THE UNIVERSITY OF RHODE ISLAND

University of Rhode Island DigitalCommons@URI

Plant Sciences and Entomology Faculty Publications

Plant Sciences and Entomology

9-4-2014

Quantitative Factors Proposed to Influence the Prevalence of Canine Tick-Borne Disease Agents in the United States

Roger W. Stich

Byron L. Blagburn

Dwight D. Bowman

Christopher Carpenter

M. Roberto Cortinas

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/pls_facpubs

Citation/Publisher Attribution

Stich *et al.*: Quantitative factors proposed to influence the prevalence of canine tick-borne disease agents in the United States. *Parasites & Vectors* 2014 7:417. Available at: http://dx.doi.org/10.1186/1756-3305-7-417

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Plant Sciences and Entomology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Quantitative Factors Proposed to Influence the Prevalence of Canine Tick-Borne Disease Agents in the United States

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Authors

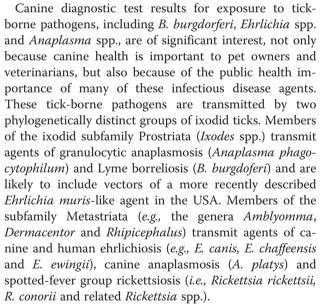
Roger W. Stich, Byron L. Blagburn, Dwight D. Bowman, Christopher Carpenter, M. Roberto Cortinas, Sidney A. Ewing, Desmond Foley, Janet E. Foley, Holly Gaff, Graham J. Hickling, R. Ryan Lash, Susan E. Little, Catherine Lund, Robert Lund, Thomas N. Mather, Glen R. Needham, William L. Nicholson, Julia Sharp, Andrea Varela-Stokes, and Dongmei Wang

MEETING REPORT

Open Access

Quantitative factors proposed to influence the prevalence of canine tick-borne disease agents in the United States

Roger W Stich^{1*}, Byron L Blagburn², Dwight D Bowman³, Christopher Carpenter⁴, M Roberto Cortinas⁵, Sidney A Ewing⁶, Desmond Foley⁷, Janet E Foley⁸, Holly Gaff⁹, Graham J Hickling¹⁰, R Ryan Lash¹¹, Susan E Little⁶, Catherine Lund¹², Robert Lund¹³, Thomas N Mather¹⁴, Glen R Needham¹⁵, William L Nicholson¹⁶, Julia Sharp¹³, Andrea Varela-Stokes¹⁷ and Dongmei Wang¹³


Abstract

The Companion Animal Parasite Council hosted a meeting to identify quantifiable factors that can influence the prevalence of tick-borne disease agents among dogs in North America. This report summarizes the approach used and the factors identified for further analysis with mathematical models of canine exposure to tick-borne pathogens.

Keywords: Anaplasma, Ehrlichia, Borrelia burgdorferi, Tick-borne infections, Prevalence map factors, Ticks, Ixodidae, Prostriata, Metastriata

Background

Dogs in the United States (USA) are hosts to a diverse range of ixodid ticks and can become infected with many of the pathogens transmitted by these vectors. Advances in diagnostic test and recording technologies have led to the creation of a monthly dataset containing county-by-county canine test results from across the USA. The Companion Animal Parasite Council (CAPC) has assembled large datasets of such results from commercial laboratories that provide diagnostic tests for canine exposure to Borrelia burgdorferi, Ehrlichia spp. and Anaplasma spp. [1]. These monthly, county-level CAPC prevalence maps generated interest in the utility of the datasets for assessing seroprevalence norms, forecasting future seroprevalence rates and for identifying trends in canine exposure to this array of tick-borne disease agents. A group of vector ecologists, parasitologists, other biologists and statistical modelers met in Atlanta, GA (June 9-10, 2012) to identify factors that could enhance the accuracy of these predictive models. This report narrates the results of the meeting.

