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This article discusses inversions for bottom geoacoustic properties using broadband acoustic signals
obtained from explosive sources. The experimental data used for the inversions are SUS charge
explosions acquired on a vertical hydrophone array during the Shelf Break Primer Experiment
conducted south of New England in the Middle Atlantic Bight in August 1996. The SUS signals
were analyzed for their time-frequency behavior using wavelets. The group speed dispersion curves
were obtained from the wavelet scalogram of the SUS signals. A genetic algorithm~GA! was used
for the inversion of sound speeds in the water column and compressional wave speeds in the
sediment layers. The variations in the sound speeds in the water column were represented using
empirical orthogonal functions~EOFs!. A range-independent normal mode routine was used to
construct the replica fields corresponding to the parameters. Comparison of group speeds for modes
1 to 9 and for a range of frequencies 8 to 200 Hz was used to arrive at the best parameter fit. An
efficient hybrid optimization scheme using the GA and a Levenberg–Marquardt algorithm is
presented. Linear perturbation methods were also used to ‘‘fine tune’’ the inversions and to obtain
resolution and variance estimates. Analysis was also done to compute the degree of convergence of
each of the parameters by explicitly calculating the Hessian matrices numerically.A posteriori
estimation of mean and covariance was also done to obtain error estimates. Group speeds for the
inverted sound speed fields provide an excellent match to the experimental data. The inverted
sediment compressional speed profile compares well within situ measurements. ©2000
Acoustical Society of America.@S0001-4966~00!04907-9#

PACS numbers: 43.30.Ma, 43.30.Qd, 43.30.Pc, 41.30.Bp@DLB#

INTRODUCTION

Acoustic propagation in shallow water is greatly influ-
enced by the properties of the bottom. Calculations of acous-
tic propagation characteristics based on geotechnical data ob-
tained from cores generally give reliable results. But core
surveys are time consuming and may be applicable to only a
small area. Hence indirect bottom survey methods which are
fast and cover large areas have been developed. Inversions
for the properties of the bottom using acoustic data have
been given much attention in underwater acoustics. Thein
situ measurements used as data in these inverse methods are
the acoustic field or quantities derived from it. These ap-
proaches differ mainly according to the characteristics of the
acoustic sources and measurements~travel time, phase, etc.!
they utilize for the inversion. Tolstoyet al.1 used low-
frequency~20 Hz! data obtained from air-deployed explosive
sources to tomographically estimate environmental param-
eters in a simulated deep water environment. Ratilalet al.2

and Smithet al.3 used a method based on ambient noise field
directivity to invert for the sediment compressional speed.
This method estimates a single compressional speed value as

an average for the top layer of sediments. Rapids, Nye, and
Yamamoto4 designed and tested a 3-D small-scale high-
resolution cross-well acoustic tomography system in shallow
water. A damped least-squared inversion technique was used
to construct compressional speed images from measured
travel time data.

Tomographic inversions of sediment properties have
been performed using both narrow and broadband sources.
When a broadband acoustic source is used in a shallow water
waveguide, the acoustic propagation exhibits dispersion ef-
fects. Group velocity dispersion characteristics have been
successfully utilized for the inversion of geoacoustic proper-
ties by Lynch, Rajan, and Frisk5 using a linear perturbation
approach. They have applied this method with success to the
data collected during the GEMINI experiment performed in
the Gulf of Mexico, using a towed narrow-band acoustic
source which output pure tones at 50 and 140 Hz. The per-
turbation approach breaks down the nonlinear problem into a
linear one in the vicinity of the final solution. Hence, an
accurate a priori model of the environment is required to
achieve good estimates.

Explosives can be used as broadband sources as they
have large power output, large bandwidth, and considerable
energy at low frequencies. This ensures penetration of acous-a!Electronic mail: potty@oce.uri.edu
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tic energy deep into the ocean bottom, enabling the determi-
nation of ocean bottom parameters to greater depths. The
group velocities, i.e., the speeds at which energy is trans-
ported, differ for different frequencies and modes. In a shal-
low water waveguide, high frequencies generally arrive ear-
lier whereas the low frequencies, which interact with the
bottom and hence are more important in geoacoustic inver-
sions, arrive later. The dispersion behavior can be used for
the inversion of geoacoustic properties of the bottom. It
should be noted that the lower frequency data and the higher
modes in the dispersion curve should give a better estimate
of the sediment features whereas the high-frequency data and
lower modes will improve the water column sound speed
estimate.

Dispersion effects can be observed by time-frequency
analysis of the acoustic pressure signal recorded at suffi-
ciently large distance away from the source. The group speed
values are directly extracted from these time-frequency en-
ergy distributions. Time-frequency analysis is performed us-
ing wavelets. Wavelet analysis examines the frequency dis-
tribution of a nonstationary time series using a set of
windows that have compact support in time~i.e., decay to
zero quickly! and are band limited in the frequency domain.
The wavelet transform is a localized transform in both time
and frequency and this property can be advantageously used
to extract information from a signal that is not possible to
unravel with a Fourier or even windowed Fourier transform.
The advantage of analyzing a signal with wavelets as the
analyzing kernels is that it enables us to study features of the
signal locally with a detail matched to their scale, i.e., broad
features on a large scale and fine features on a small scale.
A detailed description of wavelet analysis can be found in
Ref. 6.

In this paper we will emphasize tomographic inversion
technique based on these broadband dispersion curves. Non-
linear methods based on exhaustive searches are not con-
strained in performance by the availability of background
information and, thanks to the large increase in computa-
tional abilities, are being widely used for inversion in recent
times. An inversion scheme for sediment compressional
speeds based on a genetic algorithm is used to invert the
group speed curves.

The article is organized as follows. The genetic algo-
rithm specifics are introduced in Sec. I. The hybrid inversion
scheme is discussed in Sec. II followed by perturbation
methods in Sec. II A. Section III covers the procedure for
error estimation. The Shelf Break Primer Experiment is de-
scribed in Sec. IV, followed by data analysis and sensitivity
studies in Sec. V, and results and discussions in Sec. VI. The
conclusions of the present study and future work planned are
presented in Sec. VII.

