 =4∆1 (B2C1 −B1C2) 6,

D3 =4∆2C
2
1 (B2C1 −B1C2) 6,

D4 =∆3C
4
1 (B2C1 −B1C2) 6.

The rest of the proof follows in view of Theorem 1 [50]. 2

Geometrically solutions of System (13) are intersections of two ellipses that satisfy the
equations (

x− 1
2B1

)2

1
4B2

1

+
y2

1
4B1C1

= 1,
x2

1
4B2C2

− A2

B2

+

(
y − 1

2C2

)2

1
4C2

2
− A2

C2

= 1 (18)

with respective vertices
(

1
2B1

, 0
)

and
(

0, 1
2C2

)
. See Figure 1.

Figure 1: The equilibrium curves of System (7).
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Consequently when 1 > 4C2A2, in addition to the three equilibium points on the axes,
System (7) may have 1, 2, 3 or 4 positive equilibrium points. We will refer to these equilibrium
points as ESW (x, y) (southwest), ESE(x, y)(southeast), ENW (x, y) (northwest), and ENE(x, y)
(northeast) where

ENW �se ENE �se ESE , ESW �ne ENW .
When a positive equilibrium point is non-hyperbolic we will refer to it as EN (x, y).
The map associated with System (7) has the form:

T

(
x
y

)
=

(
x2

B1x2+C1y2

y2

A2+B2x2+C2y2

)
. (19)

The Jacobian matrix of T is

JT (x, y) =

(
2C1xy

2

(B1x2+C1y2)2
− 2C1x

2y
(B1x2+C1y2)2

− 2B2xy
2

(A2+B2x2+C2y2)2
2A2y+2B2x

2y
(A2+B2x2+C2y2)2

)
, (20)

and the Jacobian matrix of T evaluated at an equilibrium E(x, y) with positive coordinates has
the form:

JT (x, y) =

 2C1y
2

x −2C1y

−2B2x
2A2+2B2

2x
y

 . (21)

The determinant and trace of (21) are:

det JT (x, y) =
4A2C1y

x
, tr JT (x, y) =

2C1y
2

x
+

2A2 + 2B2x
2

y
. (22)

It is worth noting that det JT (x, y) and trJT (x, y) of (21) are both positive.
Using the equilibrium condition (13), we may rewrite the determinant and trace in the more

useful form:

det JT (x, y) = 4xyB1C2 − 4yC2 − 4xB1 − 4xyB2C1 + 4,
tr JT (x, y) = 4− 2yC2 − 2xB1.

(23)

The characteristic equation of the matrix (21) is

λ2 − tr JT (x, y)λ+ det JT (x, y) = 0, (24)

which solutions are the eigenvalues

λ =
tr JT (x, y)−

√
(tr JT (x, y))2 − 4 detJT (x, y)

2

µ =
tr JT (x, y) +

√
(tr JT (x, y))2 − 4 detJT (x, y)

2
.

(25)

The corresponding eigenvectors of (25) are

Eλ =

(
1

2xB2

(
xB1 − yC2 +

√
(xB1 − yC2)

2
+ 4B2C1xy

)
, 1

)
,

Eµ =

(
− 1

2xB2

(
yC2 − xB1 +

√
(xB1 − yC2)

2
+ 4B2C1xy

)
, 1

)
.

(26)

We will now consider two lemmas that will be used to prove the local stability character of
the positive equilibrium points of System (7). The nonzero coordinates, (x, y), of all equilibrium
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points will subsequently be designated with the subscripts: r (repeller), a (attractor), s, s1, s2

(saddlepoint), ns (non-hyperbolic of the stable type) and nu (non-hyperbolic of the unstable
type).

Lemma 2 The following conditions hold for the coordinates of the positive equilibium points,
E (x, y), of System (7).

(i) For ESW (xr, yr) and EN (xnu, ynu) ,

x <
1

2B1
and y <

1

2C2
. (27)

(ii) For ENW
(
xs1 , ys1

)
,

x <
1

2B1
and y >

1

2C2
. (28)

(iii) For ENE (xa, ya), ENE (xs, ys), and EN (xns, yns),

x >
1

2B1
and y >

1

2C2
. (29)

(iv) For ESE
(
xs2 , ys2

)
,

x >
1

2B1
and y <

1

2C2
. (30)

Proof. This is clear from geometry. See Figure 2. 2

Lemma 3 The following conditions hold for the coordinates of the positive equilibium points,
E (x, y), of System (7).