Large datasets have been assembled from reports of diagnostic test results for canine exposure to *B. burgdorferi*, *Anaplasma* spp. and *Ehrlichia* spp. in the USA. For example, from reports submitted nationwide from 2010–2012, 509,195 (7.2%) of 6,996,197 canine samples were seropositive for *B. burgdorferi*, 270,168 (4.4%) of 6,192,268 samples were seropositive for *Anaplasma*,

© 2014 Stich et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: stichrw@missouri.edu

¹Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA

Full list of author information is available at the end of the article

and 111,673 (1.1%) of 6,994,683 samples were seropositive for *Ehrlichia* [2]. A previous national survey, spanning 2001-2007, reported results from 982,336 diagnostic tests for canine exposure to B. burgdorferi and Ehrlichia spp., and 479,640 tests for canine antibodies to Anaplasma spp., with 5.1%, 0.6% and 4.7% of these samples testing seropositive for *B. burgdorferi*, Ehrlichia and Anaplasma, respectively [3]. Interestingly, when the canine seroprevalence of *B. burgdorferi* in the 2001-2007 study was compared to the subsequent prevalence of human Lyme disease, the most commonly reported human vector-borne illness in the USA, canine seroprevalence of *B. burgdorferi* \geq 5.1% was predictive of emergent human Lyme disease in low-incidence counties; a low canine seroprevalence $(\leq 1.0\%)$ was associated with minimal risk for emergent human Lyme disease [4]. A subsequent report, however, underscored the importance of other variables, such as the distribution of competent vector species, for accurate interpretation of these canine diagnostic test data [5].

The overall objective of this CAPC-sponsored workshop was to identify factors that are likely to influence the seroprevalence of canine exposure to tick-borne disease agents in the USA, specifically focusing on the factors and the pathogens for which sufficient data are available, so that these factors could be evaluated for incorporation in mathematical models designed to monitor and to predict spatial and temporal seroprevalence patterns. These preliminary factors provided statisticians some of the critical information needed to begin their model-building procedures.

Approach

Two teams of researchers, from various areas of tick and tick-borne pathogen biology, were assembled and tasked with rational identification of factors thought to be relevant to the canine seroprevalence of pathogens transmitted by prostriate (eight team members) or metastriate (seven team members) ticks (Figure 1). Members of each team were selected based upon diverse areas of expertise in tick biology, tick-borne disease, vector ecology or statistics. Each panel was asked to identify and to rank ten key factors that they considered most likely to affect pathogen seroprevalence, and these preliminary factors were then presented to all of the meeting participants for further discussion. It was understood that the relevance of these factors would be subsequently assessed with mathematical models, and that these models would be adjusted with data that continue to be generated. Thus, the utility of different factors would be continually assessed as the mathematical models are refined over time.

The working groups for both ixodid subfamilies began by discussing variables categorized as (1) vector, (2) host, (3) abiotic, (4) habitat or (5) social. Both groups independently identified numerous factors. The majority of factors were thought to be associated with canine exposure to pathogens vectored by either ixodid subfamily; however, several factors specifically associated with the different ixodid subfamilies also emerged. Variables were also discussed for which there is little or inconsistent supporting data, but these factors could become useful if the data became available. However, in accordance with the workshop objectives, factors for which sufficient data are currently available were chosen for ranking by consensus of each working group.

The variables independently identified by each panel were categorized into the five groups previously indicated (i.e., vector, host, abiotic, habitat and social). Factors regarding exposure to infectious agents transmitted by prostriate ticks were heavily influenced by the preponderance of research on the phenology of *Ixodes scapularis* and *I. pacificus*, which are considered the primary vectors of *B. burgdorferi* and *A. phagocytophilum* in North America (Table 1). For metastriate-borne pathogens, host biology and human behavior were second only to vector distribution with regard to factors considered likely to influence seroprevalence (Table 2). Brief explanations and comments regarding these factors are described below.