I. GLOBAL OPTIMIZATION AND GENETIC
ALGORITHMS

Global optimization schemes such as simulated anneal-
ing ~SA! and genetic algorithms~GA! have been used in-
creasingly in recent times for the inversion of underwater
acoustic signals for bottom properties. Representative refer-
ences would be Collins and Kuperman,7 Hermand and

Gerstoft,8 and Gerstoft.9 These methods rely on exhaustive
searches, and the time required for the search is often very
high. Collins and Kuperman7 demonstrated that it is possible
to accurately estimate the source location with limited
a priori environmental information by expanding the param-
eter search space of matched field processing~MFP! to in-
clude environmental parameters, a method they called ‘‘fo-
calization.’’ They used simulated annealing~SA! for
searching the large focalization parameter space for optimal
parameter values. This scheme was based on matching mea-
sured and modeled modal phases.

Genetic algorithms~GAs! are nonlinear optimization
schemes, highly efficient in optimizing discontinuous, noisy,
highly dimensional and multimodal objective functions. It
can be thought of as a ‘‘smart’’ Monte Carlo Search. A GA
is not biased by an initial starting model, uses no gradient or
curvature information, and has the ability to avoid local
minima. Instead of selecting points in model space from a
uniform distribution, the points are selected by repeated ap-
plication of mathematical operators. The search is thereby
channeled toward good solutions. Whereas SA is based on a
single member meandering in a search space, the GA is
based on a population which intercommunicates while me-
andering in a search space. A simple GA starts with a popu-
lation of samples randomly generated from the model sub-
space which is defined bya priori bounds on the model
parameters. These search limits are specified initially. The
fitness of each member is computed based on the value of the
objective function for that member. Then through a set of
evolutionary steps the initial population evolves in order to
become more fit. An evolutionary step consists of selecting a
parental distribution from initial population based on the in-
dividual’s fitness. The parents are then combined in pairs and
operators are applied to them to form a set of children. The
operators are traditionally crossover~recombination! and
mutation~random bit change! operators. Finally the children
replace part of the initial distribution to get a more fit popu-
lation. The process of going from current to next population
constitutes one generation in the execution of a GA. Tang
et al.10 give a detailed description of these operations. A
typical GA cycle is shown in Fig. 1. In the study proposed
here a GA will be used to optimize an objective function and

FIG. 1. A typical genetic algorithm cycle~Ref. 9!.
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match measured and modeled modal dispersion characteris-
tics of the broadband acoustic signal. The objective function
for the GA inversions, based on minimization of group speed
differences, will be modified to incorporate the nonuniform
data quality. The objective function is of the form

E~m!5(
i 51

N
@di2Fi~m!#2

s i
2 ; i 51,2,...,N; ~1!

whereE(m) is the objective function for themth parameter
set ands i is the standard deviation associated with thei th
data point. The numerator of Eq.~1! represents the mismatch
between the observed data (d,N31) and the prediction
„F(m),N31… of the forward model. The observed data con-
sists of group speed values calculated using the times of
arrival for various modes and frequencies. The predictions
are the theoretical group speed values calculated for the
sound speed profile constructed using the model parameters.

II. HYBRID OPTIMIZATION SCHEME

Using a genetic algorithm does not guarantee that an
exact global optimum will be found, even in an infinite
amount of time. Because a GA makes no use of gradient or
curvature information, it is not clear what type of point in
error space the ‘‘best model’’ represents. It could be a local
minimum, a global minimum, a saddle point, or none of
these. We must also remember that a GA operates in a dis-
crete subspace of the actual model space. For these reasons it
is important to closely examine the region around the best
model generated by a GA. To overcome these drawbacks
many investigators have developed hybrid schemes combin-
ing GA with a local search method. Gerstoft11 suggested a
combination of global GA and a local Gauss–Newton
method. Taroudakis and Markaki12 proposed another hybrid
scheme wherein the reference environment defined using
matched field processing with a GA is subsequently used in
connection with a modal phase inversion scheme. This linear
modal inversion is meant to fine tune the results obtained
through the matched field tomography. We use the optimum
parameters obtained from the genetic algorithm inversion as
the starting point for a local search using the Levenberg–
Marquardt algorithm, which is more robust than the Gauss–
Newton method. This algorithm uses a search direction
which is a cross between the Gauss–Newton direction and
the steepest descent direction. By applying this method at the
end of the GA search, we can assess the quality of the GA
solution locally and perhaps find a better solution.

A. Broadband perturbative modal inversion

Linear inversion methods give good estimates of the en-
vironmental parameters when gooda priori knowledge of
the environment is available. Lynch, Rajan, and Frisk5 have
successfully used a linear perturbative approach for the in-
version of group velocity data for the sediment sound speed.
The expression which relates the group velocity dispersion
curve to the bottom sound speed profile is

1

vm
g 2

1

vnm
g~0!

5S 1

km
D E

0

` H F2v0
21r21~z!uc~v0 ,z!u2k2~z!

Dc~z!

c~z! G
1F S 1

kmvm
g~0!D r21~z!uc~v0 ,z!u2k2~z!

Dc~z!

c~z! G
1Fr21~z!

d

dv
uc~v0 ,z!2uk2~z!

Dc~z!

c~z! G J dz, ~2!

wherevm
g is the experimentally measured group velocity for

the mth mode atv0 , vm
g(0) is the group velocity of themth

mode atv0 for the background model,km is themth eigen-
value for the background model,r(z) is the density profile
for the background model,c(v0 ,z) is the normalized mode
function for the background model for themth mode atv0 ,
c(z) is the background sound speed profile,Dc(z) is the
perturbation in sound speed from the background profile, and
k(z) is v/c(z), wherev is the angular frequency.

Equation~2! is a Fredholm integral equation of the first
kind which can be written as a discrete sum

di5(
j

Gi j qj , i 51,2,...,N; j 51,2,...,M , ~3!

or, in matrix form,

d5Gq, ~4!

where d is an N31 data vector,q is an M31 vector of
unknown perturbations, andG is an N3M kernel matrix.
The data vector consists of the differences between the mea-
sured group slowness and the group slowness for the back-
ground profile@left-hand side of Eq.~2!# and the unknowns
are the perturbations in sound speed@Dc(z)#. Thus this lin-
ear tomographic system is characterized by anN3M Fre-
chet matrix ~G! which is a linear mapping from the
M-dimensional parameter space to theN-dimensional data
space. The above linear problem can be solved by singular
value decomposition. This is discussed in detail by Lynch
et al.5 To incorporate the nonuniform data quality Parker13

suggested weighting the data with standard errors. Weighted
data with unit variance is obtained by scaling the data by the
standard errors

e5S21d, ~5!

where d is the data vector,S is a diagonal matrix with
s1 ,s2 ,...,sN as the diagonal elements, ands’s are the stan-
dard deviations associated with data. In our application these
s’s can be approximately estimated from the time–frequency
distributions based on the spread of the spectral lines. Mul-
tiplying both sides of Eq.~4! by S21 and using Eq.~5!,

e5S21GWy, ~6!

where

y5R̂q ~7!

and G is the kernel matrix,W is the diagonal matrix of
weights of a numerical quadrature approximation~trapezoi-
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dal rule in the present case!, R̂ is the regularizing matrix, and
q are the unknowns of the original problem@Dc(z)#. W is
introduced here to stabilize the numerical implementation.
For L2 norm minimizationR̂ can be taken asW1/2. These
steps are discussed in detail by Parker.13

III. ERROR ESTIMATES AND VALIDATION OF THE
INVERSION RESULTS

The goals of most inversions include not only finding a
model which best fits the data, but also estimating error
bounds on the parameters. Even though these error bounds
cannot be considered as validation of the inversion, they do
provide useful indication about the quality of the inversions.
We have quantified the errors in our current work using dif-
ferent approaches based on different criteria.A posteriori
covariance is estimated by defining ana posteriori model
probability. Local error bounds of the model parameters are
estimated using numerically evaluated Hessian matrices. El-
ements of the Hessian matrix are the second partial deriva-
tives of the objective function with respect to the model pa-
rameters. They were evaluated numerically in the
neighborhood of the best solution. In addition, resolution and
variance estimates are also obtained using the linear pertur-
bation approach.

In the present study the compressional speeds generated
using the GA inversion are used as a background profile for
the perturbation inversion. Thus the GA inversion is further
refined using linear perturbation methods, as well as the
Levenberg–Marquardt optimization method. The entire in-
version process is schematically represented in the block dia-
gram shown in Fig. 2.

A. A posteriori probability density and model
covariance

During the GA optimization procedure, all the samples
of the model space are stored and then later used to estimate
a posterioriprobabilities. From a Bayesian point of view, the
solution of the inverse problem can be characterized by ana
posteriori probability distribution of the model parameters.
Hence, in addition to the best possible estimate, moments of
the a posteriori distributions such as mean and covariance
can also be calculated. Based on an analogy with SA, Sen
and Stoffa14 and Gerstoft9 have used the Gibbs probability
distribution to define thea posteriori probability density in
the model space. The Gibbs probabilitys(m) is given by

s~m!5
exp@E~m!/T#

S exp@E~m!/T#
, ~8!

FIG. 2. Schematic representation of
the steps involved in the inversion
scheme.
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whereE(m) is the fitness function or equivalently the value
of the objective function for the model vectorm. HereT is a
control parameter similar to temperature used in SA and the
sum is taken over all derived models. Choosing the energy of
the fittest in the sample as the value ofT will favor the fittest
part of the population. Instead if the energy of the least fit
sample is chosen as the value ofT, a more even weighting of
the population can be obtained. Experience has shown that a
good temperature is the average of the best 50 samples.15 We
can estimate the mean and model covariance matrix by de-
fining

m̄5E ms~m! dm, ~9!

which can be approximated by the sum

m̄5Sms~m!. ~10!

The covariance matrix can be obtained as

Cm5E ~m2m̄!~m2m̄!Ts~m! dm. ~11!

This can also be written as

Cm5E m mTs~m! dm2m̄m̄T ~12!

or as the sum

Cm5Sm mTs~m!2m̄ m̄T. ~13!

The square roots of the diagonal terms ofCm are the
standard deviations or the error bars of the model parameters
from the mean. Similarly, the off-diagonal terms show how
the different model parameters influence each other.

The model parameter values and their probabilities are
stored for all the generations in the GA run. At the end of the
GA run all the probability values are summed and each value
is divided by the sum to derive the normalizeda posteriori
probability densities. Using this, thea posteriori mean and
covariance matrix are evaluated.

We can also examine the locally defined error bounds on
the model parameters by computing the covariance matrix
using the Hessian matrix. When the data are uncorrelated and
Gaussian, the covariance matrix can be computed using the
following equation:16

@Cm# local5sd
2F1

2

]2E

]m2G
m5mest

21

, ~14!

wheresd is the standard deviation of the error in the data.
The variance of the model error is the diagonal ofCm. Thus
the uncertainty in a set of model parameters is the product of
the uncertainty in the data and the second-order curvature of
the error space about the pointmest. It should be noted that
by sampling a much larger model space, the GA gives a
more realistic estimate of error bounds than this local
method. We have evaluated error estimates using both meth-
ods and they seem to agree with each other for our particular
case.

The model resolution length and standard deviation can
be calculated based on the linear perturbation inversion using
the singular value decomposition approach. This is described
in detail by Lynchet al.5

IV. SHELF BREAK PRIMER EXPERIMENT

In the 1996–1997 Shelf Break Primer Experiment a
number of oceanographic and acoustic measurements on the
shelf break south of New England in the Middle Atlantic
Bight during summer and winter conditions were conducted.
Oceanographic observations mainly consisted of SeaSoar17

hydrography, shipboard acoustic Doppler current profile
~ADCP! measurements, and air-deployed expendable bathy
thermographic~AXBT ! drops. Some of these measurements
were used in this study as background environmental infor-
mation. Figure 3 shows the location of the experimental site
and the positions of the vertical line arrays~VLA’s !, acoustic
tomographic sources, and bathymetry. The acoustic compo-
nent involved transmissions from moored tomographic
sources and explosive SUS charges. The SUS component of
the experiment involved the acquisition of broadband acous-
tic data on two vertical line arrays located on the continental
shelf on the northwest and northeast corners of the experi-
mental area, in water depths of approximately 90 m. A P-3
aircraft from the Naval Air Warfare Center in Patuxent Na-
val Air Station dropped over 80 MK61 explosive charges in
an inverted F-pattern during both summer and winter cruises.
Figure 4 shows the SUS drops along the slope and the loca-

FIG. 3. Location of Shelf Break Primer Experiment. Locations of VLAs and
the tomographic sources are also shown.
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tion of the Atlantic Margin Coring~AMCOR! program site
6012. Sediment compressional sound speeds at various
depths were calculated at this AMCOR location using the
Biot–Stoll model and then compared with the inverted val-
ues. The SUS charges were dropped at a spacing of one
nautical mile. The SUS drop effort provides a temporal
‘‘snapshot’’ over a larger spatial area and a larger acoustic
bandwidth than conventional ocean tomography measure-
ments. Thus these shots complement the electronic tomogra-
phy sources deployed in the experiment. MK61 SUS charges
are 1.8 lbs of TNT and were set to detonate at a depth of 18
m in water depths varying from 80 to 300 m.

A. Geoacoustic data at the PRIMER site

The nature of the seafloor sediments in the continental
shelf and upper slope regions of the Middle Atlantic Bight
have been studied by various investigators~Knebel and
Spiker,18 Robb et al.,19 Poag,20 and Hathewayet al.!.21

Analyses of cores taken from this area reveals nearly hori-
zontal layers of Pleistocene and early Holocene silty clays
covered by various thicknesses of Holocene sands from 1 to
20 m.18 In a location southeast of Primer site~73 °W, 39 °N!
close to shelf break they estimated the average thickness of
the surface sand layer to be 5 m using seismic reflection
profiles and core samples. The sediment below the surface
layer was texturally diverse and consisted of silty and clayey
sands, sandy and silty clays, sand-silt-clays and clays. The
clay layers are poorly sorted and very stiff. Layers containing
more than 75% sand are also present, but they are interca-
lated with muddy zones. Gravel is also found in some of the
cores. In another location at the upper continental slope
~72 °508 W, 38 °508 N!, Robbet al.19 observed a thin surface
layer ~generally less than 2 m thick! of medium-grained Ho-
locene sediments underlain by texturally diverse Pleistocene
sediments composed of silty clay, silty sand, clayey sand, or
sandy clay. The thickness of the surface Holocene sediment

layer consisting of medium-to coarse-grained sand reaches
20-m thickness along the outer New Jersey shelf.20 Poag also
estimated the maximum thickness of the Pleistocene layer,
consisting of clayey and silty sands and silty clays, to be 170
m in the same location~approximately 39 °N, 73 °W!.
Hathewayet al.21 also reports Pleistocene layers consisting
of silty clay and fine sand with occasional layers of pea
gravel in the same location. On the upper continental slope,
thick Pleistocene sequences consisting of silty and sandy
clays,20 silty clay units, alternating with silty sands and fine
sands at some locations21 were found. Over 50% of the clay
sediments in the region have an effective stress friction angle
of approximately 30 degrees,21 which corresponds to silty
sands or inorganic silt. The Pleistocene clays were mostly
inorganic and have medium plasticity.

Broacher and Ewing22 used high-resolution seismic re-
flection data to estimate seismic velocities in an area on the
continental shelf south of Long Island, NY, in approximately
64 m of water. Sediment samples collected near this experi-
mental site recovered coarse to fine sand. The top 30 m of
sediments consisted of Pleistocene and younger sediments.
They estimated the thickness of the Pleistocene sediments as
31 m and a velocity of 1750 m/s. It should be noted that the
uncertainty associated with these measurements is high~450
m/s!. McGinnis and Otis23 obtained similar results using re-
fracted arrivals in shelf areas of George’s Bank and Long
Island. They reported a mean velocity in the upper few tens
of meters of sediments at locations close to 70 °W, 40 °N of
the order of 1650–1675 m/s. They also estimated the vertical
velocity gradients at this location to be 1.2 m/s/m.

Even though the areas adjacent to the Primer site were
well investigated, very little geoacoustic data is available
about the near surface sediments~top 1 to 100 m! within the
present experimental location. The only published core data
reported is from the AMCOR-6012 project. During 1976 the
U.S Geological Survey conducted the Atlantic Margin Cor-
ing Project~AMCOR! to obtain information on the geotech-
nical and other properties at sites widely distributed along
the continental shelf and slope of the Eastern United States.21

The analysis of the cores obtained during this project pro-
vided information on the porosity, bulk density, and other
geotechnical parameters down to a depth of about 300 m
below seafloor.24 The AMCOR-6012 site, at 39 °59.578N and
71 °20.098W, is near the southwest corner of the experimen-
tal area at a water depth of 263 m. The location of the drill

FIG. 4. The SUS drop locations at the experimental site. The AMCOR site
is shown in the lower left corner of the figure. The propagation path corre-
sponding to the present study is also shown. The gravity cores on this path
~cores 1–3! are used in this study for the comparison and validation of the
inversion.

TABLE I. Geoacoustic data at the AMCOR-6012 site~Ref. 24!. These
parameters were used for estimating sediment compressional speeds using
Biot–Stoll theory.

