
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Chemistry Faculty Publications Chemistry 

5-27-2008 

A Stereographic Projection Path Integral Study of the Coupling A Stereographic Projection Path Integral Study of the Coupling 

between the Orientation and the Bending Degrees of Freedom of between the Orientation and the Bending Degrees of Freedom of 

Water Water 

E. Curotto 

David L. Freeman 
University of Rhode Island, dfreeman@uri.edu 

J. D. Doll 

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Curotto, E., Freeman, D. L., & Doll, J. D. (2007). A Stereographic Projection Path Integral Study of the 
Coupling Between the Orientation and the Bending Degrees of Freedom of Water. Journal of Chemical 
Physics, 128(20), 204107. doi: 10.1063/1.3259047 
Available at: http://dx.doi.org/10.1063/1.3259047 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Chemistry 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/chm_facpubs
https://digitalcommons.uri.edu/chm
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.3259047
mailto:digitalcommons-group@uri.edu


A Stereographic Projection Path Integral Study of the Coupling between the A Stereographic Projection Path Integral Study of the Coupling between the 
Orientation and the Bending Degrees of Freedom of Water Orientation and the Bending Degrees of Freedom of Water 

Publisher Statement Publisher Statement 
© 2008 American Institute of Physics. 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/chm_facpubs/5 

https://digitalcommons.uri.edu/chm_facpubs/5


A stereographic projection path integral study of the coupling between
the orientation and the bending degrees of freedom of water

E. Curotto,1,a� David L. Freeman,2 and J. D. Doll3
1Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
2Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881-1966, USA
3Department of Chemistry, Brown University, Providence, Rhode Island 02912-9127, USA

�Received 17 December 2007; accepted 21 April 2008; published online 27 May 2008�

A Monte Carlo path integral method to study the coupling between the rotation and bending degrees
of freedom for water is developed. It is demonstrated that soft internal degrees of freedom that are
not stretching in nature can be mapped with stereographic projection coordinates. For water, the
bending coordinate is orthogonal to the stereographic projection coordinates used to map its
orientation. Methods are developed to compute the classical and quantum Jacobian terms so that the
proper infinitely stiff spring constant limit is recovered in the classical limit, and so that the
nonconstant nature of the Riemann Cartan curvature scalar is properly accounted in the quantum
simulations. The theory is used to investigate the effects of the geometric coupling between the
bending and the rotating degrees of freedom for the water monomer in an external field in the 250
to 500 K range. We detect no evidence of geometric coupling between the bending degree of
freedom and the orientations. © 2008 American Institute of Physics. �DOI: 10.1063/1.2925681�

I. INTRODUCTION

The path integral1 approach to statistical mechanics has
become a tool of choice for the investigation of quantum
effects in clusters and other types of condensed matter at
finite temperatures.2–23 Despite a number of recent advances,
the majority of path integral simulations have focused on
atomic systems with strict adherence to Cartesian coordi-
nates. This limitation is technical in nature, as the simple
remapping of a Euclidean space by curvilinear coordinates
greatly complicates both the formal and the numerical aspect
of Monte Carlo path integral �MCPI� methods. However,
strict adherence to Cartesian coordinates makes the simula-
tion of molecular condensed matter a formidable task. In a
recent article,24 we use a relatively simple harmonic model
for condensed matter and analytical, finite Trotter number
�km�, solutions of the path integral to investigate its conver-
gence properties as a function of the mode frequencies and
temperature. We find that when values of the spring con-
stants typical of covalent modes alternate with values of the
spring constants typical of intermolecular modes, there exist
temperature ranges inside which the convergence of the path
integral is highly nonuniform even at relatively elevated val-
ues of km. We find that for a difference in the values of the
spring constants as small as two orders of magnitude, con-
straining the high frequency degrees of freedom �DF� in-
creases the numerical efficiency of the path integral substan-
tially. This pattern is observed with both linear as well as
cubically convergent solutions.

Holonomic constraints in molecular simulations lead to
non-Euclidean curved spaces25,26 in which the formal devel-
opment of the path integral is possible.27–29 In fact, the Feyn-
man quantization is generally possible, though more chal-

lenging, in differential manifolds even when spaces have
configuration dependent curvature27 and torsion.29 These
complications have been of little concern to molecular physi-
cists since most of the non-Euclidean spaces generated by
holonomic constrains have constant curvature and no torsion.
Nevertheless, prior to our work, MCPI simulations of assem-
blies of rigid molecules had been few.30–38 There remain sev-
eral numerical difficulties for the development and imple-
mentation of MCPI methods in curved spaces such as the
imposition of spacial periodic boundary conditions on the
time evolution propagator and the presence of multiply con-
nected spaces. These difficulties have forced investigators to
use relatively expensive alternatives to random walks like
the vector-space MCPI method31–36 or the use of fixed axes
approximations.30 It is difficult to define the path integral
measure when using open sets and periodic boundaries and
special methods have to be developed to evaluate the path
integral even in the most trivial cases.29 In a series of recent
articles24,39–43 we have introduced and tested methods based

on stereographic projection coordinates �SPCs� that can
overcome the difficulties associated with the boundary

conditions. The SPC map � :Rd←Md is a bijection from the
manifold to an equidimensional Euclidean space where the
coordinates range from negative to positive infinity. In con-
trast, mapping of typical d-dimensional manifold Md is
achieved with open sets, as, for example, ellipsoids of inertia
are mapped with traditional Euler angles or with quaternions.
Open set maps do not cover the entire manifold. For ex-
ample, the angular variable � cannot include all the points in
a circle of radius R; the point at �=0 and 2� must be ex-
cluded since maps must be single valued. The common rem-
edy is to patch the map at a point �or set of points with zeroa�Electronic mail: curotto@arcadia.edu.
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Riemann measure� by using periodic boundary conditions.
With a single SPC map there remains one point that is not
covered in the manifold, but it is at infinity.

Using SPC maps, it is also possible to expand paths
using random series, after generalizing the Feynman-Kaç
formula in manifolds. This latter advance allows us to de-
velop fast converging algorithms without the need to evalu-
ate the gradient or the Hessian of the potential, and to em-
ploy efficient estimators based on numerical derivatives of
the action.20,21 The numerical algorithms are based on the
DeWitt formula,27 but make use of a one-to-one SPC map
between points in the d-dimensional manifold Md and an
equivalent Euclidean space. The extension of these tech-
niques to non-Euclidean manifolds mapped with SPCs has
given new insights into the quantum effects of two important
hydrogen bonded systems.24,43

Our recent work24 with water clusters provides the next
challenge for the developments of SPC-MCPI theory of con-
densed molecular matter. Constraining all the internal DF of
the water molecules produces a very efficient and accurate
approach for the simulation of water clusters in the 100�T
�250 K range. However, above 250 K the bending mode of
water may contribute to the heat capacity, while below 500 K
the hydrogen-oxygen stretching modes are predominantly in
the ground state. Therefore, there is a clear need to extend
our SPC-MCPI formalism to allow for simulations of mol-
ecules that include relatively soft internal DF.