Vector factors

Distribution

The geographic distribution of prostriate ticks was focused on the *Ixodes* spp. thought to most commonly feed on dogs (and people) in the USA: *I. scapularis* and *I. pacificus*. Metastriate ticks considered as pathogen vectors (e.g., of *Ehrlichia* spp. and *A. platys*) included, in alphabetical order, *A. americanum, A. maculatum, D. andersoni, D. variabilis* and *R. sanguineus*. The general distributions of these ticks are relatively well documented in the literature and via voucher specimens in the USA. However, the spatial resolutions of these data vary in different regions, and defining the minimum useful scale can be complicated by discontinuous geographic distributions of tick populations in a given area.

Abundance

Defining permanent values of tick abundance levels is problematic, because tick population levels within a given area are temporally and spatially variable and can change rapidly. Tick abundance depends on host abundance and availability, relative humidity, precipitation and temperature, and can reflect conditions from previous years when immature tick stages or prior generations were active.

Activity

Activity is indicative of questing behavior, host-seeking behavior, host contact and the feeding preferences of different developmental stages. The presence of ticks in an area is not alone indicative of activity. For example, tick activity will depend on temperature, precipitation, relative humidity and photoperiod.

Host factors

Deer

The deer population is a major driver of abundance for certain ticks, such as *I. scapularis, I. pacificus* and *A. americanum*. Deer are also a reservoir of *E. chaffeensis* and could be involved in the maintenance of *E. ewingii*.

Table 1 Factors initially considered as potentialcontributors to canine prevalence of disease agentstransmitted by *lxodes scapularis* and *l. pacificus*

	transmitted by Ixodes scapularis and I. pacificus (Continued)	
/ector factors		
Distribution	Hydrological features	
Abundance	I. scapularis	
% Infected	Maximum temperature, warmest month	
Canine contact	Annual precipitation	
Local phenology	I. pacificus	
Tolerance to temperature and humidity	Minimum temperature, coldest month	
Activity	Daily temperature (high, low and average)	
Focus on adults as primary vector to dogs	Relative humidity (average, high, low, duration)	
Host seeking behavior	Habitat factors	
Host contact	Land cover classification	
Feeding preferences and opportunities	Urbanization in 3 categories – low, medium, high	
Deer population drives tick abundance	Rate of change	
Small mammal population drives infection prevalence	Forest cover	
Lack of lizards	Land cover classification (categorical), % canopy cover, NDVI, EVI	
Diversity/dilution effect	(canopy structure)	
Tick encounters	Crop phenology – maximum greening, minimum greening – when greening is happening	
Questing behavior versus relative humidity	Supervised vs unsupervised satellite imagery, derived data not	
Peridomestic encounters – access to areas	currently off the shelf	
Urbanization/Rate of development	Forest type, forest fragmentation, forest edge length, forest composition, forest connectivity Forest fragments within X distance of road or urban area, close t	
Infection status (decreased survival versus increased cold tolerance)		
lost factors	population centers	
Presence and abundance (deer, small mammals, lizards)	Understory- could be modeled but is not measured	
Dilution effect/host diversity	Detritus layers/leaf litter	
Habitat availability and quality	Targeted for future research but perhaps not currently available dataset	
Mast crop as a surrogate for host reproduction/fitness	Soil maps/soil types	
Migratory bird patterns	World harmonized soil database	
Reproductive capacity and timing of vertebrate host reproduction	Classification scheme	
Population control programs in place locally	Proximity to rivers/drainage areas	
Abiotic host survival factors	Proximity to coast	
Temperature, water availability, substrate/nesting material, snow	Rain shadows	
cover	Rivers and streams	
Feeding preferences	Attract hosts	
Herd immunity of reservoir host populations	Serve as corridors	
Hunting pressure/success	Provide humidity	
Number of deer killed per county – harvest rates	Aspect/slope/topo index – derived from digital elevation models,	
Hunting license versus hunting harvest – how active hunting is for that area	available from hydro dataset	
Hunting limits due to development	More nymphal deer ticks on north- and east-facing slopes	
Abiotic factors	- Effective distance – more ticks on uphill side of a payout	
Snow cover – depth, duration	Ticks associated with east-facing woodland edges that slope down to water	
Miles of roads – neighborhood roads (non-interstate/parkway/ highway), trails	Fire	