(i) For ESW (xr, yr) and ENW
(
xs1 , ys1

)
,

4xyB1C2 − 4B2C1xy + 1 > 2yC2 + 2xB1. (31)

(ii) For ENE (xa, ya), ENE (xs, ys) , and ESE
(
xs2 , ys2

)
,

4xyB1C2 − 4B2C1xy + 1 < 2yC2 + 2xB1. (32)

(iii) For EN (xns, yns) and EN (xnu, ynu) ,

4xyB1C2 − 4B2C1xy + 1 = 2yC2 + 2xB1. (33)

Proof.
(i) Let mE1 be the slope of the tangent line to ellipse E1 at E (x, y) = ESW (xr, yr) and let

mE2 be the slope of the tangent line to ellipse E2 at E (x, y) = ESW (xr, yr) . It is clear from
geometry that

mE1 > mE2 > 0.

See Figure 2. It follows that

9



dy

dx
|E1

(x, y) >
dx

dy
|E2

(x, y) > 0,

and in turn

1− 2B1x

2C1y
>

2B2x

1− 2C2y
> 0.

Therefore

4xyB1C2 − 4B2C1xy + 1 > 2yC2 + 2xB1.

The proofs for the remaining case in (i) and all cases in (ii) and (iii) are similar, and will
be omitted. 2
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B1 = 5
100 , C1 = 95

100 , A2 = 13
19 , B2 = 63

380 , C2 = 15
100 B1 = .075, C1 = .03, A2 = 2.79, B2 = .003, C2 = .08

B1 = .075, C1 = .03, A2 = 4.5, B2 = .01, C2 = .04 B1 = 83
1416 , C1 = 30

413 , A2 = 349
125 , B2 = 2

1000 , C2 = 8
100

B1 = 317
4728 , C1 = 350

6501 , A2 = 1767
625 , B2 = 2

1000 , C2 = 8
100 B1 = 64

1071 , C1 = 55
1071 , A2 = 1179

500 , B2 = 2
1000 , C2 = 8

100

B1 = .075, C1 = .03, A2 = 2.79, B2 = .002, C2 = .08

Figure 2: Local Stability
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Theorem 5 The following conditions hold for the equilibium points E (x, y) of System (7).

(i) Ex (xa, 0) is a locally asymptotically stable;

(ii) Ey (0, yns) is non-hyperbolic of the stable type;

(iii) Ey+
(
0, y+a

)
is locally asymptotically stable and Ey−

(
0, y−s

)
is a saddle point;

(iv) ESW (xr, yr) is a repeller;

(v) ENW (xs1 , ys1), ESE(xs2 , ys2), and ENE(xs, ys) are saddle points;

(vi) ENE(xa, ya) is a locally asymptotically stable;

(vii) EN (xns, yns) is non-hyperbolic of the stable type;

(viii) EN (xnu, ynu) is non-hyperbolic of the unstable type.

Proof.

(i) The eigenvalues of (20), evaluated at Ex (xa, 0), are λ = 0 and µ = 0.

(ii) The eigenvalues of (20), evaluated at Ey (0, yns), are λ = 0 and µ = 1 when 1 = 4C2A2.

(iii) The eigenvalues of (20), evaluated at Ey+
(
0, y+a

)
and Ey−

(
0, y−s

)
respectively, are λ = 0

and µ± = 2A2

y±
when 1 > 4C2A2.

(a) Note that when 1 > 4C2A2,

y+ =
1 +
√

1− 4C2A2

2C2
>

1

2C2
> 2A2.

Therefore µ+ = 2A2

y+
< 1.

(b) Note that when 1 > 4C2A2,
√

1− 4A2C2 > 1− 4A2C2. Therefore

µ− =
2A2

y−
=

4A2C2

1−
√

1− 4A2C2

>
1−
√

1− 4A2C2

1−
√

1− 4A2C2

= 1.

In both cases, the conclusion follows.