The purpose of the work we report in the present article
is to develop the necessary differential geometry using coor-
dinates amenable for path integration in a challenging case,
the bending water molecule with rigid stretches. It is our
intention to use the formalism to study carefully the nature
and the amount of coupling that takes place between the
bending and the other DF. The particular space for the bend-
ing translating and rotating water molecule requires the de-
velopment of the classical and quantum Jacobian terms so
that the proper infinitely stiff spring constant limit is recov-
ered in the classical limit, and so that the nonconstant nature
of the Riemann Cartan curvature scalar is properly accounted
in the quantum simulations.

For the classical Jacobians, the difference between the
infinitely stiff spring limit Euclidean space simulation and
the curved subspace simulation arising from holonomic con-
straints has been explored in detail using as an example the
bending degree of freedom of a triatomic specie.44 The La-
grangian and the Hamiltonian for these two physical models
are identical; however, there is a difference in the classical
Boltzmann distribution. The difference is the result of ex-
pressing the partition function first in the flat space followed
by the transformation of variables and the application of the
infinite force constant�s� limits, as opposed to the alternative
procedure of expressing the Boltzmann distribution after the
transformation and the application of the holonomic con-
straints. Frenkel and Smit44 have argued that the former pro-
cedure is the correct one. In the curved manifolds one evalu-
ates the metric tensor in the �3n−c�-dimensional space �n
atoms and c constraints�, whereas in the c infinitely stiff
springs model one remaps the R3n space with internal DF
and then evaluates the Jacobian from the metric tensor in the

3n flat space. Let us denote the metric tensor obtained by
curvilinear remapping of R3n spaces as g�E���, and the ge-
neric metric tensor in a non-Euclidean space as g��. Let g1/2

and g�E�
1/2 represent the square root of the determinant of the

two metric tensors, i.e., the Jacobians; then, the volume ele-
ment dV�E�, obtained by remapping R3n and taking the infi-
nite spring constant limit

dV = g1/2dq1 ∧ dq2
¯ dq3n−c � dV�E�

= g�E�
1/2dq1 ∧ dq2

¯ dq3n−c, �1�

is in general different than the same in the curved manifold.
Moreover, the ratio g�E�

1/2 /g1/2 may still depend on the 3n−c
coordinates, yielding possibly different results for the simu-
lated properties with these two models.

For the quantum term of the Jacobian, the holonomic
transformation of the action is straightforward and can be
carried out with the usual tensor analysis machinery. How-
ever, as it has been pointed out by Kleinert,29 the path inte-
gral measure in non-Euclidean spaces has to be derived by
slicing in the flat space first, and then applying the transfor-
mation of coordinates to the resulting discretized measure. In
a space with curvature, the order in which slicing and coor-
dinate remapping is performed produces different expres-
sions for the path integral measure. Kleinert produces a new
quantum equivalence principal, which determines how a path
integral in flat space behaves under holonomic �and even
non-holonomic� transformations. The end result of Kleinert’s
work is a unique expression for the quantum Jacobian term,
usually interpreted as a “quantum potential” that, in the ab-
sence of torsion, takes the following form

Vq = −
�2

6
R , �2�

where R is the Riemann-Cartan curvature scalar. For the
majority of applications to molecular dynamics the curvature
is a constant term and it can be ignored. For the bending
trimer with constrained stretching, however, the curvature is
a function of configuration and must be included in path
integral simulations.

This article is structured as follows. In Sec. II the formal
development of the metric tensors associated with our
choices of rotations and bending coordinates is presented in
detail. In Sec. II we also develop in some detail the expres-
sions for the classical and quantum Jacobian. The results of
our numerical tests designed to study the couplings between
the orientation and the bending of water in an external field
are presented in Sec. III. Section IV contains our conclu-
sions.

II. METHODS

In this section we derive two equivalent formulations for
the metric tensor of a translating, rotating, and bending non-
linear triatomic, with fixed stretching coordinates that are
suitable for path integral simulations. SPCs are developed to
map both the rotation and the bending DF. We discover
orthogonality properties when using Euler angles for the
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rotation, Cartesian coordinates for the translations, and a
SPC for the bending degree of freedom. The bending coor-
dinate is orthogonal to the rotation and to the translation
ones. The same orthogonality properties remain when we
remap the ellipsoid of inertia submanifold with SPCs. These
properties are not essential for the simulations with path in-
tegrals but do provide the opportunity to decrease computer
time costs when simulating molecular clusters. Additionally,
orthogonality properties simplify the formulation of theories
derived by splitting the propagation operator. Such theories
will be the subject of future investigations. In the course of
the analysis necessary to develop the metric tensors we find
relatively simple analytical proofs for the following impor-
tant property of the g�E�

1/2 /g1/2 ratio: It is generally true that
g�E�

1/2 /g1/2 is independent of the orientation DF for both linear
and nonlinear rigid rotors. The same does not hold, however,
if bending DF are introduced in the simulations. Therefore,
in Sec. II D we develop a formalism for the direct computa-
tion of g�E�

1/2 for a water molecule when its configuration space
is remapped with center of mass Cartesian coordinates, SPCs
for the rotations, and all the internal DF. The results in Sec.
II A are not new. We reproduce them here for several rea-
sons: First, a new general formalism that involves reference
body-fixed configurations and Lie groups is introduced; there
is a pleasure in deriving a familiar result without employing
traditional angular momentum theory, rather using assembly
of points for the representation of a rigid body, and the prop-
erties of Lie groups. Perhaps these findings can be general-

ized to other kinds of Lie groups that are important to mo-
lecular physicists. However, more importantly for the present
work, the results in Secs. II A and II B greatly simplify the
formal development in Sec. II C, where soft internal modes
mapped by SPCs are introduced. In Secs. II C and II D it is
shown that the introduction of reference body-fixed configu-
rations allows one to treat separately the rotations and trans-
lations from the internal DF.

A. The rigid three-body problem and the body-fixed
frame

Consider a series of maps with the associated Jacobian
matrices, metric tensors, and kinetic energy expressions that
are useful for the cases when the intramolecular DF are char-
acterized by infinitely stiff spring constants. We find that the
best approach to arrive at a set of coordinates amenable for
path integration is to develop the mapping into two stages.
The first stage is to transform from the Euclidean R3n space
mapped by Cartesian coordinates to the Euler angles.

For a molecule with n atoms the map �1 is defined by
the transformation

�r1

]

rn
� �1

�
�1

−1�
rC

�

�

	
� , �3�

where � ,	 ,� are the three Euler angles defined by the ele-
ment R of the rotation group,

R = � cos � cos 	 − cos � sin � sin	 sin � cos 	 + cos � cos � sin 	 sin 	 sin �

− cos � sin 	 − cos � sin � cos 	 − sin � sin 	 + cos � cos � cos 	 cos 	 sin �

sin � sin � − cos � sin � cos �
� , �4�

and ri is a vector in R3 associated with atom i. The c sub-
script refers to the center of mass vector. R can be used in
two ways. One can either rotate the axes of the body frame
�BF�, a rotating non-inertial frame in which the inertia tensor
is diagonal, or rotate the reference body-fixed configuration.