 Table 1 Factors initially considered as potential

 contributors to canine prevalence of disease agents

Table 1 Factors initially considered as potential contributors to canine prevalence of disease agents transmitted by *lxodes scapularis* and *l. pacificus* (Continued)

Depending on timing, burn can increase number of infected ticks, so fewer ticks but higher infection rate

Park boundaries - proximity to parks

Social factors

Human population centers Dog ownership, dog lifestyle

Hunting styles that use dogs

Breed of dog

Dog ownership increase – by region

More homes in tick habitat – demographic factors

Deer/vehicle collisions - deer crossing signs

Acaricide use/quality of care for dogs

Average household income

Presence of clinics, proximity to clinics, number of vet clinics in an area, size of clinics

Cultural - forest foraging (mushroom hunting in Missouri)

Internet use

Social media

Smartphone use

Education level

Population density

Housing type (average lot size, median home price, age of house unit, census tract size)

Small mammals

Rodents are an important component of the ecologies of several tick species and some tick-borne infectious agents. Immature stages of several tick species acquire blood meals from small vertebrate hosts. Several tick-borne infectious agents, such as *B. burgdorferi*, *A. phagocytophilum* and *R. rickettsii* are adapted to rodent reservoir hosts.

Lizards

Small vertebrates such as lizards, which are permissive hosts for immature tick stages but are not definitively documented reservoirs of the pathogens under consideration, could dampen transmission of disease agents that are adapted to rodent reservoirs. Conversely, removal of lizards reportedly reduced nymphal tick numbers from an environment but did not affect the percentage of *B. burgdorferi*-positive ticks, suggesting that increased numbers of lizard hosts might actually increase the risk of pathogen transmission by serving to increase the overall number of ticks in a given area [6].

Migratory bird patterns

Migratory birds can introduce some tick species to new areas [7]. However, ticks that feed on dogs and that are dispersed by birds in the USA may be incapable of main-taining an active population cycle in the absence of larger vertebrate hosts (*e.g.*, white-tailed deer).

Abiotic factors

Different tick species and their natural hosts can be adapted to various environments that are influenced by abiotic factors such as precipitation, temperature, relative humidity and soil composition.

Habitat factors

Factors that influence the life cycles of ticks and their vertebrate hosts include vegetation, urbanization, land use in non-urban settings and detritus layers.

Social factors

Human behavior and population characteristics influence the exposure of dogs to ticks. These include access to preventive care, recreation, socioeconomic status, income, pathogen reservoir control, vector-amplification host control and news media coverage.

Unquantified variables

A number of variables were discussed for which comprehensive, nationwide data did not seem currently available. These variables included vector infection rates, detailed reservoir infection rates, vector abundances, vector efficiency indices, vector survival, vectorial capacities, temperature-dependent development rates of vectors (natural temperature regimes), total number of dogs (by county or zip code) and tick control product sales in each geographic region. Local data may be available for some of these variables in certain areas, but national datasets were not available at the time of this meeting.

Mathematical modeling

Each expert panel was asked to prioritize 10 factors most expected to drive a reliable mathematical predictive model. These lists, summarized in Tables 3 and 4, shared several common abiotic and habitat factors. Several other factors were specific to seroprevalence of the pathogens transmitted by *Ixodes* spp., *R. sanguineus* or the other metastriate ticks that were considered. For example, while deer populations and vegetation were considered important factors that affect the majority of these tick populations, social factors were given the highest priority for predicting the seroprevalence of agents transmitted by the brown dog tick, *R. sanguineus* (Table 4).