(iv) We need to show that |tr JT (x, y)| < |1 + det JT (x, y)| and |det JT (x, y)| > 1 when
E(x, y) = ESW (xr, yr). Since trJT (x, y) and det JT (x, y) are both positive, our condi-
tions become tr JT (x, y) < 1 + det JT (x, y) and det JT (x, y) > 1. We will first show that
det JT (x, y) > 1. By (31) we have

det JT (xy)− 1

= 4xyB1C2 − 4xyB2C1 − 4yC2 − 4xB1 + 4− 1

> 2yC2 + 2xB1 − 1− 4yC2 − 4xB1 + 4− 1

= 1− 2yC2 + 1− 2xB1.

By (27) we have 1− 2yC2 + 1− 2xB1 > 0.

Therefore det JT (x, y) > 1. We will next show that tr JT (x, y) < 1 + det JT (x, y).
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By (31) we have,
1 + det JT (x, y)− tr JT (x, y)

= 1 + (4xyB1C2 − 4yC2 − 4xB1 − 4xyB2C1 + 4)− (4− 2yC2 − 2xB1)

= 4xyB1C2 − 4xyB2C1 + 1− 2yC2 − 2xB1

> 2yC2 + 2xB1 − 2yC2 − 2xB1 = 0.

Therefore tr JT (x, y) < 1 + det JT (x, y).

(v) We need to show that |tr J(x, y)| > |1 + det JT (x, y)| when E(x, y) = ENW (xs1 , ys1).
Since tr JT (x, y) and det JT (x, y) are both positive, our condition becomes trJT (x, y) >
1 + det JT (x, y). By (31) we have,

tr JT (x, y)− (1 + det JT (x, y))

= 4− 2yC2 − 2xB1 − (1 + 4xyB1C2 − 4yC2 − 4xB1 − 4xyB2C1 + 4)

= 2xB1 + 2yC2 − 4xyB1C2 + 4xyB2C1 − 1

> 4xyB1C2 − 4B2C1xy + 1− 4xyB1C2 + 4xyB2C1 − 1.

Therefore tr JT (x, y) > 1 + det JT (x, y). The proofs that ESE(xs2 , ys2) and ENE(xs, ys)
are saddle points are similar and will be omitted.

(vi) We need to show that |tr JT (x, y)| < 1+det JT (x, y) and det JT (x, y) < 1 when E(x, y) =
ENE(xa, ya). Since tr JT (x, y) and det JT (x, y) are both positive, our conditions become
tr JT (x, y) < 1+det JT (x, y) and detJT (x, y) < 1. We will first show that det JT (x, y) < 1.
By (32) we have.

det JT (x, y)− 1

= (4xyB1C2 − 4yC2 − 4xB1 − 4xyB2C1 + 4)− 1

= 4xyB1C2 − 4xyB2C1 − 4yC2 − 4xB1 + 3

> 2yC2 + 2xB1 − 1− 4yC2 − 4xB1 + 3

= 1− 2yC2 + 1− 2xB1.

By (29) we have 1− 2yC2 + 1− 2xB1 < 0.

Therefore detJT (x, y) < 1. We will next show that tr JT (x, y) < 1 + det JT (x, y). By (32)
we have,

1 + det JT (x, y)− tr JT (x, y)

= (1 + 4xyB1C2 − 4yC2 − 4xB1 − 4xyB2C1 + 4)− (4− 2yC2 − 2xB1)

= 4xyB1C2 − 4xyB2C1 + 1− 2yC2 − 2xB1

> 2yC2 + 2xB1 − 2yC2 − 2xB1

Therefore tr JT (x, y) < 1 + det JT (x, y).
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(vii) By (23) and (25) we have

λ =
(4−2yC2−2xB1)−

√
(4−2yC2−2xB1)2−4(4xyB1C2−4yC2−4xB1−4xyB2C1+4)

2

µ =
(4−2yC2−2xB1)+

√
(4−2yC2−2xB1)2−4(4xyB1C2−4yC2−4xB1−4xyB2C1+4)

2 .

By (33), we have λ = 3−2yC2−2xB1 and µ = 1. By (29), we have λ < 1. The conclusion
follows.

(viii) The proof of (viii) is similar to the proof of (vii) and will be omitted.

2

4 Global Results

In this section we combine the results from Sections 2 and 3 to prove the global results for
System (7). First, we present the behavior of the solutions of system (7) on coordinate axes
and then we prove that the map T which corresponds to System (7) is injective and that it
satisfies (O+).