When we express the metric tensor associated with �1
−1 we

drop the subscript “E” since � maps points of a Euclidean

R3n space into a six-dimensional non-Euclidean �and gener-
ally curved� subspace. Specifically, for the single water mol-
ecule example, �1 is a map from a nine-dimensional Euclid-
ean space mapped with Cartesian coordinates to a Cartesian

product of two subspaces �1 :R9→R3 � I3. There are several
possible ways of defining �1, depending on a multitude of
choices available for the definition of the body frame axis,
and the choice between passive versus active rotations of the
body-fixed axis. For the water molecule we choose the fol-

lowing three vectors to represent the reference body frame
axis,

rH1

�BF� = � 0


y

�z
�, rO

�BF� = � 0

�y

0
�, rH2

�BF� = � 0


y

− �z
� , �5�

in units of bohr. Two items are important at this point. First,
the configuration in Eq. �5� is defined so that the molecule is
in the center of mass frame, i.e.,

2mH
y + mO�y = 0, �6�

and so that the inertia tensor is diagonal,
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I�� = �2mH�
y
2 + �z

2� + mO�y
2 0 0

0 2mH�z
2 0

0 0 2mH
y
2 + mO�y

2� .

�7�

To transform from the body-fixed to the laboratory frame one
rotates this rigid configuration and translates the center of
mass. �1

−1 can be represented with a single set of equations,

ri = rC + Rri
�BF�, �8�

where R is the 3
3 matrix in Eq. �4� and rC= �xC ,yC ,zC�.
Once the map is specified and verified to be one-to-one, the
task is to transform the metric tensor g�� from its form in
Euclidean spaces mapped with Cartesian coordinates,

g�� = diag�m1,m2, . . . ,m3n� , �9�

to its form within the manifold. If we agree to represent
raised indices as the column labels associated with Cartesian
coordinate x�, and the lower ones as row labels associated
with the generalized coordinate q�, then the Jacobian matrix
�x� /�q�=J�

� associated with �−1 can be represented by a 6

3n matrix. One can use the transformation of tensors law

g���� = J��
� J��

� g��, �10�

which, with the row and column convention for the Jacobian
matrix that we introduce here, can be expressed as a matrix
product G ’ =JGJT. The metric tensor in Eq. �9� contains the
effective masses associated with the coordinates. In the case
of Euclidean spaces mapped by Cartesian coordinates, the
effective mass is the physical mass of the body located by
the coordinate point; in other spaces �or in Euclidean spaces
mapped with curvilinear coordinates� the effective mass may
become configuration dependent. With this convenient defi-
nition one can write a general formula for the kinetic energy
K in generalized coordinates �with no velocity dependent
interactions�,

K = 1
2g��q̇�q̇�. �11�

To find expressions for the element of the Jacobian matrix let
us introduce some additional notation. Let ��R represent a
set of 3
3 matrices containing the derivative of the ele-
ments of the rotation matrix R with respect to q�. There are
a number of useful properties for the set ��R, some of which
are immediately obvious,

��R = 0 �1 � � � 3� . �12�

This simple result yields trivial elements of the Jacobian ma-
trix of �1

−1,

J�
3�i−1�+k = ��k �1 � k � 3, 1 � i � n, 1 � � � 3� .

�13�

In the last expression we reserve the Roman index i to label

the atom number. The Roman indices k ,k� ,k� are used in
what follows to span the R3 subspace associated with ri. The
second expression for the Jacobian matrix elements is

J�
3�i−1�+k = 	

k�=1

3

���R�kk�x�BF�
3�i−1�+k�

�14�
�1 � k � 3, 1 � i � n, 4 � � � 6� .

With our notation we can obtain a generic expression for the
transformation of an n body metric tensor like Eq. �9�,

g�� = 	
i=1

n

mi	
k=1

3

J�
3�i−1�+kJ�

3�i−1�+k �1 � �, � � 6� , �15�

where the fact that the Cartesian n body metric tensor is
diagonal has been used. We must inspect three cases sepa-
rately:

I. 1���3, 1���3

g�� = ���	
i=1

n

mi. �16�

II. 1���3, 4���6

g�� = 	
i=1

n

mi 	
k�=1

3

���R��k�x�BF�
3�i−1�+k�

= 	
k�=1

3

���R��k�	
i=1

n

mix�BF�
3�i−1�+k� = 0, �17�

where we exchange the order of summation and we use the
fact that the body-fixed frame is in the center of mass. This is
an important and general result; simply stated, it is the re-
flection that the translational and rotational coordinates as
expressed by the map in Eq. �8� are always orthogonal.

III. 4���6, 4���6

g�� = 	
i=1

n

mi�ri
�BF��T���ri

�BF� �4 � � � 6, 4 � � � 6� .

�18�

The symbol ��� represents a set of nine tensors that operate
in the R3 subspace associated with the body-fixed Cartesian
coordinates for atom i,

��� = ���R�T���R� . �19�

The properties of this set are of general importance and we
shall investigate them further. Since the set is symmetric, i.e.,
���= �����T, as one can verify, we only need the expression
for six matrices,

�44 = � sin2 � − sin � cos � 0

− sin � cos � cos2 � 0

0 0 1
� , �20�
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�45 = � 0 0 0

0 0 0

− cos � − sin � 0
� , �21�

�46 = �− sin � sin � cos � − sin � sin2 � 0

sin � cos2 � sin � sin � cos � 0

− cos � cos � − cos � sin � 0
� , �22�

�55 = �1 0 0

0 1 0

0 0 0
� , �23�

�56 = �cos � 0 − sin � sin �

0 cos � sin � cos �

0 0 0
� , �24�

�66 = � cos2 � sin2 � + cos 2� cos � sin ��1 − cos2 �� − sin � cos � sin �

cos � sin ��1 − cos2 �� cos2 � cos2 � + sin2 � cos � sin � cos �

− sin � cos � sin � cos � sin � cos � sin2 �
� . �25�

The transformation of Eq. �9� using Eq. �5� for the expres-
sions of ri

�BF�, and Eqs. �16� and �18�, yields the following
metric tensor:

g11 = g22 = g33 = mt = 2mH + mO,

g44 = �2mH
y
2 + mO�y

2�cos2 � + 2mH�z
2,

g46 = �2mH
y
2 + mO�y

2�sin � cos � sin � ,

g55 = 2mH
y
2 + mO�y

2,

g56 = �2mH
y
2 + mO�y

2�cos � ,

g66 = �2mH
y
2 + mO�y

2��sin2 � + cos2 � cos2 ��

+ 2mH�z
2 sin2 � . �26�

Using Eq. �7�, and after some trivial manipulations, one can
show that this metric tensor can be written as follows,

g11 = g22 = g33 = mt,

g44 = I11 cos2 � + I22 sin2 � ,

g46 = �I11 − I22�sin � cos � sin � ,

g55 = I33,

g56 = I33 cos � ,

g66 = I11 sin2 � sin2 � + I22 sin2 � cos2 � + I33 cos2 � .

�27�

Equation �27� is one of the few equivalent forms for the
metric tensor in the inertia ellipsoid mapped by Euler angles;
the expression applies in general to n particles treated as a
single rigid body. We can develop an equivalent form of the
metric if we handle the rotation passively �i.e., the rotation is

applied to the body-fixed axis, rather than the coordinates of
the atoms�. The transformation map in the passive case is
ri=rC+RTri

�BF�. In the Appendix we demonstrate that the
metric tensor takes the following general form:

g11 = g22 = g33 = mt,

g44 = I11 cos2 	 + I22 sin2 	 ,

g45 = �I11 − I22�sin � cos 	 sin 	 ,

g55 = I11 sin2 � sin2 	 + I22 sin2 � cos2 	 + I33 cos2 � ,

g56 = I33 cos � ,

g66 = I33. �28�

The metric tensor in Eq. �28� can be obtained by exchanging
� with 	 and then permuting the rows and columns corre-
sponding to the d	 and d� base vectors in Eq. �27�. We have
used both the passive and the active form in past
computations.24 However, both expressions contain the same
physics, and the difference between the passive and the ac-
tive map and the resulting kinetic energy expression is im-
material. In Sec. II B, we transform Eq. �27� into its equiva-
lent with SPCs, rather than Eq. �28�. However, from the
nature of the SPC map it becomes evident that the difference
between the metric in Eq. �27� and that in Eq. �28� is the
difference between a right-handed SPC set of axes and a
left-hand set. With the exception of Eqs. �5�–�7�, which are
specific to the water molecule, the results in this section are
general and are applicable to any rigid nonlinear molecular
top. The same remains true for all the results in Sec. II B.

B. SPCs for the ellipsoid of inertia

The treatment of the three-dimensional rotations by path
integral with angles is difficult for the same reasons that it is
so for linear tops. It is possible to map the three-dimensional
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rotation of a rigid body stereographically and carry out the
computation of the path integral in a “Cartesian type” set of
coordinates. The simplest way is to remap the inertia ellip-
soid with �2 as follows:

�r1

]

rn
� �1

�
�1

−1�
rC

�

�

	
� �2

�
�2

−1�
rC

�1

�2

�3
� . �29�

We arrive at an expression for �2 and its inverse by working
through the quaternion parameter space associated with the
three Euler angles. The detailed development of the stereo-
graphic projection map and the procedure to transform the
metric tensor on the general inertia ellipsoid has been de-
tailed elsewhere.24,40

C. The bending coordinate

We now look for a formalism to introduce the bending
DF in water. In so doing we accomplish two tasks. We are
able to derive a metric tensor that allows us to perform path
integral simulations of a cluster of molecules using the center
of mass coordinates, the stereographic projections related to
the Euler angles, and one SPC related to the bending angle.
Additionally, we find a simple way to demonstrate that gen-
erally, for nonlinear tops, there are no differences in the ther-
modynamic averages computed from the ellipsoid of inertia
space of a rigid molecule, or those computed with the infi-
nitely stiff force constants model.

To develop the coordinate map for the space that in-
cludes the bending of water, we carry out a transformation of
coordinates in two steps. First, we introduce a bending de-
gree of freedom, which is mapped by a SPC, and we handle
the rotations using Euler’s angles. Second, we transform the
Euler angles to SPC,

�r1

]

rn
� �1

�
�1

−1�
rC

�

�

	

�4
� �2

�
�2

−1�
rC

�1

�2

�3

�4
� . �30�

�1 maps from R9 to the following Cartesian product of sub-
spaces �1 :R9→R3 � I3 � B1, where the projection coordi-
nate �4 is the SPC of the H–O–H angle 
HOH:

cos�
HOH� =
�
y − �y�2 + �z

2

re
2 . �31�

�4 spans the ring of radius re represented by the symbol B1,
where re is the equilibrium length between the hydrogen at-
oms and the oxygen atom. We find that we can still remap I3

with the SPCs in the usual manner.24 � ,	 ,� are the three
Euler angles defined by the element R of the rotation group
as before. It is possible to introduce a body-fixed reference
configuration and rotate it, but this is a function of 
HOH; the
same is true for the inertia tensor:


y =
mOre cos�
HOH/2�

mt
, �32�

�y = − 2
mHre cos�
HOH/2�

mt
, �33�

�z = re sin�
HOH/2� . �34�

The SPCs remapping of the trigonometric functions of 
HOH

is obtained with double angle formulas

cos�
HOH/2� =
� + 1

2
�
HOH � �� �35�

or its additive inverse if 
HOH��, and

sin�
HOH/2� =
1 − �

2
, �36�

where

� =
��4�2 − 4re

2

��4�2 + 4re
2 �37�

is derived with geometric arguments by projecting the angu-
lar coordinate from the point on a ring of radius re where one
hydrogen is located onto a line perpendicular to the O–H
vector on the opposite side of the ring �cf. Fig. 1�. The ex-
pressions above are used to build the body-fixed reference
frame x�BF�

� of Eq. �5�. It can be shown that the configuration
of the body-fixed frame remains in the center of mass and the
inertia tensor is diagonal. With the expressions for 
y ,�y ,�z

as a function of 
HOH, it is possible to obtain the mapping
between the coordinates we have chosen for the subspace
and the Cartesian coordinates of each of the three atoms.

We need to examine the mapping from the body-fixed to
the laboratory frame. The map is expressed by Eq. �8�; the
elements of the first six rows of the Jacobian matrix are

FIG. 1. A sketch of the geometric definition of the two coordinates used to
map the bending manifold B1. The stereographic projection is obtained by
finding the intersection point between the line that originates at H, passes
through the point on the circle at 
HOH, and the tangent line that lays per-
pendicular to the line between the center and H.
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given by Eqs. �13� and �14� for the first six rows. The last
row of the Jacobian matrix of �1

−1 is expressible as follows:

J�
3�i−1�+k = 	

k�=1

3

Rkk���x�BF�
3�i−1�+k�

�38�
�1 � k � 3, 1 � i � n, � � 6� .

R does not depend on the internal DF, only the body-fixed
configuration vectors do. For the metric tensor we use the
expressions in Eq. �16� for the 1���3, 1���3 case, in
Eq. �17� for the 1���3, 4���6 case, and in Eq. �18�
for the 4���6, 4���6 case. There are three more cases
to be considered:

IV. 1���3, ��6

g�� = 	
i=1

n

mi 	
k�=1

3

R�k���x�BF�
3�i−1�+k�

= ��� 	
k�=1

3

R�k�	
i=1

n

mix�BF�
3�i−1�+k�� = 0, �39�

where, once more, the fact that the body-fixed frame is in the
center of mass is used. The derivative operator can be moved
all the way to the left since the rotation matrix does not
depend on the internal coordinate. This is a general result
which establishes the fact that the internal DF are also or-
thogonal to the center of mass coordinates.

V. 4���6, ��6

g�� = 	
i=1

n

mi�ri
�BF��T����ri

�BF� �4 � � � 6, � � 6� ,

�40�

where the set �� is a set of three tensors that operate in the
R3 space associated with the body-fixed Cartesian coordi-
nates for atom i,

�� = ���R�TR . �41�

The expressions for these are

�4 = � 0 0 sin �

0 0 − cos �

− sin � cos � 0
� , �42�

�5 = �0 − 1 0

1 0 0

0 0 0
� , �43�

�6 = � 0 − cos � − sin � cos �

cos � 0 − sin � sin �

sin � cos � sin � sin � 0
� . �44�

To complete the metric tensor we need to explore one final
case,

VI. ��6, ��6,

g�� = 	
i=1

n

mi���ri
�BF��T��ri

�BF� �� � 6, � � 6� , �45�

where the orthogonality of R is used. All the results pro-
duced so far in this section apply for all the internal DF. The
expression in Eq. �45� does not depend on the Euler angles
and rC. This result has important consequences: it implies
that the submatrix part of the inverse tensor g�� that corre-
sponds to the quadratic in the derivatives of the constraints
as derived in Ref. 44 is independent of the Euler angles and
rC. Consequently, the ratio g�E�

1/2 /g1/2 that distinguishes the
infinite spring constant limit from the curved space averages
is also independent of the angles. Therefore, there are, in
general, no differences between the infinite spring constant
model and the inertia ellipsoid model for molecular dynam-
ics with all the internal DF constrained.

One derives the following metric tensor for the bending
water molecule with rigid stretches:

g11 = g22 = g33 = mt,

g44 = I11 cos2 � + I22 sin2 � ,

g46 = �I11 − I22� sin � cos � sin � ,

g55 = I33,

g56 = I33 cos � ,

g66 = I11 sin2 � sin2 � + I22 sin2 � cos2 � + I33 cos2 � ,

g77 = 2mH��
y��
2 + ��z��

2� + mO��y��
2, �46�

where the primes are used to notate the derivatives with re-
spect to the bending coordinate. The bending coordinate is
orthogonal to the rotational coordinates only because the
body-fixed configuration is symmetric for every value of �4.
In the more general case, Eq. �40� is expected to produce
nonzero elements. This representation can be transformed to
express the metric on the ellipsoid of inertia mapped by
SPCs. It is simpler to transform directly Eq. �46� by using the
map �2. The Jacobian matrix associated with �2

−1 is

�13
3 0 0

0 J�
� 0

0 0 1
� �1 � �,� � 3� , �47�

where the expressions for elements in the J�
� block are those

found in Ref. 24. It can be shown easily that J�
� only trans-

forms the 3
3 rotation block of the metric tensor, and that
the bending projection �4 is orthogonal to the other three
SPCs:

g�� = �mt13
3 0 0

0 h�� 0

0 0 �
� , �48�

where the entries of h�� are the usual ones,40 and �
=mH��
y��

2+ ��z��
2�+mO��y��

2. The effective mass associated
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with the bending projection ��̇4�2 is independent of the other
three SPCs. g�E�

1/2 /g1/2 does depend on the H–O–H bending
DF as it is shown in Ref. 44. To see if there are any numeri-
cal differences between the infinitely stiff spring constant
model and the curved space for which we derive the metric
tensor g��, we must find an efficient way to compute the
g�E�

1/2 /g1/2 ratio and insert the ratio into the MCPI simulation.
In Sec. II D we develop a general strategy to compute g�E�
directly.

D. The bending and stretching DF

We now consider the development of a set of maps that
involve all of the internal DF and the inertia ellipsoid. Map-
ping is performed in two stages to simplify the expression of
the SPCs of the inertia ellipsoid. The maps, �1 and �2, and
their inverses carry out the following transformation of co-
ordinates in R3n:

�r1

]

rn
� �1

�
�1

−1�
rC

�

�

	

q1

]

q3n−6

� �2

�
�2

−1�
rC

�1

�2

�3

q1

]

q3n−6

� , �49�

where the SPCs and the angles are the same as before and
q1−q3n−6 are all the internal DF �redundancies excluded�. We
make no distinction between the soft and the stiff internal
coordinates and the particular coordinates that are used to
map these. For the water molecule case specifically, q1 is the
same as �4 in the previous section, and q2 and q3 are the two
O–H stretches r1 and r2. The metric tensor is obtained by
transforming Eq. �9� according to Eq. �10� in two stages, first
with the Jacobian matrix of �1

−1 and then with that of �2
−1.

The Jacobian matrix of �1
−1 is expressed in Eqs. �14� and

�38�. The Jacobian matrix for �2
−1 has a block diagonal struc-

ture,

�13
3 0 0

0 J�
� 0

0 0 1�3n−6�
�3n−6�
� �1 � �,� � 3� . �50�

The expressions for elements in the J�
� block are those in

Refs. 24 and 40. Equation �45� requires that analytical ex-
pressions for the body-fixed coordinates ri

�BF� as a function of
q1 , . . . ,q3n−6 are available.

For the water molecule we need to find nine body-fixed
Cartesian coordinates that are functions of �4 ,r1 ,r2 so that
�1� the configuration is in the center of mass and �2� the
configuration diagonalizes the moment of inertia. We begin
by choosing to put the configuration in the y−z plane. Then
the 1, 2 and the 1, 3 entries of the inertia tensor are zero. This
choice reduces the number of degrees of freedom to six.
Satisfying the first criteria produces two equations, one for
the y coordinates, and one for the z coordinates; one is left
with four DF. Finally, setting the 2, 3 entry of the inertia
tensor to zero by rotating about the x axis produces one

additional equation, reducing the number of DF to three, the
same number of internal DF at our disposal. A simple way to
proceed is to place the oxygen at the origin, the first hydro-
gen on the y axis, and the second hydrogen in the y−z plane.
Then, one translates to the center of mass and rotates about
the x axis until the yz moment of inertia vanishes. For the
water molecule we obtain in this manner analytical expres-
sions for the body-fixed reference configuration as a function
of the internal coordinates.

It is still possible to introduce the usual SPC for the
bending angle 
HOH,

�4 = 2
r1r2
sin�
HOH�

1 − cos�
HOH�
. �51�

All the elements of the Jacobian matrix and the metric tensor
have been represented in terms of derivatives of the rotation
matrix, and the derivatives of the body-fixed coordinates.

We only need to evaluate an expression for the metric
tensor for values of r1 and r2 equal to their equilibrium value
since we are only interested in fixing the distribution of �4

when we carry out simulations with the bending degree of
freedom included. At r1=r2=re we obtain a relatively simple
form of the metric tensor,

g�E��� = �mt13
3 0 0

0 h�� ���
T

0 ��� ���

� . �52�

Each of the blocks in Eq. �52� is a 3
3 block, and ���
T

denotes the transpose of ���. The determinant of g�E��� can
be easily computed with the Cholesky decomposition,
g�E���=LLT, since the metric tensor is always expressible as
a positive definite matrix:

g�E�
1/2 = �

i=1

9

Lii. �53�

E. The Riemann-Cartan curvature scalar

Both the DeWitt prepoint and the Kleinert postpoint ex-
pansion require a lattice correction, a quantum contribution
of the Jacobian arising from the transformation of the Wiener
measure in the manifold. The lattice correction is a scalar
term, which is typically described as an effective potential,
proportional to the Riemann-Cartan curvature scalar R, �cf.
Eq. �2��, a contraction of the Riemann curvature tensor

R���
� = �����

� − �����
� + ���

� ���
� − ���

� ���
� , �54�

R = g��R���
� , �55�

and the � symbols are the Christoffel connections,

���
� =

1

2
g�����g�� + ��g�� − ��g��� . �56�

Numerical tests show that R does not depend on the orien-
tation, and that it is a function of the bending stereographic
projection �or bending angle� only. To develop the analytic
expression for R we need to choose the most convenient set
of coordinates to map the R3 � I3 � B1 manifold. Since R is
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scalar, it is relatively simple to use the map directly to
change coordinates in our answer, without involving any el-
ements of the Jacobian matrix. We derive the analytic ex-
pression for R using the Euler angles, as it is far simpler to
find explicit equations for the connections, the inverse of the
metric, and the related quantities.