Table 2 Factors discussed as potential contributors to

seroprevalence of metastriate tick-borne pathogens

among dogs in the USA (Continued)

Table 2 Factors discussed as potential contributors to seroprevalence of metastriate tick-borne pathogens among dogs in the USA

Vector factors			Temperature
	Biology		Maximum, minimum and average
	Competence (different transmission scenarios)		Degree-day
	Host preference		Soil temperature
	Persistence and interhost transfer of male ticks		Photoperiod
	Host seeking behavior (hunt, ambush)		Seasonal precipitation
	Population dynamics		El Niño effect
	Distribution (established, intermittent or absent)		Snow and other ground cover
	Relative abundance (species and stages)		Catastrophic disturbance
	Seasonality		Fire
	Different stages		Hurricane
	Stage overlap		Wind
Host factors			Altitude
	Principal host(s) of different tick stages	Habitat factors	
	Susceptibility to pathogen		Macrohabitat
	Distribution		Vegetation (density, type and fragmentation)
	Density-Dynamic		Elevation
	Ecologic diversity (dilution effect)		Location of water sources
	Shannon-Weaver Index		Rainfall
	Tick-permissive, non-reservoir hosts		Microhabitat
	Behavior		Soil type
	Host grooming		LIDAR data
	Gregariousness		Land use
	Host species	Social factors	
	Home Range		Land use
	Migration, dispersal		Indoor versus outdoor dogs
	Anthropogenic translocation		Dog use (<i>e.g.,</i> hunting)
	Hosts permissive for pathogen		Canine husbandry
	Persistence in reservoir		Use of tick preventives
	Prevalence of infection		Nuisance permits
	Density		Housekeeping
	Other transmission routes		Animal welfare violations
	Life cycle/age distribution		Socioeconomics
	Immune response		Average household income
	Amplification vs. reservoir		Human population
	Domestic		Large-scale economic factors
	Indoor/outdoor		Recreation
	Rural/urban		Hunting
	Relocation		Parks (rural and urban)
	Sylvatic vs. Suburban		Pets per household
	Opportunistic or natural infection		

Abiotic factors

Humidity

Maximum, minimum and average

Table 3 Ranked factors identified for canine seroprevalence models of infections transmitted by *lxodes* spp. in the USA

	••			
1.	Forest cover/NDVI or EVIª			
2.	Relative humidity			
3.	Annual precipitation (including snow cover) ^a			
4.	Human population density ^a			
5.	Deer/vehicle collisions ^a			
6.	Topography/altitude/aspect			
6.	Temperature – max warmest, min coldest ^a			
7.	Proximity of forest to impervious surfaces or roads/built environment			
8.	Human case distribution			
8.	Distribution/abundance of I. scapularis and I. pacificus ^a			
9.	Household income ^a			
10.	Forest fragmentation index ^a			
ac:				

^aSimilar variables also ranked by the metastriate-borne pathogen panel.

The prevalence data at the foundation of this predictive model is largely based on serodiagnostic tests. Although seropositivity is reflective of past exposure, it does not demonstrate recent or active infections. Repeatedly seropositive samples from the same dogs at different times are also to be occasionally expected, because some dogs may have tested seropositive in previous tests and because some tests are conducted to monitor host responses to treatment. Travel histories and certainties of the individual test results are currently unavailable for the dogs reported in this dataset.

An analogous project for mathematical modeling of the prevalence of canine heartworm was simultaneously undertaken by CAPC [8,9], and each prioritized factor identified by the expert panel had significant predictive power with $\geq 95\%$ confidence. Overall, the model explained 60%-70% of variability in the CAPC county-by-county dataset from 2011-2013. Similarly, preliminary analysis of canine seroprevalence of Anaplasma spp. indicated that temperature, precipitation, relative humidity, population density, median household income, forestation coverage, elevation and deer/vehicle strike rates were significant with \geq 95% confidence, and that the total proportion of variability explained in the 2011-2013 data is around 60-70% [10]. Thus, the prevalence of heartworm and seroprevelance of Anaplasma among dogs appear amenable to quantification that could facilitate monitoring for outbreaks, remediation of vector abundance or for forecasting future seroprevalence levels.