Parameter Unit Value

Gain density kg/m3 2600
Fluid density kg/m3 1000
Grain bulk modulus Pa 3.631010

Fluid bulk modulus Pa 2.253109

Fluid viscosity kg/m.s 131023

Shear specific loss 0.02
Volumetric specific loss 0.015
Added mass coefficient 0.2
Mean grain diameter–silty clay mm 2.7
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site in relation to the SUS drop locations is shown in Fig. 4.
Bulk densities at various depths and the compressional wave
speeds calculated using the geotechnical parameters~Table I!
based on the Biot–Stoll model25 are shown in Fig. 5. The
two profiles represent the average and maximum values of
bulk density and the corresponding compressional speeds
calculated based on them. In the absence of any error esti-
mates these two curves can be used to gauge the spread of
the values at each depth. The deviation from the mean is of
the order of 30 m/s except at layers with high compressional
speeds where it is nearly 75 m/s. Trevorrow and
Yamamoto26 obtained the compressional wave speed profile
at the AMCOR 6010 site using gravity wave inversion tech-
nique. AMCOR 6010 is located south west of the Primer site
in the outer continental shelf in approximately 69 m of water
depth. It is interesting to note that the highest speed close to
the surface~approximately 1800 m/s! is at 5-m depth for
AMCOR 6012 whereas it is at 30 m for AMCOR 6010.

Since direct measurements of geoacoustic parameters
were scarce in the experimental area, five gravity cores were
taken to compare with the inversions. These five cores were
taken at locations indicated in Fig. 4. The maximum core
penetration in the shelf locations was approximately 1.5 m
whereas it was 1.0 m at deeper slope locations. At these
depths, core penetration was limited by the presence of sand.
The core samples were analyzed at the Marine Geomechan-
ics Laboratory in University of Rhode Island using a multi-
sensor core logger. This analysis provided profiles of com-
pressional speed, bulk density, and porosity. Compressional
speeds obtained from cores which lie on the propagation path
~cores 1–3! were used for comparison and validation of in-
version. The average compressional speed for the top 1.5 m
of sediments is of the order of 1575–1600 m/s.

V. ANALYSIS OF PRIMER SUS DATA

Data from the SUS explosions were collected on two
VLAs at the northwest~NW! and northeast~NE! corners of
the experimental area during the PRIMER experiment. The
positions of these VLAs and the SUS drop locations are

shown in Fig. 3. Data were collected at a sampling frequency
of 1395.09 samples/second at the NE VLA, whereas the
sampling frequency was 3906.25 samples/second at the NW
array. The NE VLA consisted of 16 hydrophones in water
depths varying from 45.4 to 93 m. The propagation path
from the northernmost three SUS explosions to the NE array
is over a fairly uniform bathymetry and was chosen for the
present study. Longitudinal peak-to-peak variability in the
sound speeds in the water column is of the order of 5 m/s and
bathymetric variations are of the order of 3 m. Influences of
range dependence of bathymetry and ocean sound speed are
not significant. Hence range-independent conditions were as-
sumed for the propagation. This assumption was verified by
comparing the group speed values calculated assuming range
independence and also using adiabatic range dependence
~Fig. 6!.

Figure 7 shows the time series from the SUS explosion
at the NW corner received at the top hydrophone of the NE
VLA. The signal is broadband in nature and dispersion ef-
fects are evident in the time series, e.g., separation of the

FIG. 5. Compressional sound speed at AMCOR 6012 site. The two curves
show the maximum and average bulk densities and the compressional sound
speeds calculated using them.

FIG. 6. Effect of range dependence of ocean sound speeds on group speeds.

FIG. 7. Time series of SUS signal received at 40 km on one of the hydro-
phones. The arrival times are arbitrary. Note the arrival of a mode at high
frequency at 3.3 s.
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times of arrival of various frequencies is apparent. This sig-
nal is then further processed using a Morlet wavelet. A stan-
dard wavelet package27 was used for this analysis. Following
the shock wave due to the initial blast, a series of positive
pressure~‘‘bubble’’ ! pulses are emitted by the pulsating gas
globe at the successive instants of minimum volume. The
time of arrival between the direct blast and the first bubble
pulse is approximately 0.12 s for 1.8 lbs of TNT exploding at
18-m depth.28 Because of the presence of these bubble
pulses, it is difficult to identify and separate early individual
mode arrivals. Late arrivals are better separated, and are eas-
ily identified as can be seen in Fig. 8. The continuous lines in
Fig. 8 represents the theoretical curves for the direct blast
and the two bubble pulses. These theoretical lines are gener-
ated assuming a simple sound speed model based on the
available historical data. These theoretical group speed
curves help to identify the individual mode arrivals espe-
cially when multiple peaks are present corresponding to a
mode arrival. The arrival times are calculated based on Fig. 8
and the arrival pattern for individual frequencies as shown in
Fig. 9 for 40 Hz. Another difficulty encountered in obtaining
mode arrival times is the poor resolution at higher frequen-
cies which is inherent in our wavelet analysis. Although the
wavelet analysis gives better time–frequency resolution than
the short time Fourier transform~STFT!, the resolution is not
uniform across the entire time–frequency plane. Specifically,
it does not give good frequency resolution at higher frequen-
cies when compared to low frequencies. Hence it is very
difficult to extract group speed values for higher modes at
higher frequencies.

The peak intensities are located for representative fre-
quencies and the corresponding arrival times are used for
calculating group speeds. The standard errors of the data at
various frequencies and modes are estimated from the width
of the peaks. The intensity of the acoustic signal at 40 Hz is
shown in Fig. 9. The peaks corresponding to modes 1–3 are
at 0.6, 1.5, and 3.4 s, respectively. The distance between
points corresponding to 95% of peak intensity is taken as an

approximate measure of the spread of the peaks.