The first step is to find an expression for the inverse of
Eq. �46� as it is needed to find the Christoffel connection
coefficients in Eq. �56�, and in the contraction of the Ricci
tensor in Eq. �55�. The block diagonal nature of g�� in Eq.
�46� simplifies this first task, since the only nontrivial inver-
sion takes place in the 3
3 rotation block; only a few row
elimination steps are needed to produce relatively compact
expressions for the entries of g��. Equation �56� yields a total
of 43 nonvanishing connections for the space; however, of
these only 25 expressions are distinct as the result of the
symmetry property

���
� = ���

� . �57�

The Ricci tensor R�� in Eq. �55� is obtained with combina-
tions of connection coefficients and their derivatives. In the
four-dimensional subspace of interest, only 20 elements of
the Riemann tensor are independent. However, even fewer
are needed to compute the Ricci tensor,

R�� = R���
� . �58�

Additionally, the Ricci tensor is symmetric in a torsion free
space,

R�� = R��, �59�

and use can be made of the antisymmetry of the last two
indices,

R���
� = − R���

� . �60�

Therefore, for every element of the Ricci tensor only three
elements of the Riemann tensor are needed, e.g.,

R44 = R454
5 + R464

6 + R474
7 . �61�

Finally, since some elements of the inverse of the metric
tensor are zero, a number of elements of the Ricci tensor can
be omitted. Only R44,R45,R46,R55,R56,R66, and R77 are
needed, for a total of 21 elements of the Riemann tensor.

The sum of all the Riemann tensor elements needed for
the contraction gives rise to a total of 98 terms, and the
simplification of the Ricci tensor elements is only marginal;
a considerable number of terms for each element of R�� re-
main. Therefore, the last contraction in Eq. �55�, which in-
volves numerous accruing, factoring, and cancellations, is
best left for symbolic processing software.45 The final result
is

R =
�I11 + I22 + I33�2 − 2�I11

2 + I22
2 + I33

2 �
2I11I22I33

−
1

�2mH�
�2 + ��2� + mO��2�
� I33�

I33
+

I22�

I22
+

I11�

I11



+
1

2�2mH�
�2 + ��2� + mO��2��� I11�

I11

2

+ � I22�

I22

2

+ � I33�

I33

2�

−
1

2�2mH�
�2 + ��2� + mO��2�
� I11� I22�

I11I22
+

I11� I33�

I11I33
+

I33� I22�

I33I22



+
1

2�2mH�
�2 + ��2� + mO��2�2�� I11�

I11
+

I22�

I22
+

I33�

I33

�4mH�
�
� + ����� + 2mO������ , �62�

where all the primes denote derivatives with respect to the
bending coordinate. There are several important features in
this expression. �a� Equation �62� does not depend on the
Euler angles, neither explicitly nor implicitly. This agrees
with our observation in preliminary numerical explorations.
�b� If we set all the derivatives with respect to the bending
coordinate to zero, all but the first term vanish, and the first
term is the curvature expression for the general ellipsoid of
inertia of a rigid body as found in the literature. In the rigid
case, the curvature is constant and has no effects on the
dynamics. �c� The expression in Eq. �62� is independent of
the coordinate chosen to map the bending degree of freedom.

III. NUMERICAL TESTS

We have shown that it is possible, in principle, to inte-
grate the Wiener measure on the R3 � I3 � B1 manifold, and
in a whole class of Cartesian products of these,

�R3
� I3

� B1� � �R3
� I3

� B1� ¯ . �63�

In practice, the fact remains that these spaces are mixtures of
intramolecular and intermolecular DF, which have disparate
time scales. The direct use of Monte Carlo methods and the
estimate of thermodynamic properties produce inefficient al-
gorithms even when the latest numerical technology is em-
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ployed. The inefficiency is particularly severe in the regions
of temperature where the dynamics are dominated by the
motion along intermolecular DF. Nevertheless, the present
development is useful to study in detail the couplings among
the two sets of degrees of freedom. There are three potential
sources of couplings that perturb the “separability” of inter-
molecular and intramolecular DF:

�1� the existence of off diagonal terms in the metric tensor,
�2� the existence of Christoffel connections �and higher de-

rivatives� of the metric, and
�3� the existence of off diagonal terms in the Hessian �and

higher derivatives� of the potential.

The first two in the list are of “geometric” origin since these
are specific properties of the metric tensor, whereas the last
one is a property of the potential energy surface. This sepa-
ration is of importance since the methods that one must em-
ploy to study these are radically different. The effects that the
existence of off diagonal terms in the Hessian of the potential
have on the dynamics and thermodynamics can be studied
relatively well with traditional methods as, e.g., with normal
mode analysis. The geometric couplings, on the other hand,
are from first principles, resulting from our choice of a con-
venient partition of R3n so as to “isolate” high frequency DF.
The strategy that we develop to study more closely geomet-
ric couplings is to choose a sufficiently simple system for
which the existence of off diagonal terms in the Hessian �and
higher derivatives� of the potential can be safely ignored. We
use two separate sets of random walks in the classical and
quantum limit to monitor the distribution of the low fre-
quency DF, the first with the high frequency DF under study
constrained and the second set with the high frequency DF
under study sampled. The water monomer with rigid
stretches, subjected to an external field, is one such example.
The potential energy model we consider has two terms,

V = Ve + Vintra, �64�

over the I3 � B1 manifold. We omit the translation DF in the
treatment since there are no couplings of any nature between
the translations and the remaining DFs. We choose the inter-
action with the external field as a nontrivial sinusoidal func-
tion of the Euler angles, which, when expressed in terms of
SPCs, takes the following form:

Ve = − V0
�1 + �2 + �3

��1�2 + ��2�2 + ��3�2 + 4
. �65�

Its shape and the value of V0=0.0400 hartree are chosen to
mimic approximately the interaction of a molecule of water
adsorbed by a water cluster. The intramolecular interaction is
simply a harmonic potential, when expressed in terms of the
bending angle

Vintra = 1
2bW�
HOH − 
eq�2. �66�

The parameters, bw=0.160 988 4 hartree rad−2 and rOH,e

=1.809 23 bohr, 
eq=1.823 87 rad�104.5°, are chosen to
produce the following properties for this system. The bend-
ing frequency is 1594.3 cm−1, the experimental value in the
gas phase. The harmonic approximation of the zero point

energy is 0.003 63 hartree. The equilibrium value of the
bending SPC is �eq

4 =2.9264 bohr. At �eq
4 the inertia tensor

eigenvalues are I1 , I2 , I3�12 571,8203,4367 atomic units,
respectively. The minimum of the overall potential is Vmin

=−0.017 32 hartree at �1=�2=�3=
4 /3, 
HOH=
eq. Let g1/2

be the square root of the determinant of the metric in I3

� B1, and g�E�
1/2 the square root of the determinant of the met-

ric in R9 as explained in Sec. II D. The ratio g�E�
1/2 /g1/2, as a

function of �4, is displayed in the graph in Fig. 2. As ex-
plained earlier, g�E�

1/2 /g1/2 is independent of the orientation DF,
a convenient feature that allows us to compute the ratio once
and access its value from tabulated data during the walk. The
classical Jacobian g�E�

1/2 can be computed at every point with a
much cheaper evaluation of g1/2 and a multiplication of g1/2

by the value of g�E�
1/2 /g1/2 interpolated linearly between its

tabulated values. A similar interpolation between tabulated
values is used to speed up the computation of the Riemann
curvature scalar �cf. Eq. �62��. With the chosen set of param-
eters, the curvature evaluates as shown in Fig. 3. Finally, a
graph of Vintra as a function of the SPC is presented in Fig. 4.

FIG. 2. The ratio g�E�
1/2 /g1/2 as a function of the bending SPC. g�E�

1/2 is the
square root of the determinant of the metric g�E��� in R9, mapped by center
of mass, orientation, and all internal DF coordinates. g1/2 is the square root
of the determinant of the metric g�� over the R3 � I3 � B1 manifold. The
units of the ratio are those of mass. g�E�

1/2 /g1/2 is convenient for the fast
computation of g�E�

1/2, the classical Jacobian in simulations.

FIG. 3. The Riemann Cartan curvature scalar of the R3 � I3 � B1 manifold as
a function of the SPC �4 �cf. Eq. �62��.
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To interpret the x axis of the graphs in Figs. 2–4 one needs to
refer back to Fig. 1. As �eq

4 approaches zero, the bending
angle approaches 180 deg; as �eq

4 approaches +�, the bending
angle approaches zero. The rise in the potential energy mov-
ing to the left from equilibrium is steeper because the span
from the equilibrium angle to 180 is contracted into approxi-
mately 3 bohr by the bending SPC, and is expanded greatly
by the same when moving to the right of the equilibrium
point.

The MCPI simulations are performed using reweighted
random series �RRS�. The RRS method is a finite expansion
of the path with 4km terms,

q̃u�u� = qr
��u� + ��1/2	

k=1

km

ak
��k�u� + ��1/2 	

k=km+1

4km

ak
��˜k�u� .

�67�

We use Fourier-Wiener basis, where

�k�u� =
 2

�2

sin�k�u�
k

, �68�

�̃k�u� = f�u�
 2

�2

sin�k�u�
k

, �69�

f�u� =�u�1 − u� − 	
k=1

km 2

�2k2sin2�k�u�

	
k=km

4km 2

�2k2sin2�k�u�

, �70�

since the RRS method17,18 with these bases has been shown
to retain its cubic convergence in non-Euclidean spaces.24,39

The expression for the importance sampling is derived
from the density matrix,24

�RW�q,q�,�� �� d�a�r exp�− ��
0

1

duU�q̃��u��� , �71�

where

U�q̃u�u�� = −
km + 1

2�
ln�det g�E���� +

1

2
g��q̇�q̇� + V + Vq,

�72�

and where all four terms on the right-hand side are functions
of q̃��u�; we drop the argument of these functions to improve
clarity. In this study we compute �Ve� , �E�, and �Vintra�. �Ve�
is a good indicator of the perturbation in the sample of con-
figuration space between simulations in I3 � B1 and those in
I3.

The Metropolis46,47 algorithm is used to generate four
separate walks over which values of Ve are accumulated and
averaged. Each walk consists of 11 million moves; the first
million is used to reach the asymptotic distribution, the re-
mainder of the walk is used to compute the averages. The
entire procedure is repeated 25 times to produce a block
average for �Ve� and the standard error in the mean from
which to compute the error bars; these represent the 95%
confidence interval. The results are presented in Figs. 5–7.
Incremental values of km �cf. Eq. �67�� from 0, for a classical
simulations, up to 16 are used. The striking feature in Fig. 5
is the excellent agreement between the results obtained with

FIG. 4. Graph of Vintra as a function of the SPC �4.
FIG. 5. Value of �Ve� in the I3 manifold �classical �white circles�, quantum
�white squares� labeled as “rigid”� compared to the values of �Ve� computed
with the I3 � B1 manifold �classical ���, quantum �+��. The quantum values
are obtained with km=4 in both cases.

FIG. 6. Values of �Vintra�, the intramolecular potential along the bending
coordinate computed at several temperatures for various values of km.
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either space. In Figs. 6 and 7 we report a graph of �Vintra� and
of �E� respectively computed for several values of km. �Vintra�
and �E� are still converging below 500 K. The harmonic
estimate of the ground state values of �Vintra� and �E� are
approximately 0.0018 and −0.013 69 hartree, respectively.

IV. CONCLUSIONS

In a recent article we have demonstrated that MCPI
simulations of rigid molecular condensed matter, when all
intramolecular DF are constrained, yield massive efficiency
gains.24 However, constraining all the intramolecular DF is
not always satisfactory. One case of particular importance is
the MCPI simulation of liquid water and water
clusters.30,48–64 In our recent work24 on water clusters we
constrain all the intramolecular DF. It is not obvious that the
resulting simulation should yield satisfactory results at tem-
peratures above 250 K, where excitation of the bending de-
gree of freedom may have a detectable effect on sensitive
thermodynamic properties. As water molecules condense,
redshifting could lower this temperature by several degrees
as well. The work reported in this article contains the first
fundamental steps necessary to develop efficient algorithms
for walks and estimators of important thermodynamic prop-
erties obtained from MCPI simulations of a cluster of mol-
ecules in which some selected internal DF are constrained by
infinite spring constant, while other, softer, internal modes
are included in the configuration space. We show that SPC
maps can be used when the soft internal DF are bending
modes. We develop a systematic method to derive the nec-
essary expressions for the metric tensor when the space is
mapped with Cartesian coordinates for the translations, ste-
reographic projections for the orientations, and any number
of non-redundant internal degrees of freedom that are not
constrained. We find expressions for the correct classical and
quantum Jacobians, and ways to compute these efficiently.

A careful study of the couplings that originate from the
geometry of the chosen space, which is the subject of the
numerical tests we report, is important for two fundamental
reasons. First, it is a necessary step for the development of
new theories, such as a split kinetic energy operator ap-
proach, for example, and to develop expressions for new

efficient estimators. Second, the couplings among sets of DF
are important when estimators for spectroscopic properties
associated with high frequency DF are developed for MCPI
simulations. To better grasp the relevance of the outcome of
our numerical tests, let us consider the expression for the
Laplace-Beltrami operator,

�LB = g−1/2��g��g1/2��, �73�

on the I3 � B1 manifold. The terms of the operator contain
either g�� or its derivatives, and since the spaces R3 � I3

� B1 are mutually orthogonal, from the block diagonal struc-
ture of the metric, there are no cross terms that mix deriva-
tives among DF belonging to these subspaces. We symbolize
this with the following expression,

�LB�R3
� I3

� B1� = �LB
R3

+ �LB
I3

�I3
� B1� + �LB

B1
�I3

� B1� ,

�74�

where the superscripts of the three terms on the right-hand
side represent the space of coordinates with respect to which
the derivatives are taken in the operators, while the argu-
ments represent the functional dependence on configuration
space of the operators. For example, the derivative operators
for I3 contain multiplicative factors that depend on both the
orientation SPC, as well as the value of the bending coordi-
nate. It is such dependence that gives rise to the geometric
couplings we have investigated. The fact that we find no
significant couplings, as evident in Fig. 5, suggests that one
could drop the mixed dependence of the Laplace-Beltrami
operator and to a good approximation obtain

�LB�R3
� I3

� B1� � �LB
R3

+ �LB
I3

�I3� + �LB
B1

�B1� . �75�

The last equation is simply a statement of the adiabatic ap-
proximation. However, it is remarkable that, in order to for-
mulate Eq. �75�, no appeal to the time scale difference
�which is presumed to diminish the effects of dynamic cou-
plings alone� is ever made. The simulations labeled “bend-
ing” in Fig. 5 are obtained by developing the propagation
from the last two terms on the r.h.s. of Eq. �74�. The simu-
lations labeled “rigid” in Fig. 5 correspond to the second
term on the r.h.s. of Eq. �75� only. The average external
potential �and the difference between the two simulations� is
a direct measure of how much the bending affects the orien-
tation. The results in Fig. 5 can be interpreted to mean that
the geometric couplings from the bending have a smaller
effect than the statistical error on an average interaction felt
by a molecule of water on the surface of a cluster. Obviously,
at some level such coupling can be measured, and a good
indicator would be the values of the Christoffel coefficients
that connect bending and orientations. The connecting
Christoffel coefficients are numerous, and not all are vanish-
ing, but they are clearly small. Similar arguments apply for
dynamic couplings as well. Off diagonal elements of Hessian

FIG. 7. Values of �E�, the total energy computed at several temperatures for
various values of km.
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matrices are never zero, but they might be smaller than the
statistical error on the average potential energy coming from
the relatively larger diagonal elements. In Euclidean spaces,
that evidence is sufficient to justify splitting the Hamiltonian
and regard the adiabatic approximation as excellent. In non-
Euclidean �or even curvilinear� spaces, the present article
argues that other sources of coupling exist, that these cou-
plings arise from the properties of the metric tensor, and that
they need to be researched carefully.

The bending mode is, from the path integral prospective,
a “new” type of space which must not be mistaken with the
typical mono-dimensional rotation. The element of the met-
ric tensor is constructed from the masses of the three atoms
involved in the bending, and the derivatives of the body-
fixed frame coordinates of these. The dependence on the
space is implicit and, therefore, the expression for g77 in Eq.
�46� is independent of the coordinate chosen to map B1.
However, the most striking difference between the bending
DF and a typical mono-dimensional rotation can be observed

by considering the expression for �LB
B1

�I3 � B1�:

�LB
B1

�I3
� B1� =

1

g77
�7

2 + � gI3�

2gI3 · g77
−

g77�

2g77
2 ��7, �76�

where gI3 is the determinant of the metric tensor block asso-
ciated with the rotation space, and the primes notate deriva-
tives with respect to the bending DF. This expression is also
independent of the coordinate chosen to map B1, remains
nearly unchanged in the adiabatic limit, and is quite different
from the Laplace-Beltrami operator for the particle in a ring.
These are the reasons that compel us to call the bending
space B1, and not S1, which should be reserved for the mono-
dimensional rotation.

The next important step necessary to achieve our objec-
tives is a careful study, perhaps from first principle, of the
dynamic couplings in water clusters. Unlike the geometric
couplings computed in the present paper, the dynamic cou-
plings require a carefully constructed potential energy sur-
face. Many flexible extensions of the rigid water PES models
�e.g., the TIP4P or the SCPE� exist. However, the dynamic
couplings we seek require additional theoretical or experi-
mental studies.

The results obtained in the present investigation, namely
the orthogonality among the rotation and the bending, and
the lack of geometric couplings can be generalized only to
triatomic molecules with C2v symmetry. As stated in Sec.
II C, the bending coordinate is orthogonal to the rotational
coordinates only because the body-fixed configuration is
symmetric for every value of �4. Bending DF may not be
orthogonal to rotations in less symmetric molecules. Non-
orthogonality gives rise to distinct types of coupling terms
whose importance must be carefully scrutinized with the the-
oretical and numerical methods we employ here.

The method we develop here can be clearly generalized

to study the differential geometry with any kind of relatively
low frequency internal degree of freedom. Equation �45�, for
example, is quite general, as it applies to any kind of internal
degree of freedom. However, we caution the reader that,
while the procedure yields the correct expressions for the
metric tensors and classical and quantum Jacobians, the fact
that these exist and can be obtained does not assure that the
resulting path integral converges. The Wiener measure in
manifolds remains a rich subject, and the theoretical methods
that the community have developed are far from being black
boxes. As a clear example of how partitioning a space, along
with certain choices of coordinates, can lead to non-
convergent path integrals, one need only consider the well
known problem of path collapsing along the radial degree of
a rotating linear top: When mapping the rotations with tradi-
tional polar angles, a purely geometric term in the radial path
integral for the l=0 state is infinitely attractive as r ap-
proaches zero.29 Special remappings of the radial manifold
have been employed to handle the path collapse problem for
a rotating linear top.29 On the other hand, the procedure we
develop here can be used to study more general types of
bending, and torsional manifolds. It is likely that all these
can be mapped with SPCs, and that these coordinates are
orthogonal to the rotation DF.
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APPENDIX: METRIC TENSOR FROM PASSIVE
ROTATION OF A RIGID WATER MOLECULE

It is straightforward to show that for the passive rotation
case the relevant R3 tensors, obtained by taking derivatives
of the transpose of the matrix in Eq. �4�, are

�44� = � sin2 	 − sin 	 cos 	 0

− sin 	 cos 	 cos2 	 0

0 0 1
� , �A1�

�45� = �− sin � sin 	 cos 	 sin � sin2 	 0

− sin � cos2 	 sin � sin 	 cos 	 0

− cos � cos 	 cos � sin 	 0
� , �A2�

�46� = � 0 0 0

0 0 0

cos 	 sin 	 0
� , �A3�
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�55� = � cos2 � sin2 	 + cos2 	 cos 	 sin 	�cos2 � − 1� − sin � cos � sin 	

cos 	 sin 	�cos2 � − 1� cos2 � cos2 	 + sin2 	 − cos � sin � cos 	

− sin � cos � sin 	 − cos � sin � cos 	 sin2 �
� , �A4�

�56� = � cos � 0 0

0 cos � 0

− sin � sin 	 − sin � cos 	 0
� , �A5�

�66� = �1 0 0

0 1 0

0 0 0
� . �A6�

Equations �16�–�18� yield

g11 = g22 = g33 = mt,

g44 = �2mH
y
2 + mO�y

2�cos2 	 + 2mH�z
2,

g45 = �2mH
y
2 + mO�y

2�sin � cos 	 sin 	 ,

g55 = �2mH
y
2 + mO�y

2��sin2 	 + cos2 � cos2 	�

+ 2mH�z
2 sin2 � ,

g56 = �2mH
y
2 + mO�y

2�cos � ,

g66 = 2mH
y
2 + mO�y

2. �A7�

Using Eq. �7� once more, one obtains Eq. �28� in Sec. II A.
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