Attempts to fit the seroprevalence of *B. burgdorferi* and of *Ehrlichia* spp. among dogs are also underway, with mixed results. The spatial seroprevalence of *B. burgdorferi* among dogs has been similar to and appears to be as quantifiable as that of *Anaplasma* spp. Conversely,

Table 4 Ranked factors for preliminary models of metastriate tick-borne pathogen prevalence among dogs in the USA

Majority of the metastriata:			
1.	Vector distribution (established, intermittent or absent) ^a		
2.	Maximum, minimum and average temperature ^b		
3.	Amount of precipitation ^a		
4.	LiDAR (up to 6 layers)		
5.	GAP/categorical analysis of vegetation ^a		
6.	Reservoir host densities ^a		
7.	Human population (census) ^{a,b}		
8.	Median household income ^{a,b}		
9.	Fragmentation of vegetation ^b		
10.	Degree-days		
11.	Seasonal precipitation (snow cover) ^a		
R. sanguineus:			
1.	Median household income ^{a,b}		
2.	Registered dog breeders (kennels, puppy mills, etc.)		
3.	Human population (census) ^{a,b}		
4.	Tick preventive sales		
5.	Animal welfare violations		
б.	Latitude		

^aVariables also ranked by the prostriate-borne pathogen panel. ^bVariables shared among all ixodid ticks considered for this report.

the canine seroprevalence of *Ehrlichia* spp. appears to be highly variable, with some neighboring areas reporting antipodal seroprevalence rates that could be reflective of vector ecology or social factors. Future work will address these issues.

Conclusions

This meeting brought together a range of junior and senior scientists engaged in various aspects of research in the biology of ticks and tick-borne infections. The specific objectives were to identify and to prioritize quantifiable factors expected to contribute to canine exposure to organisms transmitted by the two major subfamilies of ixodid ticks. The two panels ranked 12 and 17 factors associated with prostriate and metastriate ixodid ticks, respectively. Eight of these factors were independently prioritized by both panels; four of 12 factors were unique to prostriatevectored agents, two of 11 factors were unique to metastriate-vectored agents transmitted by ticks other than R. sanguineus, and four of six factors were unique to agents vectored by R. sanguineus. The next phase of this project will move from rational identification of perceived factors to statistical assessment of factors for predictive power. Forecasting issues will also be explored.

Competing interests

The authors have no competing interests relative to the work presented in this report.

Authors' contributions

SEL, DDB, CL, CC, RL and RWS conceived of and organized the meeting that generated the information provided in this report. BLB, DDB, CC, MRC, SAE, DF, JEF, HG, GJH, RRL, SEL, CL, RL, TM, GRN, WLN, JS, RWS, AV-S and DW participated in the meeting and contributed to the identification of candidate factors. RWS tabulated the candidate factors from the meeting minutes, and SEL, DDB and RWS generated the initial draft of the manuscript. RWS was responsible for distribution of the manuscript to the co-authors, for revision in response to comments, and for formatting the final manuscript version for submission. All authors read and approved the final version of the manuscript.

Acknowledgments

This meeting was supported by the Companion Animal Parasite Council (CAPC), and we are grateful to Sonya Hennessy for assistance in organizing and hosting this meeting. The CAPC is in turn grateful to its sponsors that provide data for Parasite Prevalence Maps: the IDEXX, Antech, Banfield and Abaxis corporations. We are also grateful to the veterinarians across the USA who test their patients for exposure to vector-borne pathogens, especially those who report test results that can eventually be included as data in the CAPC Parasite Prevalence Maps. Robert Lund acknowledges support from the CAPC and from the National Science Foundation Grant DMS-1407480. The opinions and assertions contained herein are those of the authors and are not to be construed as official or reflecting the views of the Department of the Army or the Department of Defense.