A. Sensitivity study

In order to quantify the effects of various inverted pa-
rameters on the group speed values, a sensitivity analysis
was performed, the results of which are tabulated in Table II.
Parameters whose effects were studied include water depth,
sound speed variations in the water column, and changes in
sediment compressional speed in the top 30 m of the sedi-
ment. Values shown in the Table II are percentage increases
in the value of the fitness function or objective function@Eq.
~1!# due to changes in these parameters. The changes were
compared with the fitness of the baseline model which cor-
responds to the best parameter set. Variations in the sound
speeds in the water column produce considerable changes in
the group speeds. The variations in the ocean sound speed
along the propagation path are of the order of 5 m/s~Fig.
10!. Hence changes in fitness due to ocean sound speed
variations of magnitude 5 and 3 m/s are considered. A uni-
form increase of 5 m/s in sound speed in the water column
changes the fitness by 80% while the change is 92% when it
is decreased. The changes are respectively 32% and 42%
when the magnitude of the variation in sound speed was
decreased to 3 m/s. The effect of the absence of the warm
surface layer is simulated by changing the sound speed to
1512.5 m/s from 1502.5 m/s in the top 15m. This produces
only 5% change in the fitness. Water depth variations have
considerable impact on the group speeds as seen from the
changes in the fitness. An increase in water depth by 4 m
changes the fitness by 54% while a decrease by the same
amount produces 60% change in fitness. Variations in the
bottom compressional speed by 50 and 30 m/s in the top 30
m of the sediment produce changes in fitness function whose
magnitudes are comparable to those produced by the ocean
sound speed variations~5 and 3 m/s! discussed earlier. But
the natures of these changes are considerably different. The
variations in the sediment speeds tend to affect the low fre-

FIG. 8. Time-frequency scalogram of SUS signal shown in Fig. 7 using
Morlet wavelet. The color scale is arbitrary and corresponds to intensity in
decibels. The three lines correspond to the blast and two bubble pulses.

FIG. 9. The acoustic intensity at 40 Hz showing the time of arrivals corre-
sponding to modes 1–3. Mode 3 intensity is very small compared to modes
1 and 2.
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quencies of higher modes to a greater extent whereas
changes in water column sound speeds affect the higher fre-
quencies of lower modes~Figs. 11 and 12!.

Figure 6 shows the changes in group speeds when range-
dependent analysis using adiabatic theory was applied.
Sound speed profiles at eight locations along the propagation
path were used to calculate the group speeds. These sound
speed profiles were calculated using data collected by Sea-
Soar. Sediment properties were assumed range independent.
The eigenvalues and eigenfunctions were assumed to vary
linearly within the range sections. Group speed values were
calculated at fixed intervals along the propagation path using
these eigenvalues and eigenvectors and range averaged to get
the mean group speed value. Differences between range-
independent and adiabatic calculations are notable for modes
1 and 2 at higher frequencies. For higher modes, changes are
minimal. Since higher modes contain more information for
sediment inversion, use of range-independent analysis can be
justified. This sensitivity analysis helps to arrive at the fol-

lowing conclusions which enabled the proper formulation of
the inverse problem:

~i! For the given environmental conditions existing at the
present location of study, compressional sound speeds
can be estimated with an accuracy of approximately
30 m/s.

~ii ! Inclusion of water depth, sound speed variation in the
water column, and source–receiver range will im-
prove the quality of inversion.

~iii ! Quality of data corresponding to the higher modes at
lower frequencies will have greater impact on the ac-
curacy of the sediment compressional speed values.

~iv! Range-independent inversion is appropriate for the
present study.

B. Genetic algorithm inversions

Our inversion scheme discussed is based on matched
field processing~MFP! concepts which encompass the fol-
lowing components: an environmental model, an acoustic
propagation model to predict the group speed values corre-
sponding to the unknown parameter set, an objective func-
tion which is minimized, and an efficient algorithm for
searching the parameter space. The variability in the water
column sound speed is modeled using empirical orthogonal
functions~EOFs!. The background sound speeds required to
generate the EOFs were obtained from the SeaSoar measure-
ments made at the location on the day of the SUS experi-
ment. Figure 13 shows the EOFs used to represent the sound
speed variations in the water column. The sediment is mod-
eled as layers with unknown compressional speeds. Shear
and attenuation effects are neglected for the inversion. The
number of layers was fixed based on the extent of acoustic
penetration into the sediment and the total number of un-
known parameters that can be handled computationally. Lay-
ers are provided thin in the top 30 m of the sediment to take
advantage of the acoustic penetration down to those depths.
In addition to sound speed, water depth and source–receiver
range are also treated as unknowns. Hence the unknown pa-FIG. 10. Variation of sound speed along the propagation path.

FIG. 11. Effect of changes in water depth, ocean sound speed, and sediment
compressional speeds on group speeds corresponding to mode 1.

TABLE II. Results of the sensitivity study. Changes in the fitness are listed
as percentage changes from the fitness of the baseline model.

Parameter Amount

Change
in fitness

~percentage!

Sound speed in water
column

15 m/s 80

13 m/s 32
25 m/s 92
23 m/s 42

constant sound speed
~1502.5 m/s! in top 15 m

5

Range dependent
~adiabatic!

12

Water depth 14 m 54
24 m 60

Sound speed in top 30 m
of sediment

230 m 23

250 m 81
130 m 42
150 m 82
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rameter set for the present study consisted of six EOF coef-
ficients in the water column, compressional speeds in 13
sediment layers, water depth, and source–receiver range.
Any a priori information about the sound speed values can
be incorporated into the inversion by fixing the limits of the
unknown parameter space. In the present case background
information about sound speeds in the water column was
available, whereas not much was known about the sediment.
This necessitated a large parameter space for sediment com-
pressional speeds. The limits of the model subspace for
search varied at different depths in the present analysis.
These were 1450 to 1650 m/s at the water–sediment inter-
face, 1600 to 1800 m/s at 10-m depth, and 1650 to 1850 m/s
at 30-m depth. It should also be noted that the results of the
sensitivity study discussed in Sec. V A and shown in Table II
directly influenced the choice of the parameters to be in-
cluded as unknowns.