4.1 Convergence of Solutions on the Coordinate Axes; Injectivity
and (O+).

When yn = 0, System (7) becomes

xn+1 =
1

B1
, yn+1 = 0, n = 0, 1, . . . . (34)

When xn = 0, System (7) becomes

xn+1 = 0, yn+1 =
y2
n

A2 + C2y2
n

, n = 0, 1, . . . . (35)

It follows from (34) and (35) that solutions of System (7) with initial conditions on the
x-axis remain on the x-axis and solutions of system (7) with initial conditions on the y-axis
remain on the y-axis.

Theorem 6 The following conditions hold for solutions {(xn, yn)} of System (7) with initial
conditions on the x or y-axis.

(i) Ex (xa, 0) is a superattractor of all solutions {(xn, yn)} of system (7) with initial condi-
tions on the x-axis.

(ii) When no equilibrium points exist on the y axis, if x0 = 0, then lim
n→∞

(xn, yn) = (0, 0).

(iii) When Ey (0, yns) exists,

(a) if x0 = 0 and y0 > yns, then lim
n→∞

(xn, yn) = (0, yns).

(b) if x0 = 0 and 0 < y0 < yns, then lim
n→∞

(xn, yn) = (0, 0).

(iv) When Ey+
(
0, y+a

)
and Ey−

(
0, y−s

)
exist,

(a) if x0 = 0 and y0 > y+a, then lim
n→∞

(xn, yn) = (0, y+a).
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(b) if x0 = 0 and y−s < y0 < y+a, then lim
n→∞

(xn, yn) = (0, y+a).

(c) if x0 = 0 and 0 < y0 < y−s, then lim
n→∞

(xn, yn) = (0, 0).

Proof.

(i) When y0 = 0, it follows directly from (34) that (xn, yn) = (xa, 0) for n > 1.

(ii) In this case 1 < 4A2C2. By (35) it can be shown that

yn+1 − yn =

−yn
(
C2

(
yn − 1

2C2

)2

+A2 − 1
4C2

)
A2 + C2y2

n

. (36)

By (36), when 1 < 4A2C2, it is clear that {yn} is a stricly decreasing sequence, and so is
convergent. It follows that {yn} converges to 0.

(iii) In this case, 1 = 4A2C2, and we may rewrite (36) as

yn+1 − yn =
−yn

(
C2 (yn − yns)

2
)

A2 + C2y2
n

. (37)

By (37) it is clear that {yn} is a stricly decreasing sequence, and so is convergent. It follows
that {yn} converges to yns when y0 > yns, and {yn} converges to 0 when 0 < y0 < yns.

(iv) In this case, 1 > 4A2C2. By (35), it can be shown that

yn+1 − yn =
−C2yn

(
yn − y+a

) (
yn − y−s

)
A2 + C2y2

n

. (38)

By (38), it is clear that {yn} is a stricly decreasing sequence (and so is convergent) when
y0 > y+a and when 0 < y0 < y−s, and a strictly increasing sequence (and so is convergent)
when y−s < y0 < y+a. It follows that {yn} converges to y+a when y0 > y+a and when
y−s < y0 < y+a, and converges to 0 when 0 < y0 < y−s.

2

Theorem 7 The map T which corresponds to System (7) is injective.

Proof. Indeed,

T

(
x1

y1

)
= T

(
x2

y2

)
⇔

 x2
1

B1x2
1+C1y21
y21

A2+B2x2
1+C2y21

 =

 x2
2

B1x2
2+C1y22
y22

A2+B2x2
2+C2y22


which is equivalent to

y2
2x

2
1 = y2

1x
2
2, y1 = y2. (39)

This immediatly implies x1 = x2. 2

Theorem 8 The map T which corresponds to System (7) satisfies (O+). All solutions of
System (7) converge to either an equilibrium point or to (0, 0).
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Proof.

Assume that

T

(
x1

y1

)
≤ne T

(
x2

y2

)
⇒

 x2
1

B1x2
1+C1y21
y21

A2+B2x2
1+C2y21

 ≤ne
 x2

2

B1x2
2+C1y22
y22

A2+B2x2
2+C2y22

 .

The last inequality is equivalent to

y2
2x

2
1 ≤ y2

1x
2
2, y1 ≤ y2 (40)

Suppose x2 < x1. Then y2
1x

2
2 < y2

2x
2
1, which contradicts (40). Consequently x1 ≤ x2 and so(

x1

y1

)
≤ne

(
x2

y2

)
.

Thus we conclude that all solutions of System (7) are eventually monotonic for all values
of parameters. Furthermore it is clear that all solutions are bounded. Indeed every solution of
(7) satisfies

xn ≤ 1
B1
, yn ≤ 1

C2
(41)

Consequently, all solutions of System (7) converge to an equilibrium point or to (0, 0).
2

4.2 Global Dynamics

Theorem 9 Assume that 1 < 4A2C2. Then System (7) has one equilibrium point Ex̄ which
is locally asymptotically stable. The singular point E0(0, 0) is global attractor of all points on
y-axis and every point on x-axis is attracted to Ex̄. Furthermore, every point in the interior of
the first quadrant is attracted to E0 or Ex̄.

Proof. Local stability of all equilibrium points follows from Theorem 5. In view of Theorem
6, every solution that starts on the y-axis converges to 0 in a decreasing manner and every
solution that starts on x-axis is equal to Ex̄ in a single step. Let (x0, y0) be an arbitrary
initial point in the interior of the first quadrant. Then (0, y0) �se (x0, y0) �se (x0, 0) and
T (0, y0) �se T (x0, y0) �se T (x0, 0) = Ex̄ and so Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, 0) = Ex̄.
In view of Theorems 6 and 8 Tn(x0, y0)→ Ex̄ or Tn(x0, y0)→ E0 as n→∞. 2

Theorem 10 Assume that 1 = 4A2C2. Then System (7) has two equilibrium points, Ex̄ which
is locally asymptotically stable and Eȳ which is non-hyperbolic of the stable type. The singular
point E0 is global attractor of all points on the y-axis, which start below Eȳ. Furthermore, every
point in the interior of the first quadrant below Ws(Eȳ) is attracted to E0(0, 0) or Ex̄ and every
point in the first quadrant which starts above Ws(Eȳ) is attracted to Eȳ.

Proof. Local stability of all equilibrium points follows from Theorem 5. In view of Theorem
6, every solution that starts on the y-axis below Eȳ converges to 0 in a decreasing manner
and every solution that starts on the x-axis is equal to Ex̄ in a single step. In addition,
every solution that starts on the y-axis above Eȳ converges to Eȳ in a decreasing way. Let
(x0, y0) be an arbitrary initial point in the interior of the first quadrant below Ws(Eȳ). Then
(0, y0) �se (x0, y0) �se (x0, 0) which implies T (0, y0) �se T (x0, y0) �se T (x0, 0) = Ex̄ and so
Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, 0) = Ex̄. If y0 > ȳ then Tn(x0, y0) will eventually enter
the ordered interval I(Eȳ, Ex̄) = {(x, y) : 0 < x ≤ x̄, 0 < y ≤ ȳ}. In view of Theorems 6 and 8,
Tn(x0, y0)→ Ex̄ or Tn(x0, y0)→ E0 as n→∞.
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Now, let (x0, y0) be an arbitrary initial point in the interior of the first quadrant above
Ws(Eȳ). Then (0, y0) �se (x0, y0) �se (x0, yW ), where (x0, yW ) ∈ Ws(Eȳ). This implies
T (0, y0) �se T (x0, y0) �se T (x0, yW ) and so Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, yW ). Since
Tn(0, y0)→ Eȳ, T (x0, yW )→ Eȳ as n→∞, we conclude that Tn(x0, y0)→ Eȳ as n→∞.

2

Theorem 11 Assume that 1 > 4A2C2 and System (7) has three equilibrium points, Ex̄ and
Eȳ+ which are locally asymptotically stable and Eȳ− which is a saddle point. The singular
point E0(0, 0) is global attractor of all points on y-axis, which start below Eȳ− . The basins of
attraction of two equilibrium points are given as:

B(Eȳ+) = {(x0,y0) : points aboveWs(Eȳ−)},
B(Eȳ−) =Ws(Eȳ−),

where Ws(Eȳ−) denotes the global stable manifold guaranteed by Theorem 3. Furthermore,
every initial point below Ws(Eȳ−) is attracted to E0(0, 0) or Ex̄.

Proof. Local stability of all equilibrium points follows from Theorem 5. The existence of the
global stable manifold is guaranteed by Theorem 3 in view of Theorem 7.

By Theorem 6, every solution that starts on the y-axis below Eȳ− converges to E0 in a
decreasing manner and every solution that starts on the x-axis is equal to Ex̄ in a single step.
In addition, every solution that starts on the y-axis above Eȳ− converges to Eȳ+ in a monotonic
way.

Let (x0, y0) be an arbitrary initial point in the interior of the first quadrant belowWs(Eȳ−).
Then (x0, yW ) �se (x0, y0) �se (x0, 0) which implies T (x0, yW ) �se T (x0, y0) �se T (x0, 0) = Ex̄
and so Tn(x0, yW ) �se Tn(x0, y0) �se Tn(x0, 0) = Ex̄. Since Tn(x0, yW ) → Eȳ− as n → ∞,
we conclude that Tn(x0, y0) eventually enters the ordered interval I(Eȳ− , Ex̄) = {(x, y) : 0 <
x ≤ x̄, 0 < y ≤ ȳ−}, in which case it converges to Ex̄ or E0(0, 0) .

Finally, let (x0, y0) be an arbitrary initial point in the interior of the first quadrant above
Ws(Eȳ−). Then (0, y0) �se (x0, y0) �se (x0, yW ), where (x0, yW ) ∈ Ws(Eȳ−). Thus Tn(0, y0) �se
Tn(x0, y0) �se Tn(x0, yW ), which by Tn(x0, yW ) → Eȳ− as n → ∞, implies that Tn(x0, y0)
eventually lands on the part of y-axis above Eȳ− and so it converges to Eȳ+ .

2

Theorem 12 Assume that 1 > 4A2C2 and System (7) has four equilibrium points, Ex̄ and
Eȳ+ which are locally asymptotically stable, Eȳ− which is a saddle point and EN which is non-
hyperbolic of the unstable type. The singular point E0(0, 0) is global attractor of all points on
the y-axis, which start below Eȳ− . The basins of attraction of three of the equilibrium points
are given as:
{(x0,y0) : points below Cl such that x0 ≥ xN} ⊂ B(Ex̄),
B(Eȳ+) = {(x0,y0) : points aboveWs(Eȳ−) ∪ Cu},
B(EN ) = {(x0,y0) : points between Cl and Cu,
B(Eȳ−) =Ws(Eȳ−),

where Ws(Eȳ−) denotes the global stable manifold guaranteed by Theorem 3 and Cl, Cu are
continuous non-decreasing curves emanating from EN , which existence and properties are guar-
anteed by Corollary 2. Furthermore, every initial point below Ws(Eȳ−) is attracted to E0(0, 0)
or Ex̄.

Proof. Local stability of all equilibrium points follows from Theorem 5. The existence of the
global stable manifold is guaranteed by Theorems 3 and 7.

By Theorem 6, every solution that starts on the y-axis below Eȳ− converges to E0 in a
decreasing manner and every solution that starts on the x-axis is equal to Ex̄ in a single step.

17



In addition, every solution that starts on y-axis above Eȳ− converges to Eȳ+ in a monotonic
way.

Let (x0, y0) be an arbitrary initial point in the interior of the first quadrant belowWs(Eȳ−)}∪
Cl. Assume that x0 ≥ x̄N . Then (x0, yW ) �se (x0, y0) �se (x0, 0) and so T (x0, yW ) �se
T (x0, y0) �se T (x0, 0) = Ex̄, where (x0, yW ) ∈ Cl and so Tn(x0, yW ) �se Tn(x0, y0) �se
Tn(x0, 0) = Ex̄. Since Tn(x0, yW ) → EN and Tn(x0, 0) → Ex̄ as n → ∞, we conclude that
Tn(x0, y0) eventually enters the ordered interval I(EN , Ex̄), in which case, in view of Corollary
1, it converges to Ex̄.

Next, assume that 0 < x0 < x̄N . Then (x0, yW ) �se (x0, y0) �se (x0, 0), where (x0, yW ) ∈
Ws(Eȳ−) and so T (x0, yW ) �se T (x0, y0) �se T (x0, 0) = Ex̄ and so Tn(x0, yW ) �se Tn(x0, y0) �se
Tn(x0, 0) = Ex̄. Since Tn(x0, yW ) → Eȳ− and Tn(x0, 0) → Ex̄ as n → ∞, we conclude that
Tn(x0, y0) eventually enters the ordered interval I(Eȳ− , Ex̄), in which case, by Theorems 6 and
8, Tn(x0, y0)→ Ex̄ or Tn(x0, y0)→ E0 as n→∞.

Now, let (x0, y0) be an arbitrary initial point in the interior of the first quadrant above
Ws(Eȳ−) ∪ Cu. Assume that x0 > x̄N . Then (0, y0) �se (x0, y0) �se (x0, yW ). Assume that
(x0, yW ) ∈ Cu. Thus Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, yW ), which by and Tn(0, y0)→ Eȳ+
and Tn(x0, yW ) → EN as n → ∞, implies that Tn(x0, y0) eventually the ordered interval
I(Eȳ+ , EN ), in which case, in view of Corollary 1, it converges to Eȳ+ .

Next, assume that 0 < x0 ≤ x̄N . Then (0, y0) �se (x0, y0) �se (x0, yW ), where (x0, yW ) ∈
Ws(Eȳ−) and so Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, yW ). Since Tn(x0, yW ) → Eȳ− and
Tn(0, y0)→ Eȳ+ as n→∞, we conclude that Tn(x0, y0) converges to Eȳ+ .

Finally, let (x0, y0) be an arbitrary initial point between Cl and Cu. Then Tn(x0, y0) stays
between Cl and Cu for all n and in view of Corollary 2 it must converge to EN .

2

Conjecture 1 Based on our numerical simulations we believe that Cl = Cu in Theorem 12.

Theorem 13 Assume that 1 > 4A2C2 and System (7) has five equilibrium points, Ex̄, Eȳ+
which are locally asymptotically stable, Eȳ− and ENW (resp. ESE) which are saddle points and
ESW which is a repeller. The singular point E0(0, 0) is global attractor of all points on the
y-axis, which start below Eȳ− . The basins of attraction of four of the equilibrium points are
given as:
{(x0,y0) : points belowWs(ENW )} ⊂ B(Ex̄),
B(Eȳ+) = {(x0,y0) : points aboveWs(Eȳ−) ∪Ws(ENW ),
B(ENW ) =Ws(ENW ),
B(Eȳ−) =Ws(Eȳ−),

where Ws(Eȳ−) and Ws(ENW ) denote the global stable manifolds which existence is guaranteed
by Theorem 3. Furthermore, every initial point below Ws(Eȳ−) is attracted to E0 or Eȳ.

Proof. Local stability of all equilibrium points follows from Theorem 5. We present the proof
in the case of the equilibrium point ENW . The proof in the case of the equilibrium point ESE
is similar.

The existence of the global stable manifold is guaranteed by Theorems 3 and 7.
By Theorem 6, every solution that starts on the y-axis below Eȳ− converges to E0 in a

decreasing manner and every solution that starts on the x-axis is equal to Ex̄ in a single step.
In addition, every solution that starts on the y-axis above Eȳ− converges to Eȳ+ in a monotonic
way.

Let (x0, y0) be an arbitrary initial point in the interior of the first quadrant belowWs(Eȳ−)∪
Ws(ENW ). Assume that x0 > x̄SW . Then (x0, yW ) �se (x0, y0) �se (x0, 0) which implies
T (x0, yW ) �se T (x0, y0) �se T (x0, 0) = Ex̄, where (x0, yW ) ∈ Ws(ENW ) and so Tn(x0, yW ) �se
Tn(x0, y0) �se Tn(x0, 0) = Ex̄. Since Tn(x0, yW )→ ENW and Tn(x0, 0)→ Ex̄ as n→∞, we
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conclude that Tn(x0, y0) eventually enters the ordered interval I(ENW , Ex̄), in which case, in
view of Corollary 1, it converges to Ex̄.

Next, assume that 0 < x0 ≤ x̄SW . Then (x0, yW ) �se (x0, y0) �se (x0, 0), where (x0, yW ) ∈
Ws(Eȳ−). Thus T (x0, yW ) �se T (x0, y0) �se T (x0, 0) = Ex̄ and so Tn(x0, yW ) �se Tn(x0, y0) �se
Tn(x0, 0) = Ex̄. Since Tn(x0, yW ) → Eȳ− and Tn(x0, 0) → Ex̄ as n → ∞, we conclude that
Tn(x0, y0) eventually enters the interior of the ordered interval I(Eȳ− , Ex̄), in which case, it
converges to E0 or Ex̄.

Now, let (x0, y0) be an arbitrary initial point in the interior of the first quadrant above
Ws(Eȳ−) ∪ Ws(ENW ). Assume x0 > x̄SW . Then (0, y0) �se (x0, y0) �se (x0, yW ), where
(x0, yW ) ∈ Ws(ENW ) and so Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, yW ). Since Tn(0, y0)→ Eȳ+
and Tn(x0, yW ) → ENW as n → ∞, then Tn(x0, y0) eventually enters the ordered interval
I(Eȳ+ , ENW ), in which case, in view of Corollary 1, it converges to Eȳ+ .

Next, assume that 0 < x0 ≤ x̄SW . Then (0, y0) �se (x0, y0) �se (x0, yW ), where (x0, yW ) ∈
Ws(Eȳ−) and so Tn(0, y0) �se Tn(x0, y0) �se Tn(x0, yW ). Since Tn(x0, yW ) → Eȳ− and
Tn(0, y0)→ Eȳ+ as n→∞, we conclude that Tn(x0, y0) converges to Eȳ+ .

2

Theorem 14 Assume that 1 > 4A2C2 and System (7) has six equilibrium points, Ex̄, Eȳ+
which are locally asymptotically stable, Eȳ− and ENE (resp. ESE or ENW ) which are saddle
points, ESW which is a repeller and EN which is non-hyperbolic of the stable type. The singular
point E0(0, 0) is global attractor of all points on the y-axis, which start below Eȳ− . The basins
of attraction of five of the equilibrium points are given as:
{(x0,y0) : points belowWs(EN ) ⊂ B(Ex̄),
B(Eȳ+) = {(x0,y0) : points aboveWs(Eȳ−) ∪Ws(ENE),
B(EN ) = {(x0, y0) : region bounded byWs(EN ) andWs(ENE)},
B(Eȳ−) =Ws(Eȳ−),
B(ENE) =Ws(ENE),

where Ws(Eȳ−),Ws(EN ), and Ws(ENE) denote the global stable manifolds which existence is
guaranteed by Theorem 3. Furthermore, every initial point below Ws(Eȳ−) is attracted to E0

or Ex̄.

Proof. Local stability of all equilibrium points follows from Theorem 5. We present the proof
in the case of the equilibrium point ENE . The proof in the case of the equilibrium points ESE
and ENW is similar.

The existence of the global stable manifolds are guaranteed by Theorems 3 and 7.
The proofs of the basins of attractions B(Ex̄), B(Eȳ+) are the same as the proofs for the

corresponding basins of attraction in Theorem 13, so we will only give the proof for B(EN ).
Indeed, B(EN ) is an invariant set and Tn(B(EN )) is a subset of the interior of the ordered
interval I(ENE , EN ) for n large. In view of Corollary 1 the interior of the ordered interval
I(ENE , EN ) is attracted to EN .

2

Theorem 15 Assume that 1 > 4A2C2 and System (7) has seven equilibrium points, Ex̄, Eȳ+ ,
ENE which are locally asymptotically stable, Eȳ− , ESE , ENW which are saddle points and ESW
which is a repeller. The singular point E0(0, 0) is global attractor of all points on y-axis, which
start below Eȳ− . The basins of attraction of six of the equilibrium points are given as:
{(x0,y0) : points belowWs(ESE) ⊂ B(Ex̄),
B(Eȳ+) = {(x0,y0) : points aboveWs(Eȳ−) ∪Ws(ENW ),
B(ENE) = {(x0, y0) : region bounded byWs(ESE) andWs(ENW )},
B(Eȳ−) =Ws(Eȳ−),
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B(ESE) =Ws(ESE),
B(ENW ) =Ws(ENW ),
where Ws(Eȳ−),Ws(ENW ), and Ws(ESE) denote the global stable manifolds which exis-

tence is guaranteed by Theorem 3. Furthermore, every initial point below Ws(Eȳ−) is attracted
to E0 or Ex̄.

Proof. Local stability of all equilibrium points follows from Theorem 5. Proofs of the basins
of attractions B(Ex̄), B(Eȳ+) are same as the proofs for corresponding basins of attraction in
Theorem 13. So we only give the proof for B(ENE). Indeed, B(ENE) is an invariant set and
Tn(B(ENE)) is a subset of the interior of the ordered interval I(ENW , ESE) for n large. In
view of Corollary1 the interior of the ordered interval (ENW , ESE) is attracted to ENE .
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Figure 3: Global Stability
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