Author details

¹Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA. ²Department of Pathobiology, Auburn University, Auburn, AL, USA. ³College of Veterinary Medicine, Cornell University, Ithaca, NY, USA. ⁴Companion Animal Parasite Council, Salem, OR, USA. ⁵School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA. ⁶Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA. ⁷Walter Reed Biosystematics Unit, National Museum of Natural History, Washington, DC, USA. ⁸Department of Medicine and Epidemiology, University of California, Davis, CA, USA. ⁹Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. ¹⁰Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA. ¹¹Department of Geography, University of Georgia, Athens, GA, USA. ¹²City Kitty Veterinary Care for Cats, Providence, RI, USA. ¹³Department of Mathematical Sciences, Clemson University, Clemson, SC, USA. ¹⁴Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI, USA. ¹⁵Department of Entomology, The Ohio State University, Columbus, OH, USA. ¹⁶Centers for Disease Control and Prevention, Atlanta, GA, USA. ¹⁷Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.

Received: 19 August 2014 Accepted: 30 August 2014 Published: 4 September 2014

References

- 1. Companion Animal Parasite Council Parasite Prevalence Maps. [http://www.capcvet.org/parasite-prevalence-maps]
- Little SE, Beall MJ, Bowman DD, Chandrashekar R, Stamaris J: Canine infection with Dirofilaria immitis, Borrelia burgdorferi, Anaplasma spp., and Ehrlichia spp. in the United States, 2010–2012. Parasit Vectors 2014, 7(1):257.
- Bowman D, Little SE, Lorentzen L, Shields J, Sullivan MP, Carlin EP: Prevalence and geographic distribution of Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum in dogs in the United States: results of a national clinic-based serologic survey. Vet Parasitol 2009, 160(1–2):138–148.
- Mead P, Goel R, Kugeler K: Canine serology as adjunct to human Lyme disease surveillance. Emerg Infect Dis 2011, 17(9):1710–1712.
- Millen K, Kugeler KJ, Hinckley AF, Lawaczeck EW, Mead PS: Elevated lyme disease seroprevalence among dogs in a nonendemic county: harbinger or artifact? Vector Borne Zoonotic Dis 2013, 13(5):340–341.
- Swei A, Ostfeld RS, Lane RS, Briggs CJ: Impact of the experimental removal of lizards on Lyme disease risk. Proc Biol Sci 2011, 278(1720):2970–2978.

- Elias SP, Smith RP Jr, Morris SR, Rand PW, Lubelczyk C, Lacombe EH: Density of *lxodes scapularis* ticks on Monhegan Island after complete deer removal: a guestion of avian importation? J Vector Ecol 2011, 36(1):11–23.
- Wang D, Bowman DD, Brown HE, Harrington LC, Kaufman PE, McKay T, Nelson CT, Sharp JL, Lund R: Factors influencing U.S. canine heartworm (*Dirofilaria immitis*) prevalence. *Parasit Vectors* 2014, 7(1):264.
- Brown HE, Harrington LC, Kaufman PE, McKay T, Bowman DD, Nelson CT, Wang D, Lund R: Key factors influencing canine heartworm, *Dirofilaria immitis*, in the United States. *Parasit Vectors* 2012, 5:245.
- 10. Wang D, Bowman DD, Goldstein R, McMahan CS, Sharp JL, Beal MJ, Stich RW, Lund R: Factors Associated with the Prevalence of Canine Exposure to Anaplasma spp. in the United States. Unpublished observations.

doi:10.1186/1756-3305-7-417

Cite this article as: Stich *et al.*: Quantitative factors proposed to influence the prevalence of canine tick-borne disease agents in the United States. *Parasites & Vectors* 2014 **7**:417.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit