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Model-based approach to envelope and positive instantaneous
frequency estimation of signals with speech applications

Ramdas Kumaresan and Ashwin Rao
Department of Electrical Engineering, University of Rhode Island, Kingston, Rhode Island 02881

~Received 15 May 1997; accepted for publication 6 November 1998!

An analytic signals(t) is modeled over aT second duration by a pole-zero model by considering
its periodic extensions. This type of representation is analogous to that used in discrete-time systems
theory, where the periodic frequency response of a system is characterized by a finite number of
poles and zeros in thez-plane. Except, in this case, the poles and zeros are located in the
complex-time plane. Using this signal model, expressions are derived for the envelope, phase, and
the instantaneous frequency of the signals(t). In the special case of an analytic signal having poles
and zeros in reciprocal complex conjugate locations about the unit circle in the complex-time plane,
it is shown that their instantaneous frequency~IF! is always positive. This result paves the way for
representing signals by positive envelopes and positive IF~PIF!. An algorithm is proposed for
decomposing an analytic signal into two analytic signals, one completely characterized by its
envelope and the other having a positive IF. This algorithm is new and does not have a counterpart
in the cepstral literature. It consists of two steps. In the first step, the envelope of the signal is
approximated to desired accuracy using a minimum-phase approximation by using the dual of the
autocorrelation method of linear prediction, well known in spectral analysis. The criterion that is
optimized is a waveform flatness measure as opposed to the spectral flatness measure used in
spectral analysis. This method is called linear prediction in spectral domain~LPSD!. The resulting
residual error signal is an all-phase or phase-only analytic signal. In the second step, the derivative
of the error signal, which is the PIF, is computed. The two steps together provide a unique AM-FM
or minimum-phase/all-phase decomposition of a signal. This method is then applied to synthetic
signals and filtered speech signals. ©1999 Acoustical Society of America.
@S0001-4966~99!01003-6#

PACS numbers: 43.72.Ar@JLH#

INTRODUCTION

Many natural and man-made signals of interest are time-
varying or nonstationary in nature, i.e., their frequency con-
tent or spectrum changes with time. Examples include
speech signals, animal calls, biological/biomedical signals
such as cardiac rhythms, etc. Techniques for characterizing
such signals are of great importance in applications involv-
ing such signals. A collection of short-time Fourier spectra
known as spectrogram is a common tool for analyzing such
time-varying signals. Unfortunately, the spectrogram suffers
from the need to compromise time and frequency resolution,
i.e., a large time window is required to resolve closely
spaced frequencies. To overcome this problem, a number of
so-called time-frequency distributions or representations
have been developed.1,2 The time-frequency analysis tools
are very useful in visualizing the time and frequency behav-
ior of simple signals like a chirp. However, when the signals
are complex, as in the case of speech, it is hard to interpret
time-frequency representations because of the interactions
between components in the signal. The time-frequency
analysis methods also create a practical problem. They result
in enormous 2D data sets. Although sometimes these 2D
data sets can be viewed by humans to sort out the important
features of interest, it is hard to program a machine to reli-
ably extract such features. Hence it has been difficult to ap-
ply these methods to automatic signal classification prob-
lems.

In the area of speech processing, the above problem is
circumvented by directly extracting features from short seg-
ments of a speech signal. Such algorithms are based on
short-term spectral analysis in the form of linear prediction
~which captures the spectral envelope of a signal with a few
parameters!,3,4 cepstral analysis,5 and Mel-cepstrum.6 Using
these procedures, spectral templates or feature vectors are
computed and used in applications like machine recognition/
verification. However, these methods are vulnerable to inter-
ference and channel degradations as encountered in tele-
phone speech. Signals are also often analyzed over short-
time intervals, using specific signal models, such as sum of
sinusoidal or damped sinusoidal signals or phase-modulated
sinusoidal signals. If such models are appropriate for the data
at hand, then significant advantages can be gained. In this
paper a model-based approach is proposed for representing
signals by their envelope and instantaneous frequency which
is guaranteed to be positive.

A. Envelope and instantaneous frequency of signals

Many of the above-mentioned methods represent a sig-
nal by characterizing its power as a function of time and
frequency. Are there other alternatives? Clearly, a signal’s
phase and envelope carry information about how various
components of the signal are related to each other. Hence, is
it possible to characterize a signal by its phase and envelope
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modulations? In his 1946 paper, among other important
ideas, Gabor approached this question by defining the so-
called analytic signal or pre-envelope.7,8 Recall that ifsr(t)
is a real signal, then the corresponding analytic signal is
s(t)5sr(t)1 j ŝr(t), whereŝr(t) is the Hilbert transform9 of
sr(t). The Fourier transform ofs(t), S(v), is nonzero only
for v.0. The envelope ofsr(t) is then defined asus(t)u and
its instantaneous frequency~IF! is denoted by the first de-
rivative of s(t)’s phase function scaled by 1/2p. An analytic
signal is valuable because it permits an unambiguous char-
acterization of a real signal in terms of its envelope and IF.10

Characterizing a signal by envelope and IF is also commonly
referred to as AM-FM modeling of signals.11–14

Engineers and scientists are most familiar with IF in the
context of frequency-modulated signals as in a FM radio.
But what about the IF of an arbitrary signal? For an arbitrary
signal, the IF is typically an erratic function whose range
may extend from negative to positive infinity.10 For example,
for a signal consisting of two complex sine waves, i.e.,
s(t)5a1ej v1t1a2ej v2t, the IF could lie anywhere in the
range of~2`,`! depending on the relative sizes ofa1 and
a2 . The general impression among researchers is that the IF
function is unusable unless it is sufficiently smoothed.15

Some incompletely resolved questions regarding IF include:
how do we interpret the envelope and IF of naturally occur-
ring ~not man-made! signals like speech? How are phase or
IF and envelope related to each other? Is IF more important
than envelope? When is a signal’s IF a smooth function?
Under what conditions is a signal’s IF guaranteed to be posi-
tive, and so on. Further, one of the factors that has discour-
aged researchers15,16 in using phase and envelope to repre-
sent a signal is the following: for example, if bandpass
filtered speech is decomposed into envelope and IF, then the
resulting modulations, rather ironically, have bandwidths
that are typically much greater compared to that of the origi-
nal band-limited signal.