The fitness of each member of the population was mea-
sured based on the value of the objective function. The ob-

jective function for this analysis was based on minimizing
the difference between group speed values calculated using
the observed time of arrivals and the predicted group speeds
@Eq. ~1!#. Times of arrival corresponding to frequencies in
the range of 20–200 Hz and modes 1–9 were utilized for the
inversion. Mode-formed data from all the hydrophones in the
VLA were used to generate the time–frequency distribu-
tions. A range-independent normal mode routine was used to
calculate the group speed values corresponding to the model
vectors.

Inversions were performed using the genetic algorithm
Matlab toolbox29 with a population size of 125 and with 100
generations. The stochastic universal sampling selection al-
gorithm, real mutation and discrete recombination were
adopted. Parallel GAs were run to make sure that the solu-
tion converged to the same minimum. Also, all the model
parameters were stored in each generation and used to cal-
culate the mean and covariance after assigning appropriate
probability densities to them. Once the best parameter set
was obtained using the GA inversion, further local optimiza-
tion was done using a Levenberg–Marquardt algorithm and
the linear perturbation approach. Both of these methods con–
verged to the local minimum found near the GA inversion
estimate. The perturbation inversion also gave estimates of
resolution and variance.

VI. RESULTS AND DISCUSSIONS

Mode shapes for some representative frequencies~low,
intermediate, and high! are plotted in Figs. 14 and 15 for
modes 1, 5, 7, and 9. These figures show the extent of the
acoustic penetration into the sediments for these modes at the
corresponding frequencies. These figures also help us infer
the relative importance of different modes and frequencies
for the inversion of sediment speeds, and the depth to which
these can be estimated with reasonable accuracy. From the
figures it is clear that higher modes at lower frequencies,
which penetrate deep into the bottom, are relatively impor-
tant for the sediment inversion. This inference is in agree-
ment with sensitivity analysis results discussed earlier.

FIG. 12. Effect of changes in water depth, ocean sound speed, and sediment
compressional speeds on group speeds corresponding to mode 9.

FIG. 13. The EOFs used to represent the sound speed variations in the water
column. These were constructed from the background sound speed informa-
tion obtained using SeaSoar observations made during the experiment.

FIG. 14. Mode shapes for modes 1 and 5. The average water depth is about
93 m.
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The compressional sound speed profile obtained using
GA optimization is shown in Fig. 16 for the top 40 m of the
sediment. The three profiles shown in that figure correspond
to the sound speeds calculated using the best and the mean
GA parameter set and the AMCOR-6012 data. Three parallel
GAs were run and the entire population from these runs was
utilized to calculate the mean after weighting with appropri-
ate probabilities based on their fitness. Also shown in the
figure are the gravity core data which extend down to a depth
of 1.4 m only.

The inversion compares reasonably well with the
AMCOR sound speeds for the top 20 m. The mean compres-
sional speed in the upper 15 m of the sediment is approxi-
mately 1660 m/s, which compares favorably with the sedi-
ment compressional speeds reported by McGinnis and Otis23

and Brocher and Ewing.22 This average compressional speed
corresponds to silty sands or sandy silts,30 the presence of
which in the upper sediment layers has been reported by
almost all the investigaters as discussed in Sec. IV A. The

high compressional speeds at 10 m may be due to the pres-
ence of fine or very fine sands at these depths. Both AMCOR
~6010 and 6012! profiles and inversion show this high-speed
layer, but at different depths. This layer with compressional
speeds of 1750 m/s is 5 m deeper in the case of inversion
compared to the AMCOR-6012 profile. This may be due to
an increase in thickness of the surface layer in the shelf re-
gion due to the deposition of sediments. It may be noted that
in the case of AMCOR-6010 this high-speed layer is still
deeper compared to AMCOR-6012. The compressional
speed profile corresponding to the best GA parameters fol-
low the inversion corresponding to the mean GA parameters
very closely, indicating higher convergence except at depths
between 5–7 m and 20–30 m. It can also be seen from Fig.
17 that the standard deviation is comparatively higher at
these depths. At greater depths the fitness function becomes
less sensitive to sound speed variations in the sediment lay-
ers, leading to a diverse population with slightly differing
fitnesses resulting in higher standard errors and a larger dif-
ference in mean and best profiles. Penetration of acoustic
energy is very low below 25 m into the sediment.

Figure 18 shows the comparison of inversion with grav-
ity core data. They agree very well especially below 0.6 m.
The differences between gravity core data and inversion are
generally within 25 to 30 m/s. This is reasonable since the
core logger has an accuracy of 5 to 10 m/s and standard
deviations of the inversion are of the order of 15 m/s
~Fig. 19!.

Figure 20 shows the comparison of the group speeds
calculated based on the inversions and experimentally ob-
served values. The group speeds corresponding to the
AMCOR data are also shown in the same figure. The inver-
sion and AMCOR data differ mainly for the higher modes at
low frequencies. At these locations the inversion matches the
experimental data better than the AMCOR data. Interestingly
for modes 1 and 2, at higher frequencies, both AMCOR and
inversion differ from the experimental data. This is more
likely due to the errors in sound speeds in the water column

FIG. 15. Mode shapes for modes 7 and 9. The average water depth is about
93 m.

FIG. 16. Sediment compressional speeds obtained by genetic algorithm in-
version. The compressional speeds obtained from the gravity cores are also
shown in the top 1.4 m of the sediment. Compressional speeds calculated
using AMCOR data are also shown. Note the difference between inversion
and AMCOR at 3–7-m depth.

FIG. 17. Standard deviation estimates for inversions. Standard deviations
shown are computed usinga posteriorianalysis of GA results and Hessians.
Note the reduction in standard deviation due to local optimization in the top
5 m.
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and water depth than to errors in sediment compressional
speeds.

Table III shows the EOF coefficients obtained using the
inversion together with the specified search bounds. Figure
21 shows the ocean sound speed profile obtained using these
EOF coefficients. Also shown in the figure are the sound
speed profiles at 5-km intervals along the propagation path.
Profiles with low values at 40-m depth correspond to the
eastern side whereas those with high values at 60 m corre-
spond to the western side. This cross-slope sound speed
variation is shown in Fig. 10 also. Apart from the top 4 m of
the water column, the inversion, which is a range-averaged
profile, seems satisfactory. In the top 4 m, the inversion
shows a warm layer with increased sound speed. As seen
previously in the sensitivity study the presence~or absence!
of the warm layer does not affect the group speed values
significantly. The error in the top 4 m might have been pro-
duced by this insensitivity. The value for the water depth was
also obtained by the inversion as 92 m~Table III!. This

seems to be the average water depth along the propagation
path from the SUS shot location to the VLA.

Figure 17 shows the standard deviations computed from
the entire population samples for the three GA runs. Also
shown in the same figure are the standard errors calculated
using the Hessian matrix. Hessians were calculated at the
location of the best parameter values by calculating the cur-
vature of the objective function numerically. These two rep-
resentations of the errors show disagreement mainly at
depths 2–7 m. The higher values of standard deviations
~lower values of Hessians! at these depths indicate that the
GA was not able to converge to a local minimum. This was
verified using local optimization methods and linear pertur-
bation methods. The application of these methods may, in
addition to this verification, lead to further improvement in
the solution. The results of the hybrid inversions consisting
of the application of the Levenberg–Marquardt scheme and
perturbation methods are discussed in the following sections.
The magnitudes of the standard errors are approximately 30
m/s within the top 30 m of the sediment, which can be con-
sidered reasonable. Standard deviations in the top 1.4 m of
the sediment are shown in Fig. 19. The average standard
deviation is approximately 15 m/s in the top 1.4 m.

A. Hybrid inversion

A local optimization technique, which uses Hessians
and/or Jacobians to guide the search from the starting point
to the nearest local minimum, was employed to ‘‘fine tune’’

FIG. 18. Sediment compressional speeds for the top 1.4 m of the sediments
estimated by genetic algorithm inversion. The compressional speeds ob-
tained from the gravity cores 1–3 are also shown.

FIG. 19. Standard deviation estimates for inversions for the top 1.4 m of the
sediments.

FIG. 20. Group speed dispersion curves calculated for sound speed profiles
corresponding to inversion and AMCOR data. The experimental data are the
group speeds estimated from mode arrival times.

TABLE III. Search bounds and inversion results for EOF coefficients and
water depth.

Parameter Lower bound Upper bound Inversion result

EOF 1 280 80 7.66
EOF 2 220 20 1.25
EOF 3 220 20 29.85
EOF 4 220 20 13.27
EOF 5 220 20 215.1
EOF 6 220 20 14.8
Water depth~m! 88 94 92
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the GA inversion results. Results of the Levenberg–
Marquardt inversion, using the global optimum parameters
obtained from the GA inversion as starting points, are shown
in Fig. 22. This hybrid inversion improves the inversion at
depths 3–7 m and below 20 m. This was expected as the
standard deviations calculated using Hessians were compara-
tively large at these depths. This hybrid inversion is able to
decrease the standard deviations at these depths as shown in
Fig. 17. It can be noted that the velocity gradients at 5-m
depth for hybrid inversion compares well with the AMCOR
data. The results of the perturbation inversion using GA re-
sults as the background are shown in Fig. 23. The result of
the hybrid inversion is also shown in this figure for compari-
son as both linear perturbation approach and the Levenberg–
Marquardt scheme are used to ‘‘fine tune’’ the GA results.
The changes in the compressional speeds predicted by both
these methods show a similar trend. Both these methods pre-
dict similar compressional speeds between 3–7-m depths

where the GA inversion is most uncertain. We can extract
the standard deviation and resolution lengths from perturba-
tion theory as shown in Figs. 24 and 25. The resolution
length varies approximately from 5 m/s at the top to 30 m/s
at 30-m depth. The standard error is low at 6 m/s. The low
values obtained may be due to the good quality of the back-
ground profile used for inversion. It should be noted that the
linear perturbation inversion was carried out using weighted
data as discussed in Sec. II A. The detailed variations in the
values of standard deviation depthwise are likely to be
caused by different modes turning at different depths.

VII. CONCLUSIONS

Sediment compressional speeds were evaluated using
hybrid optimization schemes based on the group speed dis-
persion properties of the shallow water waveguide. Data for
the inversion were obtained from the signals produced by
explosive sources. Time-frequency analysis was done using
wavelets which provided better frequency-time resolution
than usual Fourier-based methods. Results of the inversion
provided compressional speeds of sediments down to 30 m

FIG. 21. Ocean sound speed profiles along the propagation path of present
study. These were computed using the SeaSoar data. The sound speeds
computed using the inversion are also shown.

FIG. 22. Sediment compressional speeds obtained using Hybrid inversion.
The Levenberg–Marquadt scheme was applied to the best parameter set
produced by GA. Note the agreement between the Hybrid inversion and
AMCOR data between depths 3 to 7 m. The compressional speed obtained
from the gravity cores are also shown in the top 1.4 m of the sediment.

FIG. 23. Sediment compressional sound speeds obtained by linear pertur-
bation inversion. The compressional speeds obtained by GA were used as
the background profile for this inversion.

FIG. 24. Standard deviation estimates for linear perturbation inversion.
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in depth. The inversion compared well to gravity core data
taken at the location on the track and also to AMCOR drill
site data in the top 20 m. The calculated standard deviations
for these depths were of the order of 20 m/s. The results of
the sensitivity study quantified the effects of parameters of
influence ~sediment compressional speeds, sound speed in
the water column, water depth, etc.! on the group speed val-
ues. Higher modes seem to have greater influence on the
inversion of sediment properties than lower modes. This fac-
tor emphasizes the importance of obtaining good time-
frequency resolution for higher modes. Efforts are currently
underway to address this aspect. Also, these inversion results
correspond to a range-independent environment. Extension
of this scheme to range-dependent environments needs fur-
ther study.
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FIG. 25. Resolution length for linear perturbation inversion.
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