In addition to Gabor, Dugundji, and others,7,8,17–22sig-
nificant contributions to understanding analytic signals were
made nearly 30 years ago by Voelcker.23,24 Voelcker pro-
posed a methodical way to understanding the IF and log-
envelope of signals which may help answer some of the
questions raised above. Unfortunately, Voelcker’s work
never became popular because it was somewhat hard to read.
He proposed that complex-valued signals~and hence analytic
signals! be modeled as polynomials or a ratio of polynomials
in the complex variablet ~time!, just like a given system or
frequency response may be modeled by a ratio of polynomi-
als in the s-domain ~continuous-time systems! or the
z-domain~discrete-time systems!. He called it ‘‘product rep-
resentation of signals.’’ Once we realize that signals may be
represented by a polynomial or a ratio of polynomials with
complex coefficients, then a myriad of ideas that have been
developed in systems literature can be applied to this so-
called product representation of signals. In this paper we
extend Voelcker’s work by applying some of the well-known
ideas from the theory of linear prediction25 to his signal
model.

A motivation for representing signals by envelope and
IF comes from our desire to understand and model the signal

processing function performed by the auditory periphery,
particularly the cochlea. The cochlea is known26 to decom-
pose acoustic stimuli into frequency components along the
length of the basilar membrane. This phenomenon is called
tonotopic decomposition. Further, it is also known that the
nerve fibers emanating from a high-frequency location in the
cochlea ‘‘phase-lock’’ to the envelope of the stimulus around
that frequency, i.e., convey information about the envelope
modulations in the signal.27 Thus, to a first-order approxima-
tion, it is often argued that the tonotopic location/place along
the length of the basilar membrane conveys the IF or fre-
quency information about the signal, and the rate of nerve
fiber activity around that location conveys the envelope in-
formation. Hence analytical signal models that explicitly
characterize the envelope and phase variations of a complex
stimulus on a short-time basis may eventually help in under-
standing the cochlear function.

B. Organization of the paper

In Sec. I we consider complex-valued periodic signals
and express them as a product of so-called elementary sig-
nals àla Voelcker. This type of representation is analogous
to that used in discrete-time systems theory, where the peri-
odic frequency response of a system is characterized by a
finite number of poles and zeros, except in our case the poles
and zeros are located in a complex-time plane. Using this
signal model, we derive expressions for the envelope, phase,
and the instantaneous frequency. In the special case of an
analytic signal having poles and zeros in reciprocal complex
conjugate locations about the unit circle in the complex-time
plane, it is shown in Sec. II that their instantaneous fre-
quency~IF! is always positive. This result paves the way for
representing signals by positive envelopes and positive IF
~PIF! as desired in literature associated with time-frequency
distributions.10,14 In Sec. III we propose a new algorithm
which consists of two steps to achieve a unique decomposi-
tion of an analytic signal into two analytic signals, one com-
pletely described by its envelope and the other having a posi-
tive IF. This type of decomposition is different from those
known in the cepstral literature.5 In the first step, the enve-
lope of the signal is approximated to desired accuracy using
a minimum-phase approximation by using the dual of the
autocorrelation method of linear prediction25 well known in
spectral analysis. The criterion that is optimized is a wave-
form flatness measure as opposed to the spectral flatness
measure used in the spectral domain. We call our method,
linear prediction in spectral domain~LPSD!. The resulting
residual error signal is an all-phase or phase-only analytic
signal. In the second step, the derivative of the error signal is
approximated. The two steps together provide a unique
AM-FM or minimum-phase/all-phase decomposition of a
signal. This method is then applied to synthetic signals and
filtered speech signals.

I. ENVELOPE AND IF IN TERMS OF A SIGNAL
MODEL

Consider a periodic analytic signals(t), with periodT
seconds. LetV52p/T denote its fundamental angular fre-
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quency. Ifs(t) has finite bandwidth, it may be described by
the following model for a sufficiently largeM, over an inter-
val of T seconds:

s~ t !5ej v tt(
k50

M

ake
jkVt. ~1!

ej v tt represents a frequency translation. In other words,v t

>0 is the nominal carrier frequency of the signal.ak are the
complex amplitudes of the sinusoidsejkVt; a0Þ0 and aM

Þ0. By analytic continuation we may regardej Vt as a com-
plex variable~à la the complex variableZ!. That is, t, the
time variable, is regarded as complex-valued. Note that in
Eq. ~1! the M th degree polynomial inej Vt represents the
complex envelope of the signals(t). We may factor this
polynomial into itsM (5P1Q) factors and rewrites(t) as

~2!

p1 ,p2 ,...,pP , and q1 ,q2 ,...,qQ denote the polynomial’s
roots; pi5upi uej u i, qi5uqi uej f i. pi denote roots inside the
unit circle in the complex plane,qi are outside the unit circle.
Currently we assume that there are no roots on the circle.
That is upi u,1 and uqi u.1. Each factor of the form (1
2pie

j Vt) in the above is called an ‘‘elementary signal.’’23

The pi andqi are referred to as zeros of the signals(t). The
above expressions, representing a band-limited periodic sig-
nal, may be recognized as the counterpart of the frequency
response of a finite impulse response~FIR! filter in discrete-
time systems theory.28 More generally, ifs(t) consists of an
infinite number of spectral lines@i.e., its Fourier transform,
S(v)5(k50

` akd(v2kV)#, then we can represents(t) over
T seconds to desired accuracy using a sufficient number of
poles and zeros as follows:

~3!

pi and qi correspond to zeros inside and outside the unit
circle, respectively.ui correspond to the signal’s poles. Since
the spectrum of the signal is assumed to have only positive
frequencies, poles are restricted to be inside the unit circle.
Again this representation is analogous to causal, stable IIR
filters in discrete-time systems literature. Even more gener-
ally, if the spectrum ofs(t) is two-sided then we may model
s(t) using poles and zeros inside and outside the unit circle.
ej v tt, the arbitrary frequency translation, is analogous to an
arbitrary time shift in the impulse response in the case of a
discrete-time filter. In summary, we model complex-valued
periodic signals using an all-zero or a pole-zero signal model
as in Eqs.~2! and~3!, respectively. This type of signal mod-
eling goes back to the work of Cauchy and Hadamard and is
related to the theory of entire functions.29,30 Voelcker called
this way of modeling signals as ‘‘product representation of

signals.’’ We shall primarily work with the all-zero models
since they are easier to use.

The factors corresponding to the zeros inside the unit
circle, P i 51

P (12pie
j Vt), constitute the minimum-phase

~MinP! signal. Similarly, the factors corresponding to the
zeros outside the circle,P i 51

Q (12qie
j Vt), constitute the

maximum-phase~MaxP! signal. These are the direct coun-
terparts of the frequency responses of the well-known
minimum-and maximum-phase FIR filters in discrete-time
systems theory;5 just as in systems theory~see Sec. 10.3 in
Ref. 5! the phase of the MinP signal is the Hilbert transform
of its log-envelope. That is, the MinP signal may be ex-
pressed in the formea(t)1 j â(t). See Appendix A for details.
â(t) is the Hilbert transform ofa(t). Similarly, since a
maximum-phase~MaxP! signal has zeros outside the unit

circle, it may be expressed aseb(t)2 j b̂(t). Thus, envelope or
phase alone is sufficient to essentially characterize a MinP or
a MaxP signal.@Along the same lines, an all-phase~AllP!
analytic signal~the analog of an all-pass filter! would be of
the formej g(t).# Thuss(t) may be expressed as

~4!

where the ‘‘hat’’ stands for Hilbert transform.vc is QV
~contributed by the linear phase term from the MaxP signal!
plus the arbitrary frequency translation,v t , shown in Eq.
~2!. Ac is a0P i 51

Q (2qi). See Appendix A for details. The
expressions fora(t) andb(t) are derived in Appendix A.

a~ t !5 (
k51

`

(
i 51

P

2
upi uk

k
cos~kVt1ku i !

and

b~ t !5 (
k51

`

(
i 51

Q

2
1/uqi uk

k
cos~kQt1kf i !. ~5!

Closed-form expressions can be obtained forȧ̂(t) and

ḃ̂(t).23,31 The ‘‘dot’’ stands for the time-derivative opera-
tion. Note that the envelope ofs(t) is Ace

a(t)1b(t) and the IF

is vc1 ȧ̂(t)2 ḃ̂(t). A detailed description of properties of
envelope and IF of signals described by Eq.~2! can be found
in Ref. 31. We briefly summarize the main points here. The
envelope, log-envelope, and phase~or IF! of s(t) are not
band-limited quantities. It can be shown that ifs(t) is band-
limited then us(t)u2 and d/s(t)/dtus(t)u2 are band-limited.
Further, it can also be shown that no ‘‘information’’ is lost
by filtering the log-envelope and IF of a band-limiteds(t),
using a lowpass filter with bandwidth equal to that of the
signals(t). That is, in principle, it is possible to essentially
reconstruct the signals(t) given ideally filtered versions of
log-envelope and IF ofs(t). The counterpart of this property
in the systems domain is the property of complex cepstrum
~see Ch. 12 in Ref. 5!. That is, even though the complex
cepstrum of a finite-length discrete-time sequence is infinite
in length, only a finite number of samples of the complex
cepstrum is needed to recover the original sequence.
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Using the above product representation model, in addi-
tion to being able to obtain explicit expressions for the log-
envelope and IF, it is also easy to gain intuitive understand-
ing of the relationship between phase and envelope of signals
based on familiar results in systems theory. Just like the unit
circle in the~discrete-time! z plane corresponds to the inter-
val between zero frequency and the sampling frequency,5 the
unit circle in the complex-time plane corresponds to the in-
terval ofT seconds. If a periodic signal is such that a zero of
the signal,pi or qi , is close to the unit circle, then significant
phase changes will occur in the temporal neighborhood of
this zero, which will be reflected in the IF values. Specifi-
cally, a zero close to the unit circle will result in a large spike
in the IF. In fact, if a zero happens to fall on the circle, the
envelope goes to zero~at a time instant determined by the
zero’s location! and the IF at that time instant is undefined~à
la group delay of systems!. Thus if we want to use IF and
log-envelope as information-bearing attributes of a signal,
then it is necessary to ‘‘tame’’ these quantities by shaping
the signal spectrum. That is, we must preprocess the signal
such that the zeros,pi andqi , stay away from the unit circle.
This preprocessing then becomes part and parcel of the sig-
nal representation.

A. Extension to nonstationary signals

The model in Eq.~2! describes a stationary and periodic
signal. Of course, most signals of interest are not stationary
and certainly not periodic. Hence, as in the case of short-time
spectral analysis/spectrogram, we may consider a short
T-second segment of a nonstationary signal and imagine that
it is periodically extended in order to apply the model in Eq.
~2!. Then, successive overlappingT-second segments of a
signal may be described as in Eq.~2!, possibly with slowly
drifting parameters (pi andqi) and the associated envelope
and IF they represent. Thus although the model described in
this section is strictly valid for a periodic signal, we intend to
apply it to nonstationary signals by viewing the signal
through a slidingT-second window. In fact there is no reason
to fix the window length toT seconds. The window length
may be a function of the nominal center frequency of the
signal s(t) as its characteristics change. Next, we use the
above model to define a signal whose IF is positive.

II. POSITIVE INSTANTANEOUS FREQUENCY „PIF… OF
A SIGNAL

Recall that an analytic signal is said to be minimum-
phase~MinP! if its log-envelope (lnus(t)u) and its phase angle
are related by Hilbert transform. An analytic signal is said to
be maximum-phase~MaxP! if its log-envelope is the nega-
tive of the Hilbert transform of its phase angle. An important
property of these signals is that their logarithm is also an
analytic signal. Another important aspect is that either enve-
lope or phase of these signals is essentially sufficient infor-
mation to characterize these signals. An analytic signal is
said to be all-phase~AllP! if its envelope,us(t)u, is constant.
That is, AllP is a pure phase signal with one-sided spectrum.
Now we shall discuss signals whose IF is always positive.

A. General case

Let s(t) be any analytic signal with spectrum confined
to the positive side of the frequency axis,

s~ t !5a~ t !ej f~ t !. ~6!

Let a(t).0. The IF of s(t) is ḟ(t)/2p. The IF could lie
anywhere in the interval of~2`,`! depending on the
makeup ofs(t). Let us rewrites(t) as

s~ t !5eln a~ t !1 j f~ t !. ~7!

Adding and subtracting in the exponent the term31 j ln â(t),
~‘‘hat’’ stands for Hilbert transform!, we get after rearrang-
ing,

~8!

The above is analogous to the unique decomposition of the
frequency response of a linear, causal, continuous-time sys-
tem into its minimum-phase and all-pass parts.9 Observe that
in the above the first term on the right is a MinP analytic
signal. If we multiply both sides of the above by
e2 ln a(t)2j ln â(t) ~which is also MinP with spectrum confined to
positive frequencies!, since the spectrum ofs(t) is already
confined to positive frequencies only, it follows that the
spectrum ofej (f(t)2 ln â(t)) is nonzero only for positive fre-
quencies. Henceej (f(t)2 ln â(t)) must be an AllP analytic sig-
nal. The AllP signal is also called a Blaschke function in
analytic function theory,32,33and may be written as a product
of all-phase ‘‘sections,’’ i.e., asP i(t2zi)/(t2zi* ). It can be
shown that the AllP signal has not only a one-sided spectrum
but has the remarkable property that its IF is a positive defi-
nite function.23,32 Based on this property we have defined a
function c(t), called the positive IF~PIF!,34 of any analytic
signals(t) as follows:

c~ t !5PIF of s~ t !5
d„f~ t !2 ln â~ t !…

dt
. ~9!

In words, we define an analytic signal’s PIF as the derivative
of that part of its phase which is left over after removing the
contribution due to the signal’s log-envelope~specifically the
Hilbert transform of its log-envelope! from the original
phase. The main point is that any analytic signal can be
characterized by two positive functions: a positive envelope
function ~the magnitude of the MinP part! and a positive IF
function ~of its AllP part! rather than by its usual IF@phase-
derivative,ḟ(t)#. This is an important observation that we
repeatedly exploit.

B. Periodic case

Although the above decomposition is valid for any ana-
lytic signal, as mentioned before, in practice one has to work
with a finite, T-second, segment of a possibly nonstationary
signal,s(t). Hence, we may invoke the~periodic extension!
model we have used in Eq.~1!. We shall repeat Eqs.~2! and
~4! here for convenience.
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s~ t !5a0ej v tt)
i 51

P

~12pie
j Vt!)

i 51

Q

~12qie
j Vt! ~10!

~11!

Note that the zeros,qi , andpi are assumed to be outside and
inside the unit-circle, respectively. We shall reflect theqi to
inside the circle~as 1/qi* ) and cancel them using poles. Then
we group all the zeros inside the unit circle to form a differ-
ent MinP signal and the zeros outside the circle and the poles
that are their reflections inside the unit circle to form the
all-phase or AllP part of the signal. That is,

~12!

Equivalently, multiplying and dividing Eq.~11! by ej 2b̂(t)

and collecting terms we get

~13!

This grouping of signals is, of course, analogous to well-
known decomposition of a linear discrete-time system into
minimum-phase and all-pass systems~see Sec. 5.6 in Ref. 5!.
Analogous to the fact that the group delay of the all-pass
filters is always positive~Sec. 5.5 in Ref. 5!, the IF of AllP
part will always be positive~even ifv t , the frequency trans-
lation, is zero!. See Appendix B for a derivation of the IF of
an AllP signal. Thus the PIF,c(t), of s(t) is a positive
function and is as follows:

c~ t !5vc22ḃ̂~ t !. ~14!

The expression forb̂(t) is the same as that ofb(t) in Eq. ~5!
with cosine replaced with sine. Of course, we could also
group the zeros outside the unit circle together to form a
MaxP-AllP decomposition. That is, we could also rewrite
Eq. ~12! as a MaxP/AllP product as follows:

s~ t !5Ace
a~ t !1b~ t !2 j „â~ t !1b̂~ t !…ej „vct12â~ t !…. ~15!

In this case the IF corresponding to the AllP part will be
always negative~assuming the frequency translationv t is
zero! and may be called negative IF~NIF!. If we can separate
the MinP and the AllP components of the signals(t), the

MinP part conveys the AM information, i.e.,ea(t)1b(t) @or
equivalently, its logarithma(t)1b(t)# around the carriervc

and the AllP part conveys the PIF information,c(t).
The next question is: givens(t) over aT-second inter-

val, how do we compute the PIF of the signal or equivalently
separate the MinP and AllP components? There are at least
three not so elegant ways to separate the MinP and AllP
components. First, one could find the Fourier coefficients of
s(t), then root the polynomial formed using the Fourier co-
efficients, i.e., findpi andqi , and then group them as in Eq.
~12! to separate the components. Alternatively, one could
compute the log-envelope ofs(t) ~i.e., lnus(t)u), compute its
Hilbert transform, and subtract it from the phase ofs(t) @as
in Eq. ~8!#. Third, we can use the block diagram in Fig. 12.7
~p. 784! of Oppenheim and Schafer5 by replacing their
X(ej v) by s(t). In this case one computes the logarithm of
s(t) and keeps the causal part of its spectrum~i.e., spectrum
corresponding to the positive frequencies! as the MinP part.
The AllP part is obtained by dividings(t) by the MinP part
as in Ref. 5. However, there is a new and elegant way of
achieving this decomposition which we describe next.34 Re-
markably, it does not require explicit computation of the
logarithm or the Hilbert transform or rooting of a polyno-
mial. We also called this method a generalized AM-FM de-
modulator since the outputs of the algorithm are the envelope
and PIF.

III. ALGORITHM FOR DECOMPOSING AN ANALYTIC
SIGNAL INTO ENVELOPE AND PIF

Although in the previous section we have pointed to the
fact that any analytic signal can be written as a product as in
Eq. ~13!, the question is how do we separate these multiplied
components? In this section we describe a remarkably simple
algorithm to separate the MinP and AllP components. This is
shown in Fig. 1. It consists of two parts. In the first part,
which consists of a multiplier or modulator, an inverse signal
generator~ISG!, and an error minimization block, a model
fitting procedure is used to flatten the envelope of the signal
s(t).

This is achieved by minimizing the energy of an error
signal e(t)„5h(t)s(t)…. The energy ofe(t) is defined as
follows:

E
0

T

ue~ t !u2 dt5E
0

T

us~ t !h~ t !u2 dt. ~16!

h(t) is a signal generated by the ISG using the formula
h(t)511(k51

H hke
jkVt

•V52p/T. In other words, the ISG

FIG. 1. LPSD algorithm; 1/h(t) corresponds to the MinP part of the signal
s(t). c(t) corresponds to the IF of the AllP part of the signals(t).
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generates a low-pass periodic signal. The error energy is
minimized by choosing the coefficients,hk . The reader who
is familiar with model-based spectral analysis will immedi-
ately recognize the analogy between this method and the
‘‘autocorrelation method’’ of linear prediction.4,25 In the au-
tocorrelation method, a discrete-time FIR filter, called an in-
verse filter or prediction-error filter, with frequency response
H(ej v) ~with first coefficient held at unity!, is used to flatten
the envelope of a spectrunX(ej v) of a sequencex(n) by
minimizing the error*0

2puX(ej v)H(ej v)u2 dv. This is an ex-
act analog of Eq.~16!. Analogous to the autocorrelation
method, the error in Eq.~16! is a measure of the flatness of
the envelope ofe(t). Also, minimizing the error in Eq.~16!
amounts to performing linear prediction on the Fourier coef-
ficients of the signals(t) and hence we called it linear pre-
diction in spectral domain or LPSD in earlier work.34 The
signalh(t) may be called the ‘‘inverse signal’’ analogous to
the inverse filter.

Similar to the MinP property of the prediction-error fil-
ter used in linear prediction,25 minimizing *0

Tue(t)u2dt results
in a h(t) that is a MinP signal~having all its signal zeros
inside the unit circle!. This is true even if the envelope of
s(t) goes to zero at some points between 0 andT seconds,
i.e., even if somepi or qi fall on the unit circle. The signifi-
cance of this MinP property is that, as we already know,
h(t)’s log-envelope and phase are Hilbert transforms. Be-
cause the error minimization is performed to flattens(t)’s
envelope, if the value ofH is chosen sufficiently large, then
h(t) will be given by

h~ t !'e2„a~ t !1b~ t !…e2 j „â~ t !1b̂~ t !…. ~17!

Thus, 1/h(t) is the desired approximation tos(t)’s MinP
component and hence the name ‘‘inverse signal’’ forh(t).
Consequently, the error signale(t) will be e(t)

'Ace
j „vct22b̂(t)…, and hence is an approximation to the AllP

component ofs(t). In the second part, denoted in Fig. 1 as
‘‘measure frequency,’’ the PIF is computed asė(t)/ue(t)u or
d/e(t)/dt. The next section describes the algorithm used to
minimize the error*0

Tue(t)u2 dt.

A. LPSD algorithm using signal samples

In this section we present the details of the LPSD algo-
rithm for computing the MinP and AllP approximations
given the samples of the signals(t). The algorithm amounts
to performing linear prediction on the discrete Fourier trans-
form ~DFT! values of the signal samples. Lets@n# (n
50,1,...,K), given by Eq.~1!, denote samples of the given
signal;K5N21. Let V52p/N be the assumed fundamen-
tal frequency. By replacingh(t) ande(t) by their respective
sampled versions, we have

e@n#5s@n#h@n#5s@n#1 (
k51

H

hks@n#ejkVn, ~18!

which can be further expressed in matrix notation as

S s@0#
s@1#
]

s@K#

D 1S s@0# s@0# ¯ s@0#

ej Vs@1# ej 2Vs@1# ¯ ejHVs@1#

] ] � ]

ejKVs@K# ej 2KVs@K# ¯ ejKHVs@K#

D
3S h1

h2

]

hH

D 5S e@0#
e@1#
]

e@K#

D . ~19!

If we let s, H, h, ande denote the vectors/matrices from left
to right in Eq. ~19!, then the solution vector,h, that mini-
mizeseTe5(n50

N21ue@n#u2, in Eq. ~19!, is given by

h̃52~HTH!21HTs. ~20!

Here T stands for conjugate-transpose and ( )21 denotes
matrix inverse operation. The matrix,H, can be further de-
composed into a productH5SN3NXN3H :

H5S s@0# 0 ¯ ¯ 0

0 s@1# 0 ¯ 0

] ] � ] ]

0 0 ¯ 0 s@K#

D
N3N

3S 1 1 ¯ 1

ej V ej 2V
¯ ejHV

] ] � ]

ejKV ej 2KV
¯ ejHKV

D
N3H

. ~21!

In Eq. ~21!, observe thatS is a diagonal matrix consisting of
signal samples whileX is essentially the DFT matrix. Using
this decomposition, the solution vector,h̃, given by Eq.~20!,
can be rewritten as

h̃52~XTSTSX!21XTSTs. ~22!

Clearly, the solution depends only on the magnitude of
s@n#. h@n# can then be reconstructed by substituting ele-
ments of the vectorh̃ in h@n#511(k51

H hke
jkVn

•sMinP@n#
can then be computed as 1/h@n#; the log-envelope and phase
of sMinP@n# correspond toa@n#1b@n# andâ@n#1b̂@n#, re-

spectively. The positive frequency,vc22ḃ̂@n#, can be
found as the IF of the error signal,e@n#, using any standard
IF estimator such as the phase difference between neighbor-
ing samples.35 Instead, as mentioned earlier, we may also
apply the LPSD algorithm again toė@n# @because the enve-
lope of the first derivative ofe(t) is c(t), which is the PIF#.
We call this step the second-stage LPSD.

The LPSD algorithm attempts to flatten the envelope of
the signals(t) by using an adaptive amplitude demodulator.
This process not only eliminates the AM but also automati-
cally removes from the phase ofs(t) a quantity equal to the
Hilbert transform of the log-envelope ofs(t). This is what
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causes the IF ofe(t) to be positive. Instead, if we simply
‘‘clip’’ s(t), i.e., obtains(t)/us(t)u, then its phase derivative,
the traditional IF, will not always be positive. Second, the
MinP property ofh(t) guarantees that the envelope approxi-
mation 1/uh(t)u will never equal zero. Further, MinP signals
will have their energy concentrated over a relatively small
region in the spectral domain analogous to a MinP filter
which has its impulse response peaking close to origin. It is
also possible to use the LPSD algorithm to achieve a MinP-
MaxP ~instead of MinP-AllP! decomposition ofs(t). Sepa-
ration of these components may also be viewed as deconvo-
lution of their spectra in the frequency domain. Third, an
important advantage of the LPSD algorithm is that it
achieves the separation of the MinP and AllP components
without explicitly rooting a polynomial or computing the
logarithm or Hilbert transform of the signals(t).

B. Simulation results

We now provide results of applying the LPSD procedure
to decompose synthetic signals. It will be followed by an
example of a speech signal.

1. Synthetic signals

A signal s(t) consisting of nine@M58 in Eq. ~1!# har-
monically related complex exponentials with frequencies 0,
200 Hz,..., up to 1.6 kHz, with amplitudes 1, 3.37, 3.42, 9.45,
15.76, 5.4, 5.4, 3.72, and 1.5, respectively, and whose re-
spective phases~in radians! were 0,20.3, 21.3, 23.1, 2.8,
2.7, 21.3, 20.9, and20.6, was synthesized.s(t) corre-
sponds to a mixed phase signal consisting of four zeros in-
side and four zeros outside the unit circle. The signal is pe-
riodic with 5-msec periods~200-Hz fundamental frequency!
and has a carrier frequency of 800 Hz~corresponding to its
MaxP component’s translationQV, vc52p3800 andv t

50). The signal was sampled at 16 kHz. In Fig. 2~a! we
have displayed the signal’s zeros while in Fig. 2~b! we have
plotted its magnitude spectrum.

The signal samples were fed to the LPSD algorithm de-
scribed in the previous subsection. The coefficients of the
inverse signalh(t) were computed using Eq.~20!. Once the
coefficients ofh(t) are computed, thenh(t) ~actually its
samples! is synthesized. For the case of 60 coefficients@i.e.,
H560 in Eq. ~19!#, the estimated log-envelope given by
1/uh(t)u is shown~solid line! in Fig. 3~a!. Actually, two pe-
riods ~10 msec! of the log-envelope are shown. Also shown
is the true envelope~dashed line! given by lnus(t)u. They per-
fectly match and hence the dashed line is not visible. The
magnitude of the error signale(t) is shown in the dashed-
dotted line in Fig. 3~a!, and is close to unity, indicating that
the error signale(t) is indeed AllP. In Fig. 3~b! we have
plotted the signal’s raw IF@obtained by differencing the
phase angles of adjacent samples of the signals(t)#. Note
that the raw IF goes negative~dashed line!. On the other

hand, the PIF~i.e., vc22ḃ̂@n#) computed by differencing
the phases of the neighboring samples of the error signal
e(t), stays positive, as it should. The PIF can also be ob-
tained by using the LPSD algorithm onė(t); we call this
second-stage LPSD. The PIF obtained by differencing the
phase angles of neighboring samples ofe(t) or by using the

second-stage LPSD gave essentially the same results. Also
plotted in Fig. 3~b! is the true PIF~dashed-dotted line, again
not visible!. The true PIF was obtained, for the purpose of
comparison, by using the roots of the polynomial in Eq.~1!
and synthesizing the AllP signal given in Eq.~12! and deter-

mining its IF.vc was estimated as the mean of PIF andḃ̂@n#
was separated by subtractingvc’s estimate from the PIF.
Further, ȧ̂@n# was computed by subtracting the estimate of

b̂̇@n# from the MinP signal’s (1/h(t)’s! IF; the solid line in
Fig. 3~c! corresponds to the separatedâ̇@n#; it matches with
the true one~obtained using the signal’s roots! shown as a
dashed-dotted line. In Fig. 3~d! we have displayed the real
part of the signal reconstructed using the separated MinP and
MaxP components using a solid line; the dashed-dotted line
corresponds to two periods of the real part of the original
signals(t); they match exactly.

Figure 3~e! corresponds to the estimated PIF~solid line!
whenH520 in first stage andH515 in second-stage LPSD.
Clearly, a higher model order@the results of which are shown
in Fig. 3~b!# results in a better approximation. The effect of
varying a signal’s duration and changing model order is
shown in Fig. 3~f!: we have plotted210 log ~error! as a
function of the signal length and model order; ‘‘error’’ de-
notes sum of squared error between the true PIF and the
estimated one. First, not surprisingly, the approximation gets
better as model order increases. Second, asT approaches the
true period~80 samples! of the signal, the approximation
improves. However, asT further increases, the assumed fun-
damental frequency,V, decreases and hence LPSD requires
a much higher order for a better approximation.

FIG. 2. The eight zeros of the synthetic signals(t) are shown in~a!; its
magnitude spectrum is plotted in~b!. The signal~sampled at 16 kHz! has a
200-Hz fundamental frequency and a carrier frequency of 800 kHz.
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The above example had no roots with unit magnitude.
To test LPSD on signals with some zeros on the unit circle,
magnitude of one of the zeros of the signal used in a previ-
ous example was set to unity. We usedH540 in LPSD’s
first stage andH510 in the second one. The results are
displayed in Fig. 4~a! and ~b!. In Fig. 4~a! we plot the log
envelopes; sharp dips in the signal’s log magnitude~dashed
line! are due to the on-circle zero. Observe that the approxi-
mation ~solid line! tends to exclude this zero. Further ob-
serve that the magnitude of the error signale(t) is unity, but

for the time corresponding to location of on-circle zero
~dashed-dotted line!. In Fig. 4~b! we show the approximated

PIF using a solid line along with the truevc22ḃ̂@n# ~dashed
line!. Clearly, the PIF approximates the spikes due to on-
circle zeros in addition to closely matching the IF due to
zeros off the unit circle. To summarize thus far, given a
signal s(t), its various components~MinP/MaxP/AllP!,
which are actually multiplied components, can be separated
using simple linear techniques without resorting to logarith-

FIG. 3. The separated log-envelope using LPSD~60 coefficients! is shown
~solid line! in ~a!; the true one is shown as dashed line; the magnitude of the
error signale(n) is shown as dashed-dotted line. In~b! we plot the signal’s
raw IF ~dashed! which goes negative; the solid line refers to estimate of PIF
(H515 in second stage!; the true PIF is also displayed~dashed-dotted!.

First stage estimate ofâ̇@n# is shown as solid line in~c! along with true

â̇@n# plotted as dashed-dotted line. The real part of the reconstructed signal
using the separated components is plotted in~d! ~using solid line! along
with the real part of the original signals(t) ~dashed-dotted line!; they match
exactly. The PIF when 20 coefficients were used in LPSD’s first stage and
15 in the second is plotted in~e!. The effect of increasing a signal’s duration
and increasing model order is shown in~f!. We plot 2 log10 ~error! as a
function of the signal length~in samples! and model order; error denotes
sum of squared error between true PIF and estimated one. Time is shown in
samples.

1919 1919J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 R. Kumaresan and A. Rao: Model-based estimation of signals



mic processing or rooting algorithms. We now give an ex-
ample using speech signals.

2. Speech signal

In this section we give results of processing clean voiced
speech, obtained from the TIMIT database, in the sentence
train/dr3/fcke0/si1111.wavwhich corresponded to the utter-
ance ‘‘How do we define it?’’ Figure 5~a! shows the results
for a segment, whereas Fig. 5~b! shows the results for the
entire sentence. The signal~sampled at 16 kHz! was preem-
phasized using a high-pass filter~with transfer function 1
20.98z21) and its analytic version was computed using the
fast Fourier transform~FFT! based Hilbert transformer in
Matlab. We then chose 14.56 ms of the signal~samples
6851:7084! that was part of the phoneme /iy/. This signal
was then bandpass filtered using three bandpass filters
~BPFs! which were part of ‘‘Lyon’s Passive Long Wave Co-
chlear Model’’ proposed by Lyon.36 The bandpass filters
~BPFs! were manually chosen such that their center frequen-
cies were roughly centered around the formant locations. In
Fig. 5~a! we have shown the magnitude spectrum of the pre-
emphasized speech signal~solid line! along with the normal-
ized magnitude responses of the three BPFs~dotted lines!.
The signals at these BPFs’ output were inputs to our LPSD
algorithm. The bandwidths (Bc) for BPFs centered at'500
Hz, 2.25 kHz, and 5 kHz were approximately 120, 340, and
900 Hz, respectively. These bandwidths roughly correspond
to the critical bandwidths of the auditory filters at the given
center frequencies. Recall that LPSD assumes a fundamental

FIG. 5. The spectrum of a preemphasized voiced speech segment is dis-
played in ~a!. The signal was filtered using 3 BPFs@magnitude responses
shown in ~a! as dotted lines# which correspond to Lyon’s auditory filters.
LPSD parameters were selected based on BPFs’ bandwidths. The estimated
log envelopes are shown~not to scale! in ~b! as solid lines along with the
signals’ true log envelopes shown as dashed, dashed-dotted, and dotted lines
for BPFs 1, 2, and 3, respectively. The raw IFs for signals filtered by BPFs
#1, #2, and #3 are displayed in~c! as dashed, dashed-dotted, and dotted lines
respectively, along with corresponding lowpass filtered~with order 50 and
cutoffs 120, 340, and 900 Hz! IFs shown as solid lines. In~d! we plot the
PIFs estimated using LPSD withH54, 11, and 28, respectively.

FIG. 4. We consider a signal with a zero of unity magnitude. Its log enve-
lope is shown in~a! as a dashed line; dips correspond to location of the
on-circle zero. We usedH540 in LPSD’s first stage andH510 in the
second one. The estimated log envelope and PIF are plotted~solid lines! in
~a! and ~b!, respectively; original functions are shown using dashed line;
dashed-dotted line in~a! denotes error’s magnitude.
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frequency,V, of 2p/N; this corresponds to 32 Hz for the
present example. Having specified a certain bandwidth for
envelope approximation, one can compute the algorithm’s
model order asH52pBc /V. Based on these calculations,
we chose LPSD model orders,H, to be 12, 33, and 84, cor-
responding to three times the critical bandwidths for first-
stage envelope approximation. The values ofH were set to 4,
11, and 28 for approximating the PIFs in second-stage pro-
cessing. One may also keepH fixed and vary the processing
interval for each BPF proportional to 1/Bc . Our goal was not
to parsimoniously describe the signal but to demonstrate that
the carrier frequency and the modulations carry sufficient
information to describe the signal. The estimated log enve-
lopes are shown in Fig. 5~b! as solid lines~not to scale! along
with the signal’s Hilbert envelopes for each of the three fil-
ters~dashed, dashed-dotted, and dotted for BPFs 1, 2, and 3,
respectively!. The raw IFs~obtained by phase-differencing!
for signals filtered by the three BPFs are displayed in Fig.
5~c! as dashed, dashed-dotted, and dotted lines, respectively,
along with corresponding lowpass filtered~with order 50 and
cutoffs 120, 340, and 900 Hz! IFs shown as solid lines. The
PIFs resulting from second-stage processing are depicted in
Fig. 5~d!.

Based on earlier discussions we can see that the sharp
spikes in raw log-envelopes and most of the spikes in raw
IFs ~especially for signals at output of BPFs 2 and 3! are due
to signal zeros very close to the unit circle; the latter may be
caused by neighboring peaks in the signal’s spectral enve-
lope ~or neighboring formants!. Further, the raw IFs also go
negative at times. In general, the raw log-envelopes and IFs
are highly fluctuating quantities. Clearly, the LPSD may be
viewed as a technique to compute a signal’s envelope’s loga-
rithm. The IF approximated by LPSD has two distinct advan-
tages over techniques that merely filter the raw IF. First, in
the absence of on-circle zeros, it is always positive. Second,
it approximates the typically impulsive IF better~due to the
all-pole model assumption! as opposed to lowpass filtered IF.

When a composite signal consists of many spectral re-
gions of interest which are time-varying, as in speech, the

signal must be decomposed by a bank of time-varying filters
which may then be followed by envelope and PIF decompo-
sition described here. The bank of filters must be data adap-
tive and should form part of the speech signal representation.
A block diagram depicting this basic idea is shown in Fig. 6.
We have made some progress in implementing this block
diagram,31 but due to space limitations the details are not
presented here. Figure 7~a!, ~b!, ~c!, and~d! show the results

FIG. 6. We envision a ‘‘tonotopic signal analyzer’’ as a general purpose
processor that decomposes an input signal~on the time-frequency plane!
around regions of dominant spectral energies into carrier frequencies, log
amplitudes, and MinP-AllP~or MinP-MaxP! modulations@ak(t) andbk(t)#.
These modulations are further broken down into their respective center fre-
quencies, and so on. The result is a treelike break-up of the signal wherein
higher nodes of the tree correspond to more significant temporal-spectral
events in the signal.

FIG. 7. ~a! The speech signal for the sentence ‘‘How do we define it?’’ is
plotted; this segment was obtained from the TIMIT database~TIMIT/train/
dr3/fcke0/si1111.wav!. ~b! We have displayed the estimated average log-
envelopes as solid, dashed-dotted, and dotted lines at the output of the three
time-varying filters. The details of the time-varying bandpass filters~BPFs!
are given in Ref. 31.~c! We have superimposed on the spectrogram the
estimated PIFs of the components at the output of the time-varying BPFs.
~d! The averages of the PIFs are shown. They tend to follow the trajectories
of the first three formants.
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of processing the entire sentence ‘‘How do we define it?’’
using this decomposition. We may call this approach ‘‘Tono-
topic Signal Analysis~TSA!,’’ since the procedure not only
attempts to track the formant center frequencies but also pro-
vides the details of modulations~the a and b! about those
frequencies. Reference 31 provides several such speech pro-
cessing examples.

IV. DISCUSSION

In this paper our main accomplishment is the decompo-
sition of an analytic signal into two analytic signals using a
simple ~LPSD! algorithm. Decomposition of analytic func-
tions of a complex variable has been studied in systems
theory and filter design since the days of Henrik Bode37 in
the 1930s. However, much of that work dealt with frequency
responses, i.e., frequency is viewed as a complex variables
~continuous-time systems! or z ~discrete-time systems!.
Cepstrum-related research5 may be viewed as an extension
of this work. Voelcker’s contribution, which extends Gabor’s
work,7 is that he recognized that analytic functions could be
used for studying the relationships between phase and enve-
lope of signals by treating time as a complex variable. To our
knowledge, Voelcker did not attempt to decompose signals
into MinP and MaxP or AllP components. The MinP/MaxP/
AllP decomposition was, perhaps, first done by Oppenheim
and colleagues~see Ch. 12 in Ref. 5, and references therein!.
However, their decomposition was achieved by rooting a
polynomial or computing logarithm/log-derivative in the
z-transform or frequency domain. In contrast, the signifi-
cance of our result is that the MinP-AllP or MinP-MaxP
decomposition is achieved using an elegant adaptive de-
modulator without rooting, Hilbert transformation, or phase
unwrapping, directly from the given signals(t). A similar
procedure can be developed for the frequency domain as
well. The primary difference between our approach and the
cepstrum analysis is that we explore the signal’s logarithm in
the time domain which yields a physically acceptable quan-
tity like the positive instantaneous frequency. This helps us
in characterizing the IF of signals which consist of many
components such as a speech formant. The average PIF~i.e.,
the carrier frequency! indicates the place-location of a sig-
nal’s spectral concentration.

Unfortunately, in this paper, we still need to form the
analytic signal before the proposed decomposition can be
achieved. That is, since in practice only real-valued signals
are available for processing, one has to compute its Hilbert
transform. In more recent work38 we have proposed an algo-
rithm which avoids computation of the analytic signal. It is
possible to obtain the envelope and PIF directly from the real
signal under certain restrictions.
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APPENDIX A: MINIMUM AND MAXIMUM PHASE
SIGNALS

An elementary signal,23 e(t), is defined as

e~ t !512pej Vt, ~A1!

wherep5upuej u. If upu,1 thene(t) is called a MinP signal,
since no other signal with the same envelope has a smaller
phase angle. Observe thatue(t)u.0. Taking the natural loga-
rithm of both sides and using the series expansion, ln(12y)
5(k51

` (2yk/k), we get

ln~12pej Vt!5 (
k51

`
2pke2 jkVt

k
. ~A2!

After exponentiating both sides, we get the following iden-
tity:

12pej Vt5expS (
k51

`
2upuk

k
cos~kVt1ku!

1 j (
k51

`
2upuk

k
sin~kVt1ku!D . ~A3!

From the above expression we note that for an elementary
MinP signal,e(t), the logarithm of its envelope and its phase
angle are related through the Hilbert transform. Similarly, for
an elementary MaxP signal (12qej Vt) where q5uquej f,
uqu.1, we get the following identity:

12qej Vt5~2qej Vt!expS (
k51

`
2u1/quk

k
cos~kVt1kf!

2 j (
k51

`
2u1/quk

k
sin~kVt1kf!D . ~A4!

The key difference between Eqs.~A3! and~A4! is the change
in the sign of the phase function.

Using the above identities in Eq.~2! yields

sMinP~ t !5ea~ t !1 j â~ t ! ~A5!

and

sMaxP~ t !5A0eb~ t !1 j ~v0t2b̂~ t !!, ~A6!

where

a~ t !5 (
k51

`

(
i 51

P

2
upi uk

k
cos~kVt1ku i ! ~A7!

and

b~ t !5 (
k51

`

(
i 51

Q

2
1/uqi uk

k
cos~kVt1kf i !. ~A8!

Thus s(t) as described in Eq.~2! can be compactly repre-
sented as

s~ t !5Ace
j vctea~ t !1 j â~ t !eb~ t !2 j b̂~ t !, ~A9!

whereAc corresponds to the overall amplitude of the signal
andvc denotes its ‘‘carrier’’ frequency.vc is equal toQV
plus any arbitrary frequency translation that the signals(t)
may have been subjected to. The log-envelope and phase of
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s(t) are expressed in terms ofa(t) andb(t) as

lnus~ t !u5a~ t !1b~ t !1 ln Ac ~A10!

and

/s~ t !5vct1â~ t !2b̂~ t !, ~A11!

respectively. The above expressions can be a useful peda-
gogical tool in explaining phase-envelope relationships in the
signal as well as systems domains. For instance, the well-
known results in Ref. 39, where one attempts to reconstruct a
signal from either phase or magnitude information, may eas-
ily be explained using the above expressions. For example, if
a pair of roots ofs(t) occurs in complex conjugate reciprocal
locations, i.e.,pi51/qi* , then thei th term in the summation
in Eqs.~A7! and~5! are identical and hence vanish from the
expression for phase in Eq.~A11!. Hence, in this case, phase
does not uniquely specify the signals(t). This is essentially
theorem 1 in Ref. 39, which is stated in the systems domain.
Similarly if pi521/qi* , then from Eq.~A10! we see that
magnitude alone is not sufficient to specify a signals(t). In
general, both phase and envelope are required to represent
s(t).

The instantaneous frequency~IF! of s(t) is the deriva-

tive of the phase ofs(t) and is simplyvc1 ȧ̂(t)2 ḃ̂(t)
~where the dot stands for the first derivative!, i.e., it consists
of a dc~corresponding to carrier frequency! and a sum of IFs
of s(t)’s MinP and MaxP components. Thus we have

d/s~ t !

dt
5vc2VF (

k51

` S (
i 51

P

upi uk cos~kVt1ku i !

2(
i 51

Q

u1/qi uk cos~kVt1kf i !D G . ~A12!

Clearly, the spectrum ofs(t)’s IF @given by Eq.~A12!# con-
tains an infinite number of harmonic components~V being
the fundamental frequency!. A closed-form expression for IF
is obtained by summing Eq.~A12! as

d/s~ t !/dt

5vc2VF(
i 51

P upi u~cos~Vt1u i !2upi u!
122up1ucos~Vt1u i !1up1u2

2(
i 51

Q u1/qi u~cos~Vt1f i !2u1/qi u!
122u~1/qi !ucos~Vt1f i !1u~1/qi !u2G . ~A13!

The above reveals thats(t)’s IF tends to6` whenever one
or more of its zeros tend to lie on the unit circle~see Ref. 31
for details!. All these results were known to Voelcker.

APPENDIX B: SIGNALS WITH POSITIVE
INSTANTANEOUS FREQUENCY

Consider a signal,z(t), which is a ratio of two signals as
follows:

z~ t !5
12qej Vt

12 ~1/q* !ej Vt ; ~B1!

‘‘ * ’’ denotes complex conjugation,q5uquej f, and uqu.1.
Rearranging the numerator we have

z~ t !52qej Vt
12~1/q!e2 j Vt

12~1/q* !ej Vt . ~B2!

Simplifying the above equation, we find thatz(t)’s envelope
is a constant~equal touqu! for all time, t, and that its phase
angle is

/z~ t !5Vt1p1f12(
k51

` u1/quk

k
sin~kVt1kf!. ~B3!

Taking the first derivative of/z(t), its IF can be expressed
as

d/z~ t !

dt
5VS 112(

k51

` U1qU
k

cos~kVt1kf!D . ~B4!

Since the right side of Eq.~B4! is V(12u1/qu2)u1
2(1/q* )ej Vtu22 and is analogous to a ‘‘power spectrum,’’
z(t)’s IF is always positive. We may generalize this result to
the case of a signal consisting of a product of rational signals
as in Eq.~B2!, i.e., z(t) of form

z~ t !5)
i 51

L
12qie

j Vt

12~1/qi* !ej Vt . ~B5!

Since the phase angle contribution due to each of theL terms
in the above equation adds up, the corresponding IF is

d/z~ t !

dt
5V(

i 51

L S 112(
k51

` U 1

qi
Uk

cos~kVt1kf i !D .

~B6!

Since each of theL terms in the above summation is positive,
we claim that the final IF given by Eq.~B6! is positive.
These results are analogous to the results well known in dis-
crete time all-pass~AP! systems, where the equivalent of IF
is the group delay;40 our derivation is slightly different than
the one given in Oppenheim and Schafer.5
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