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Abstract
We investigate global dynamics of the following systems of difference equations:

⎧⎨
⎩
xn+1 =

b1x2n
A1+y2n

,

yn+1 =
a2+c2y2n

x2n
,

n = 0, 1, 2, . . . ,

where the parameters b1, a2, A1, c2 are positive numbers and the initial condition y0 is
an arbitrary nonnegative number and x0 is a positive number. We show that this
system has rich dynamics which depends on the part of a parametric space. We find
precisely the basins of attraction of all attractors including the points at ∞.
MSC: Primary 39A10; 39A30; secondary 37E99; 37D10

Keywords: basin of attraction; competitive map; global stable manifold;
monotonicity; period-two solution

1 Introduction
In this paper we study the global dynamics of the following rational system of difference
equations:

⎧⎨
⎩

xn+ = bx
n

A+y
n

,

yn+ = a+cy
n

x
n

,
n = , , , . . . , ()

where the parameters b, a, A, c are positive numbers and the initial condition y is an
arbitrary nonnegative number and x is a positive number.

The related system of difference equations

xn+ =
βxn

A + yn
, yn+ =

α + γyn

xn
, n = , , . . . , ()

where the parameters A, β, α and γ are positive numbers and the initial conditions x >
, y ≥ , was considered in [], where it was shown that this system has simple dynamics.
Precisely, it was shown that system () has no equilibrium points if β ≤ A and that it
has a unique equilibrium point if β > A, in which case this equilibrium point is a saddle
point. Furthermore, the following result describes the global dynamics of system ().

©2014 Hadžiabdić et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Theorem  Consider system ().
() Assume that β > A and γA �= α. Then there exist a set C ⊂ R which is invariant

and a subset of the basin of attraction of E. The set C is a graph of a strictly increasing
continuous function of the first variable on an interval (and so is a manifold) and separates
R into two connected and invariant components, namely

W– := {x ∈R\C : ∃y ∈ C with x 	se y} and W+ := {x ∈R\C : ∃y ∈ C with y 	se x},

which satisfy:

lim
n→∞(xn, yn) = (,∞) for every (x, y) ∈W–,

and

lim
n→∞(xn, yn) = (∞, ) for every (x, y) ∈W+.

() Assume that γA = α. Then system () can be decoupled as follows:

xn+ =
βx

n
Axn + βγ

, yn+ =

β

yn(A + yn), n = , , . . . ,

and every solution of this system (depending of the choice of the initial condition (x, y))
is either bounded and converges to an equilibrium point, or increases monotonically to
infinity.

() Assume that β ≤ A and γA �= α. Every solution {(xn, yn)} of system (), with x > ,
y ≥ , satisfies

lim
n→∞ xn =  and lim

n→∞ yn = ∞.

Thus every solution of system () either converges to the unique equilibrium point or
is asymptotic to one of the points at infinity, precisely to either (,∞) or to (∞, ). In all
cases, either solution is eventually monotonic or the subsequences of even indexed and
odd indexed terms are eventually monotonic. Introduction of quadratic terms into the
system will substantially change the dynamics by introducing new equilibrium points (up
to three) with different local character and minimal period-two solutions (up to ). Again,
most of the solutions of system () will be asymptotic to (∞, ) or (,∞), but the separatrix
between the two basins of attraction may consist of several global stable manifolds of either
saddle point equilibrium points or non-hyperbolic equilibrium points or minimal period-
two solutions. In one case, when there exists a unique non-hyperbolic equilibrium point,
it is possible that this point will have a basin of attraction of positive Lebesgue measure.

System () is a competitive system, and our results are based on recent results about
competitive systems in the plane, see [, ]. System () can be used as a mathematical
model for competition in population dynamics. The first systematic study of a specific
competitive system with quadratic terms was performed in [] where system of the form

xn+ =
xn

a + y
n

, yn+ =
yn

b + x
n

, n = , , . . . , ()

http://www.advancesindifferenceequations.com/content/2014/1/301
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where the parameters a, b >  and the initial conditions x, y ≥ , was considered. It was
shown that the dynamics of system () is very similar to the dynamics of the corresponding
linear fractional system

xn+ =
xn

a + yn
, yn+ =

yn

b + xn
, n = , , . . . ,

with the same conditions on parameters and initial conditions. Both systems have nine
parametric regions with different dynamical behavior.

As noted, the introduction of quadratic terms in system () dramatically changes the dy-
namics. The techniques used to study system () were straightforward calculations, while
the techniques which will be used to study system () are a combination of techniques
for studying real algebraic curves and implicit function theorem as neither equilibrium
points nor period-two solutions are explicitly computable. Some of our calculations are
performed by using Mathematica and outputs are included in the Appendix.

The paper is organized as follows. Section  contains some necessary results on com-
petitive systems in the plane. Section  provides some basic facts about the equilibrium
points and injectivity of the map associated with system (). Section  contains local sta-
bility analysis of both equilibrium solutions and minimal period-two solutions. Section 
gives global dynamics in different cases.

2 Preliminaries
A first-order system of difference equations

{
xn+ = f (xn, yn),
yn+ = g(xn, yn),

n = , , , . . . , ()

where S ⊂ R
, (f , g) : S → S , f , g are continuous functions, is competitive if f (x, y) is

non-decreasing in x and non-increasing in y, and g(x, y) is non-increasing in x and non-
decreasing in y. If both f and g are non-decreasing in x and y, system () is cooperative.
Competitive and cooperative maps are defined similarly. Strongly competitive systems of
difference equations or strongly competitive maps are those for which the functions f and
g are coordinate-wise strictly monotone. Competitive and cooperative systems have been
investigated by many authors, see [, , –]. Special attention to discrete competitive
and cooperative systems in the plane was given in [, , , , , , –]. One of the rea-
sons for paying special attention to two-dimensional discrete competitive and cooperative
systems is their applicability to mathematical models in biology and economics, the for-
mer involves competition or cooperation between two species. Another reason is that the
theory of two-dimensional discrete competitive and cooperative systems is very well de-
veloped, unlike such theory for three and higher dimensional systems. Part of the reason
for this situation is de Mottoni-Schiaffino theorem given below, which provides relatively
simple scenarios for possible behavior of many two-dimensional discrete competitive and
cooperative systems. However, this does not mean that one cannot encounter chaos in
such systems as has been shown by Smith, see [].

If v = (u, v) ∈ R
, we denote by Q�(v), � ∈ {, , , } the four quadrants in R

 relative
to v, i.e., Q(v) = {(x, y) ∈ R

 : x ≥ u, y ≥ v}, Q(v) = {(x, y) ∈ R
 : x ≤ u, y ≥ v}, and so on.

Define the south-east partial order 	se on R
 by (x, y) 	se (s, t) if and only if x ≤ s and y ≥ t.

http://www.advancesindifferenceequations.com/content/2014/1/301
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Similarly, we define the north-east partial order 	ne on R
 by (x, y) 	ne (s, t) if and only if

x ≤ s and y ≤ t. For A ⊂ R
 and x ∈ R

, define the distance from x to A as dist(x,A) :=
inf{‖x – y‖ : y ∈A}. By intA we denote the interior of a set A.

It is easy to show that a map F is competitive if it is non-decreasing with respect to the
south-east partial order, that is, if the following holds:

(
x

y

)
	se

(
x

y

)
⇒ F

(
x

y

)
	se F

(
x

y

)
.

For standard definitions of attracting fixed point, saddle point, stable manifold, and re-
lated notions, see [, ].

We now state three results for competitive maps in the plane. The following definition
is from [].

Definition  Let S be a nonempty subset of R. A competitive map T : S → S is said to
satisfy condition (O+) if for every x, y in S , T(x) 	ne T(y) implies x 	ne y, and T is said to
satisfy condition (O–) if for every x, y in S , T(x) 	ne T(y) implies y 	ne x.

The following theorem was proved by de Mottoni and Schiaffino [] for the Poincaré
map of a periodic competitive Lotka-Volterra system of differential equations. Smith gen-
eralized the proof to competitive and cooperative maps [].

Theorem  Let S be a nonempty subset of R. If T is a competitive map for which (O+)
holds, then, for all x ∈ S , {Tn(x)} is eventually component-wise monotone. If the orbit of x
has compact closure, then it converges to a fixed point of T . If instead (O–) holds, then, for
all x ∈ S , {Tn(x)} is eventually component-wise monotone. If the orbit of x has compact
closure in S , then its omega limit set is either a period-two orbit or a fixed point.

The following result is from [], with the domain of the map specialized to be the carte-
sian product of intervals of real numbers. It gives a sufficient condition for conditions (O+)
and (O–).

Theorem  Let R ⊂ R
 be the cartesian product of two intervals in R. Let T : R → R be

a C competitive map. If T is injective and det JT (x) >  for all x ∈R, then T satisfies (O+).
If T is injective and det JT (x) <  for all x ∈R, then T satisfies (O–).

The following result is a direct consequence of the trichotomy theorem of Dancer and
Hess, see [] and [], and is helpful for determining the basins of attraction of the equi-
librium points.

Corollary  If the nonnegative cone of 	 is a generalized quadrant in R
n, and if T has no

fixed points in �u, u � other than u and u, then the interior of �u, u � is either a subset
of the basin of attraction of u or a subset of the basin of attraction of u.

The next result is a well-known global attractivity result which holds in partially ordered
Banach spaces as well, see [].

http://www.advancesindifferenceequations.com/content/2014/1/301
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Theorem  Let T be a monotone map on a closed and bounded rectangular region
R⊂R

. Suppose that T has a unique fixed point ē in R. Then ē is a global attractor of
T on R.

The following theorems were proved by Kulenović and Merino [] for competitive sys-
tems in the plane, when one of the eigenvalues of the linearized system at an equilibrium
(hyperbolic or non-hyperbolic) is by an absolute value smaller than , while the other has
an arbitrary value. These results are useful for determining basins of attraction of fixed
points of competitive maps.

Theorem  Let T be a competitive map on a rectangular region R ⊂ R
. Let x ∈ R be a

fixed point of T such that � := R∩ int(Q(x̄) ∪Q(x)) is nonempty (i.e., x is not the NW or
SE vertex of R), and T is strongly competitive on �. Suppose that the following statements
are true.

(a) The map T has a C extension to a neighborhood of x.
(b) The Jacobian JT (x) of T at x has real eigenvalues λ, μ such that  < |λ| < μ, where

|λ| < , and the eigenspace Eλ associated with λ is not a coordinate axis.
Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of
attraction of x such that C is tangential to the eigenspace Eλ at x, and C is the graph of a
strictly increasing continuous function of the first coordinate on an interval. Any endpoints
of C in the interior of R are either fixed points or minimal period-two points. In the latter
case, the set of endpoints of C is a minimal period-two orbit of T .

The situation where the endpoints of C are boundary points of R is of interest. The
following result gives a sufficient condition for this case.

Theorem  For the curve C of Theorem  to have endpoints in ∂R, it is sufficient that at
least one of the following conditions is satisfied.

(i) The map T has no fixed points nor periodic points of minimal period two in �.
(ii) The map T has no fixed points in �, det JT (x) > , and T(x) = x has no solutions

x ∈ �.
(iii) The map T has no points of minimal period two in �, det JT (x) < , and T(x) = x

has no solutions x ∈ �.

The next result is useful for determining basins of attraction of fixed points of compet-
itive maps.

Theorem  (A) Assume the hypotheses of Theorem , and let C be the curve whose existence
is guaranteed by Theorem . If the endpoints of C belong to ∂R, then C separates R into
two connected components, namely

W– := {x ∈R\C : ∃y ∈ C with x 	se y} and W+ := {x ∈R\C : ∃y ∈ C with y 	se x},

such that the following statements are true.
(i) W– is invariant, and dist(Tn(x),Q(x)) →  as n → ∞ for every x ∈W–.

(ii) W+ is invariant, and dist(Tn(x),Q(x)) →  as n → ∞ for every x ∈W+.

http://www.advancesindifferenceequations.com/content/2014/1/301
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(B) If, in addition to the hypotheses of part (A), x is an interior point of R and T is C and
strongly competitive in a neighborhood of x, then T has no periodic points in the boundary
of Q(x) ∪Q(x) except for x, and the following statements are true.

(iii) For every x ∈W–, there exists n ∈N such that Tn(x) ∈ intQ(x) for n ≥ n.
(iv) For every x ∈W+, there exists n ∈ N such that Tn(x) ∈ intQ(x) for n ≥ n.

If T is a map on a set R and if x is a fixed point of T , the stable set W s(x) of x is the set
{x ∈R : Tn(x) → x} and unstable set Wu(x) of x is the set

{
x ∈R : there exists {xn}

n=–∞ ⊂R s.t. T(xn) = xn+, x = x, and lim
n→–∞ xn = x

}
.

When T is non-invertible, the set W s(x) may not be connected and made up of infinitely
many curves, or Wu(x) may not be a manifold. The following result gives a description
of the stable and unstable sets of a saddle point of a competitive map. If the map is a
diffeomorphism on R, the sets W s(x) and Wu(x) are the stable and unstable manifolds
of x.

Theorem  In addition to the hypotheses of part (B) of Theorem , suppose that μ >  and
that the eigenspace Eμ associated with μ is not a coordinate axis. If the curve C of Theorem 
has endpoints in ∂R, then C is the stable set W s(x) of x, and the unstable set Wu(x) of x is a
curve in R that is tangential to Eμ at x and such that it is the graph of a strictly decreasing
function of the first coordinate on an interval. Any endpoints of Wu(x) in R are fixed points
of T .

The following result gives information on local dynamics near a fixed point of a map
when there exists a characteristic vector whose coordinates have negative product and
such that the associated eigenvalue is hyperbolic. This is a well-known result, valid in a
much more general setting: we include it here for completeness. A point (x, y) is a subso-
lution if T(x, y) 	se (x, y), and (x, y) is a supersolution if (x, y) 	se T(x, y). An order interval
�(a, b), (c, d)� is the cartesian product of the two compact intervals [a, c] and [b, d].

Theorem  Let T be a competitive map on a rectangular set R ⊂ R
 with an isolated

fixed point x ∈R such that R∩ int(Q(x) ∪Q(x)) �= ∅. Suppose that T has a C extension
to a neighborhood of x. Let v = (v(), v()) ∈ R

 be an eigenvector of the Jacobian of T at x,
with associated eigenvalue μ ∈R. If v()v() < , then there exists an order interval I which
is also a relative neighborhood of x such that for every relative neighborhood U ⊂ I of x the
following statements are true.

(i) If μ > , then U ∩ intQ(x) contains a subsolution and U ∩ intQ(x) contains a
supersolution. In this case, for every x ∈ I ∩ int(Q(x) ∪Q(x)), there exists N such
that Tn(x) /∈ I for n ≥ N .

(ii) If μ < , then U ∩ intQ(x) contains a supersolution and U ∩ intQ(x) contains a
subsolution. In this case Tn(x) → x for every x ∈ I .

http://www.advancesindifferenceequations.com/content/2014/1/301
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3 Some basic facts
In this section we give some basic facts which will be used later. The map T associated to
system () is given by

T(x, y) =
(
f (x, y), g(x, y)

)
=

(
bx

A + y ,
a + cy

x

)
. ()

Let

R = R

+ \ {

(, y) : y ≥ 
}

.

3.1 Equilibrium points
The equilibrium points (x̄, ȳ) of system () satisfy the equations

bx̄

ȳ + A
= x̄,

cȳ + a

x̄ = ȳ. ()

By eliminating x̄ �=  from (), we get

ȳ + Aȳ – b
 cȳ + A

 ȳ – ab
 = . ()

Similarly, we can eliminate variable ȳ from system () to obtain

bx̄ – Ax̄ – b
 c

x̄ – bc(a – Ac)x̄ – (a – Ac) = . ()

Lemma  Let

� = –,a
Ab

 c + a

(
,A

 b
 c

 + A

)

– a
(
A

 b
 c

 + A
 c – b

 c

)

+ ,a
b

 – A
 b

 c
 + A

 c


and

� = –aA
 c + a

A + A
 c

 – b
 c

.

Then the following statements hold:
(a) Consider equation (). Then all its real roots are positive numbers. Furthermore,

equation () has one, two, or three real roots.
(b) If � > , then equation () has one real root and two pairs of distinct conjugate

imaginary roots.
(c) If � < , then equation () has three distinct real roots and one pair of conjugate

imaginary roots.
(d) If � =  and � �= , then equation () has one pair of conjugate imaginary roots

and two real roots, one real root of multiplicity one and other one of multiplicity two.
(e) If � =  and � = , then equation () has one pair of conjugate imaginary roots

and one real root of multiplicity three.

http://www.advancesindifferenceequations.com/content/2014/1/301
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Proof The proof of (a) follows from Descartes’ rule of signs.
Let

f̃ (y) = y + Ay – b
 cy + A

 y – ab
 .

The following matrix, called the discrimination matrix of f̃ (y) and f̃ ′(y) in [], is actually
the Sylvester matrix of f̃ (y) and f̃ ′(y) with some permuted rows.

Discr(f̃ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  A –b
 c A

 –ab
    

   A –b
 c A

    
   A –b

 c A
 –ab

   
    A –b

 c A
   

    A –b
 c A

 –ab
  

     A –b
 c A

  
     A –b

 c A
 –ab

 
      A –b

 c A
 

      A –b
 c A

 –ab


       A –b
 c A



⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let Dk denote the determinant of the submatrix of Discr(f̃ ), formed by the first k row
and the first k columns, for k = , . . . , m. So, by a straightforward calculation, one can see
that

D = ,

D = –A,

D = –A
 – b

 c
,

D = b

(
–aA

 c + a
A + A

 c
 – b

 c

)

= b
 �,

D = b

(
–,a

Ab
 c + a


(
,A

 b
 c

 + A

)

– a
(
A

 b
 c

 + A
 c – b

 c

)

+ ,a
b

 – A
 b

 c
 + A

 c

)

= b
 �.

Assume that D > . The sign list of the sequence {D, D, D, D, D} is given by

[
, –, –, sign(D), 

]
, ()

from which it follows that the number of sign changes of the revised sign list of list () is
two. Now, statement (b) follows in view of Theorem  []. Assume that D < . If D ≥ ,
then we obtain that f̃ (y) has three pairs of conjugate imaginary roots, which is a contra-
diction. Hence, D < . The sign list of the sequence {D, D, D, D, D} is given by

[, –, –, –, –], ()

which implies that the number of sign changes of the revised sign list of () is one. Now,
statement (c) follows in view of Theorem  []. Similarly, one can prove statements (d)
and (e). �

http://www.advancesindifferenceequations.com/content/2014/1/301
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3.2 Injectivity, (O+) and (O–)
Lemma  Assume that (x̄, ȳ) is an equilibrium of the map T . Then the following hold:

() If a �= Ac, then T is injective.
() If a = Ac, then the curve

bx = x̄
(
A + y)

is invariant under the map T . Furthermore, the following holds:

T
(

x,
√

bx – Ax̄
x̄

)
= (x̄, ȳ) for x ≥

√
Ax̄
b

.

() If Ac > a, then T satisfies (O+), in which case {Tn(x, y)} is asymptotic to either
(,∞) or (∞, ), or to an equilibrium point, for all (x, y) ∈R.

() If Ac < a, then T satisfies (O–), in which case {Tn(x, y)} is asymptotic to either
(,∞) or (∞, ), or to a period-two point, for all (x, y) ∈R.

Proof () Assume that T(x, y) = T(x, y). Then we have

(
Abx

 – Abx
 + bx

 y
 – bx

y


(A + y
 )(A + y

)
,

–ax
 + ax

 – cx
 y

 + cx
y


x

 x


)
= (, ). ()

Equation () is equivalent to

x

(
Ab + by


)

– Abx
 – bx

y
 = , ()

x

(
–a – cy


)

+ ax
 + cx

y
 = . ()

Equation () implies

x
 =

x
(A + y

 )
A + y


. ()

By substituting this into equation (), we obtain

x
(y

 – y
)(a – Ac)

A + y


= ,

from which it follows that y = y since a �= Ac. From () we have x = x, which com-
pletes the proof of statement (a).

() One can see that

T
(

x,
√

bx – Ax̄
x̄

)
– (x̄, ȳ) =

(
,

bc – x̄ȳ
x̄

)
.

Since a = Ac, equations () and () become

c
(
ȳ + A

)(
Aȳ + ȳ – b

 c
)

=  ()

http://www.advancesindifferenceequations.com/content/2014/1/301
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and

c – x̄(–Ax̄ + bx̄ – b
 c


)

= . ()

From () we have A = b
 c–ȳ

ȳ . By substituting this into () we get

(x̄ȳ – bc)(b(cȳ + x̄) + x̄ȳ)
ȳ

= ,

which implies x̄ȳ – bc = , from which the proof follows.
() The Jacobian matrix of the map T has the form

JT =

(
xb

y+A
– xyb

(y+A)

– (cy+a)
x

yc
x

)
. ()

The determinant of () at any point is equal to

JT (x, y) =
bxy(Ac – a)

x(y + A) .

The proof of () and () follows from Theorem . �

4 Linearized stability analysis
The determinant of () at the equilibrium point is given by

det JT (x̄, ȳ) =
bȳ(Ac – a)

x̄(ȳ + A) . ()

The trace of () at the equilibrium point is given by

tr JT (x̄, ȳ) =
cȳ
x̄ + .

The characteristic equation has the form

λ – λ

(
cȳ
x̄ + 

)
+

bȳ(Ac – a)
x̄(ȳ + A) = .

Equilibrium curves Cf = {(x, y) ∈ R : f (x, y) = x} and Cg = {(x, y) ∈ R : g(x, y) = y} can be
given explicitly as functions of y:

Cf : xf (y) =
A + y

b
,

Cg :

⎧⎨
⎩xg+ (y) = +

√
a+cy

y , y > ,

xg– (y) = –
√

a+cy

y , y > .

Note that xg– (x) is always negative. Let xg(y) denote xg+ (y). We consider only xf (y) and
xg(y). Let

x̃(y) = xf (y) – xg(y).
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Hadžiabdić et al. Advances in Difference Equations 2014, 2014:301 Page 11 of 32
http://www.advancesindifferenceequations.com/content/2014/1/301

Lemma  Let T = (f , g) be the map defined by (). Then f ′
x(x, y) > , and the following is

true:

sign
(
x̃(y)

)
= sign

(
y + Ay – b

 cy + A
 y – ab


)
.

Proof The first derivative of xf (y) is given by

x′
f (y) =

f ′
y (x, y)

 – f ′
x(x, y)

=
y
b

> .

Since f ′
y (x, y) < , we get f ′

x(x, y) > . Further,

x̃(y) = xf (y) – xg(y) =
A + y

b
–

√
a + cy

y
=

√y(A + y) – b
√

a + cy

b
√y

.

Now, the proof follows from

(√
y
(
A + y)) –

(
b

√
a + cy

) = y + Ay – b
 cy + A

 y – ab
 . �

Lemma  Let T be the map defined by (), and let

JT (x̄, ȳ) =

(
a b
c d

)
()

be the Jacobian matrix of T at a fixed point (x̄, ȳ). Then the Jacobian matrix () has real
and distinct eigenvalues λ and λ such that |λ| < λ and λ > . Furthermore, the following
holds:

sign
(
x̃′(ȳ)

)
= sign( – λ).

Proof Implicit differentiation of the equations defining Cf and Cg at (x̄, ȳ) gives

x′
f (ȳ) =

f ′
y (x̄, ȳ)

 – f ′
x(x̄, ȳ)

, x′
g(ȳ) =

 – g ′
y(x̄, ȳ)

g ′
x(x̄, ȳ)

. ()

The characteristic equation associated with the Jacobian matrix of T at (x̄, ȳ) is given by

p(λ) = λ –
[
f ′
x(x̄, ȳ) + g ′

y(x̄, ȳ)
]
λ +

[
f ′
x(x̄, ȳ)g ′

y(x̄, ȳ) – f ′
y (x̄, ȳ)g ′

x(x̄, ȳ)
]

= λ – (a + d)λ + (ad – bc).

Since the map T is competitive, then the eigenvalues of the Jacobian matrix of the map T
at the equilibrium (x̄, ȳ) are real and distinct and |λ| < λ. By (), we have

x̃′(ȳ) = x′
f (ȳ) – x′

g(ȳ) =
f ′
y (x̄, ȳ)

 – f ′
x(x̄, ȳ)

–
 – g ′

y(x̄, ȳ)
g ′

x(x̄, ȳ)

=
b

 – a
–

 – d
c

=
– + (a + d) – (ad – bc)

c( – a)

=
–p()

c( – a)
=

( – λ)( – λ)
c(a – )

.
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From tr JT (x̄, ȳ) = λ + λ >  we get λ > . The map T is competitive, which implies
c = g ′

x(x̄, ȳ) < . In view of Lemma , we get a = f ′
x(x̄, ȳ) > , from which it follows that

sign(x̃′(ȳ)) = sign( – λ). �

Theorem  Assume that � >  and λ and λ are eigenvalues of JT (x̄, ȳ). Then there
exists the unique equilibrium point E = (x̄, ȳ) and the following hold:

(a) If a < Ac, then E is a saddle point and  < λ < , λ > .
(b) Assume that a > Ac. Let

	(ȳ) = cȳ + ȳ(Ac – a) + aA.

(b) If 	(ȳ) > , then E is a saddle point. Furthermore, the following hold:
– < λ < , λ > .

(b) If 	(ȳ) < , then E is a repeller. Furthermore, the following hold: λ < –, λ > ;
|λ| < λ.

(b) If 	(ȳ) = , then E is a non-hyperbolic equilibrium point. Furthermore, the
following hold: λ = –, λ > .

Proof In view of () and Lemma , we have that the function

f̃ (y) = y + Ay – b
 cy + A

 y – ab


has one zero ȳ of multiplicity one. In view of Lemma , the map T has a unique equilibrium
point. Since f̃ () = –ab

 <  and limy→+∞ f̃ (y) = +∞, we have f̃ (y) <  for y < ȳ and f̃ (y) >
 for y > ȳ. By Lemmas  and  from [], the equilibrium curves Cf and Cg intersect
transversally at (x̄, ȳ), i.e., x̃′(ȳ) �= . In view of Lemma  and by the continuity of function
x̃(y), there exists a neighborhood Uȳ of ȳ such that x̃′(y) >  for y ∈ Uȳ, which implies

x̃′(ȳ) = x′
f (ȳ) – x′

g(ȳ) > . ()

From () and Lemma  we obtain λ <  and λ > .
If a < Ac, then det JT (x̄, ȳ) = λλ > , which implies that λ ∈ (, ).
Now, assume that a > Ac. By using

b =
ȳ + A

x̄
, x̄ =

√
cȳ + a

ȳ
,

one can see that

p(–) =  + det JT (x̄, ȳ) + tr JT (x̄, ȳ) =
cȳ + ȳ(Ac – a) + aA

(ȳ + A)(cȳ + a)

=
	(ȳ)

(ȳ + A)(cȳ + a)

and

det JT (x̄, ȳ) = λλ =
bȳ(Ac – a)

x̄(ȳ + A) ,
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where p(λ) = (λ – λ)(λ – λ). In view of () and p(–) = (λ + )(λ + ), we obtain state-
ment (b) of the theorem. �

Lemma  Suppose that all the assumptions of Theorem  are satisfied. Let

y± =

√
a – Ac ± √

–aAc + a
 + A

 c


c
.

Then the following statements are true.
(a) 	(ȳ) >  if and only if one of the following inequalities holds:

Ac – a ≥ ,

Ac – a <  and –aAc + a
 + A

 c
 < ,

Ac – a <  and –aAc + a
 + A

 c
 ≥  and(

f̃ (y–) >  or f̃ (y+) < 
)
;

(b) 	(ȳ) <  if and only if the following hold:

Ac –a <  and –aAc +a
 +A

 c
 ≥  and

(
f̃ (y–) <  and f̃ (y+) > 

)
;

(c) 	(ȳ) =  if and only if

Ac –a <  and –aAc +a
 +A

 c
 ≥  and

(
f̃ (y–) =  or f̃ (y+) = 

)
.

Proof The function f̃ (y) has one simple zero ȳ, which implies f̃ (y) <  for  ≤ y < ȳ and
f̃ (y) >  for y > ȳ. Then

ȳ > α if and only if f̃ (α) < ,

while

ȳ < β if and only if f̃ (β) > 

for some α,β ∈ [,∞). Now the proof follows from the fact that f̃ (y) =  has real roots

{√
a – Ac ± √

–aAc + a
 + A

 c


c
,

–

√
a – Ac ± √

–aAc + a
 + A

 c


c

}

if and only if

Ac – a <  and – aAc + a
 + A

 c
 ≥ . �
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Theorem  Assume that � < . Then there exist three distinct equilibrium points in the
positive quadrant: E = (x̄, ȳ), E = (x̄, ȳ) and E = (x̄, ȳ) such that E �ne E �ne E

and the following hold:
(a) E and E are saddle points. If λ

(i)
 and λ

(i)
 are the eigenvalues of JT (Ei), i = , , then

 < λ
(i)
 < , λ(i)

 > .
(b) The equilibrium point E is a repeller. If λ

()
 and λ

()
 are the eigenvalues of JT (E),

then  < λ
()
 < λ

()
 .

Proof In view of Lemma , equation () has three positive roots of multiplicity one. Since

x̄ =
A + ȳ

b
> ,

then by (a) of Lemma  we obtain that the map T has three equilibrium points that we
denote by E, E and E. Given points lie on the increasing curve

xf (y) =
A + y

b
,

which implies that the points are in the north-east ordering. Descartes’ rule of signs and
() imply that det JT (x, y) >  when a < Ac. In view of () and Lemma , we have that the
polynomial

f̃ (y) = y + Ay – b
 cy + A

 y – ab


has three zeros ȳi, i = , , , of multiplicity one. Since f̃ () = –ab
 <  and limy→+∞ f̃ (y) =

+∞, we have f̃ (y) <  for y ∈ (, ȳ) ∪ (ȳ, ȳ) and f̃ (y) >  for y ∈ (ȳ, ȳ) ∪ (ȳ, +∞).
By Lemmas  and  from [], the equilibrium curves Cf and Cg intersect transversally

at E, E and E, i.e., x̃′(ȳi) �= , i = , , . By this and Lemma  and by the continuity of
function x̃(y), there exists a neighborhood U (i)

ȳi
of ȳi such that x̃′(y) >  for y ∈ U (i)

ȳi
for

i = ,  and x̃′(y) <  for y ∈ U ()
ȳi

. Using this we get

x̃′(ȳi) >  for i = ,  and x̃′(ȳi) <  for i = .

Let

JT (Ei) =

(
ai bi

ci di

)
, i = , , .

In view of (), we have det JT (Ei) = λ
(i)
 λ

(i)
 > , i = , , . By Lemma  we obtain  < λ

(i)
 < 

and λ
(i)
 >  for i = , . Since x̃′(ȳ) < , by Lemma  we have  < λ

()
 < λ

()
 . This completes

the proof. �

Theorem  Assume that � =  and � �=  Then there exist two distinct equilibrium
points in the positive quadrant E = (x̄, ȳ) and E = (x̄, ȳ) such that E �ne E. Let λ

(i)


and λ
(i)
 be the eigenvalues of JT (Ei), i = , . Then the following hold:

(a) Exactly one of the roots ȳ or ȳ of () has multiplicity two.
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(b) If ȳ is a root of () of multiplicity two, then the equilibrium point E is
non-hyperbolic and E is a saddle point. Furthermore, λ()

 = , λ()
 >  and

 < λ
()
 < , λ()

 > .
(c) If ȳ is a root of () of multiplicity two, then the equilibrium point E is

non-hyperbolic and E is a saddle point. Furthermore, λ()
 = , λ()

 >  and
 < λ

()
 < , λ()

 > .

Proof In view of Lemma , equation () has two positive zeros, one of multiplicity one and
another one of multiplicity two, which implies statement (a). Since x̄ = (A + ȳ)/b > , we
obtain that the map T has two equilibrium points that we denote by E and E. Descartes’
rule of signs and () imply that a < Ac ⇒ det JT (x, y) > . Now, we prove statement (b).
Similarly as in the proof of Theorem , one can see that E is a saddle point. In view of
Lemmas  and , from [] we have that x̃′(ȳ) = , since ȳ is the root of () of multiplicity
two. By Lemma  we obtain λ

()
 = , λ

()
 > . The proof of statement (c) is similar and we

will skip it. �

Theorem  Assume that � =  and � = . Then there exists one equilibrium point in
the positive quadrant E = (x̄, ȳ) which is non-hyperbolic. If λ

()
 and λ

()
 are eigenvalues of

JT (E), then λ
()
 = , λ()

 > .

Proof In view of Lemma , ȳ is zero of () of multiplicity three. In view of Lemmas  and ,
from [] we have that x̃′(ȳ) = . The rest of the proof is similar to that in Theorem 
and we skip it. �

4.1 Period-two solution
Let

T(x, y) = T
(
T(x, y)

)
=

(
F(x, y), G(x, y)

)
,

where

F(x, y) =
b

 x

(A + y)(acy + a
 + Ax + c

y)

and

G(x, y) =
(A + y)(ac

y + a
c + ax + c

y)
b

 x .

Period-two solution {(
,�), T(
,�)} satisfies the system

F(
,�) = 
, G(
,�) = � ,

which is equivalent to

b



 – A

(A + �) –

(
A + �)(a + c�

) = ,

b
�
 – a


(A + �) – c
(
A + �)(a + c�

) = .
()
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The Jacobian matrix of the map T at (x, y) has the form

JT (x, y) =

⎛
⎝ xb

 (Ax+(cy+a))
(y+A)(Ax+(cy+a)) – xyb

 (Ax+(cy+a)(a+(y+A)c))
(y+A)(Ax+(cy+a))

– (y+A)(c
y+a

c+a(x+yc
))

xb


y(y+A)(y(y+A)c
+a

c+a(x+(y+A)c
))

xb


⎞
⎠ .

()

The determinant of () at (x, y) is given by

det JT (x, y) =
bxy(a – Ac)(a + cy)
(A + y)((a + cy) + Ax) .

The trace of () at (x, y) is given by

tr JT (x, y) =
( b

 x((a+cy)+Ax)
((a+cy)+Ax) + ay(A + y)(c

(A + y) + x))

b
 x(A + y)

+
(a

cy(A + y) + c
y(A + y)(A + y))

b
 x(A + y) . ()

Lemma  Let CF := {(x, y) : F(x, y) = x} and CG := {(x, y) : G(x, y) = y} be the period-two
curves, that is, the curves the intersection of which is a period-two solution. Then, for all
y > , there exist exactly one xF (y) >  and exactly one xG(y) >  such that F(xF (y), y) = x
and G(xG(y), y) = y. Furthermore, xF (y) and xG(y) are continuous functions and x′

F (y) > .

Proof Since F(x, y) = x and G(x, y) = y if and only if

b
 x – Ax(A + y) –

(
A + y)(a + cy) = ,

b
 yx – ax(A + y) – c

(
A + y)(a + cy) = ,

respectively, in view of Descartes’ rule of signs, we have that for all y >  there exist exactly
one xF (y) >  and exactly one xG(y) >  such that F(xF (y), y) = x and G(xG(y), y) = y. Taking
derivatives of F(x, y) = x with respect to y, we get

x′
F (y) =

F ′
y(x, y)

 – F ′
x(x, y)

.

From F(x, y) = x we have that (A + y) = b
 x

(a+cy)+Ax , which implies

F ′
x(x, y) =

xb
 (Ax + (cy + a))

(y + A)(Ax + (cy + a)) =  –
Ax

(a + cy) + Ax > .

Since F ′
y(x, y) < , we get x′

F (y) > . �

Theorem  If a ≤ Ac, then T has no minimal period-two solution. If a > Ac and T
has a minimal period-two solution {(
,�), T(
,�)}, then {(
,�), T(
,�)} is unstable. If
μ and μ (μ < μ) are the eigenvalues of JT (
,�), then μ >  and μ > . All period-two
solutions are ordered with respect to the north-east ordering.
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Proof If a ≤ Ac, the statement follows from Lemma . If a > Ac, then from the first
equation of () we have that

(
A + �) =

b





(a + c�) + A
 .

By substituting this into () we obtain

tr JT (
,�) =
�(A + �)(a(c

(A + �) + 
) + a
c + c

�
(A + �))

b





+  –
A




(a + c�) + A
 > .

The rest of the proof follows from the fact that tr JT (
,�) = μ + μ > , det JT (
,�) =
μμ >  and Lemma . �

Theorem  If the map T has a minimal period-two solution {(
,�), T(
,�)}, which
is non-hyperbolic, then D(p) = , where D(p) is the discriminant of the polynomial

p(y) := py + py + · · · + py + p,

where the coefficients pi, i = , . . . , , are in the Appendix. If {(
,�), T(
,�)} and
{(
,�), T(
,�)} are two minimal period-two solutions such that T has no other min-
imal period-two solutions in �(
,�), (
,�)� = {(x, y) : (
,�) 	ne (x, y) 	ne (
,�)}
and D(p) �= , then one of them is a saddle point and the other is a repeller.

Proof Period-two solution curves CF = {(x, y) ∈ R : F̃(x, y) = } and CG = {(x, y) ∈ R :
G̃(x, y) = }, where

F̃(x, y) = b
 x – Ax(A + y) –

(
A + y)(a + cy) and

G̃(x, y) = b
 yx – ax(A + y) – c

(
A + y)(a + cy),

are algebraic curves. By using software Mathematica, one can see that the resultant of the
polynomials F̃(x, y) and G̃(x, y) in variable x is given by

R(F̃ , G̃) = –b

(
A + y)(a + cy)(–ab

 + Ay + A
 y – b

 cy + y)p(y)

= –b

(
A + y)(a + cy) f̃ (y)p(y).

Suppose that {(
,�), T(
,�)} is a non-hyperbolic minimal period-two solution. This
implies that F̃(
,�) = , G̃(
,�) = . By Theorem . [], F̃ and G̃ have a common
non-constant factor if and only R(F̃ , G̃) = , which implies that system F̃(x, y) = , G̃(x, y) =
 has a solution if and only if R(F̃ , G̃) = . Since f̃ (�) �= , it must be p(�) = . Similarly
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as in Lemma , one can see that

x′
F (�) – x′

G(�) =
F ′

y(
,�)
 – F ′

x(
,�)
–

 – G′
y(
,�)

G′
x(
,�)

=
f

 – e
–

 – h

g
=

– + (e + g) – (eh – fg)
g( – e)

=
–p()

g( – e)
=

( – μ)( – μ)
g(e – )

,

where p(μ) is the characteristic equation of the matrix

JT (
,�) =

(
e f

g h

)
.

From Theorem  we have that  < μ < μ and μ > . Since {(
,�), T(
,�)} is non-
hyperbolic, we obtain that μ = , from which it follows that x′

F (�) – x′
G(�) = . Since

R(F̃ , G̃) �≡ , we have that CF and CG have no common component. By Lemmas  and ,
from [], the curves CF and CG intersect transversally at (
,�) (i.e., y′

F̃ (�) – y′
G̃(�) �= )

if and only if � is zero of p(y) of multiplicity one. By Theorem . [], p(y) has zeros of
multiplicity greater than one if and only if the discriminant D(p) of the polynomial p(y) is
equal to zero, which proves the first statement of the lemma.

Assume that {(
,�), T(
,�)} and {(
,�), T(
,�)} are two minimal period-two
solutions such that T has no other minimal period-two solutions in �(
,�), (
,�)� =
{(x, y) : (
,�) 	ne (x, y) 	ne (
,�)} and D(p) �= . From the previous discussion we
have x′

F (�i) – x′
G(�i) �= , i = , . Since xF (�i) – xG(�i) = , i = , , it follows that (x′

F (�) –
x′

G(�))(x′
F (�) – x′

G(�)) < . Indeed assume, for example, that x′
F (�) – x′

G(�) <  and
x′

F (�) – x′
G(�) < . Then there exists ε >  such that xF (y) – xG(y) <  for y ∈ (�,� + ε)

and xF (y) – xG(y) >  for y ∈ (� – ε,�). Since xF (y) – xG(y) is a continuous function, this
implies that there exists � ∈ (�,�) such that xF (�) – xG(�) = , which is a contradic-
tion. The rest of the proof follows from the fact that ei >  and gi < , i = , . �

Notice that

D(p) = –


p
R
(
p, p′),

where R(p, p′) = det Syl(p, p′), the determinant of the Sylvester matrix Syl(p, p′), see [,
], and

Syl
(
p, p′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p p · · · p p  · · · 
 p p · · · p p · · · 
...
 · · · p p p · · · p p

p p · · · p   · · · 
 p p · · · p  · · · 
...
  · · · p p p · · · p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Theorem  If a > Ac and 	(ȳ) < , then T has one equilibrium point E(x̄, ȳ), which is a
repeller, and there exists at least one minimal period-two solution {(ψ ,φ), T(ψ ,φ)} which
is non-hyperbolic or a saddle point. If T has no minimal period-two solutions which are
non-hyperbolic, then (ψ ,φ) �ne E �ne T(ψ ,φ).

Proof By Theorem  we have that T has one equilibrium point E(x̄, ȳ), which is a re-
peller. This and Lemma  imply that Tn(x, y) is asymptotic to either (,∞) or (∞, ), or
a minimal period-two solution, for all (x, y) ∈ R. Let B(,∞) be the basin of attraction
of (,∞), and let B(∞, ) be the basin of attraction of (∞, ). By using Theorem  one can
prove that int(Q(E)) ⊂ B(,∞) and int(Q(E)) ⊂ B(∞, ). Let S denote the boundary of
B(∞, ) considered as a subset of Q(E), and let S denote the boundary of B(∞, ) con-
sidered as a subset of Q(E). It is easy to see that E ∈ S, E ∈ S and T(R) ⊂ int(R). Now
we prove the following claim.

Claim  Let S and S be the sets defined as above. Then
(a) If (x, y) ∈ B(∞, ), then (x, y) ∈ B(∞, ) for all (x, y) 	se (x, y).
(b) If (x, y) ∈ S ∪ S, then (x, y) ∈ int(B)(∞, ) for all (x, y) �se (x, y).
(c) S ∩ int(Q(E)) �= ∅ and S ∩ int(Q(E)) �= ∅.
(d) T(S ∪ S) ⊆ S ∪ S.
(e) (x, y), (x, y) ∈ S ∪ S ⇒ (x, y) �ne (x, y) or (x, y) �ne (x, y).

Proof (a) The statement follows from Tn(x, y) 	se Tn(x, y) 	se (∞, ) and Tn(x, y) →
(∞, ) as n → ∞.

(b) The claim (b) follows from the observation that there exists a ball centered at
(x, y) with the property that all its points (x, y) satisfy (x, y) �se (x, y). But one of these
points necessarily lies in B(∞, ), so by (a) there exists (x, y) ∈ B(∞, ). Furthermore,
there exists a ball centered at (x, y) with the property that all its points (x, y) satisfy
(x, y) ∈ B(∞, ), which implies (x, y) ∈ int(B)(∞, ).

(c) Take y′ > ȳ arbitrary (but fixed). Since T is strongly competitive, we have T(x̄, y′) �se

T(x̄, ȳ), which implies T(x̄, y′) ∈ int(Q(E)). This implies that there exists a ball Bε(T(x̄, y′))
with the property Bε(T(x̄, y′)) ⊂ int(Q(E)). Since T is a continuous map on a set R


+ \

{(, y) : y ≥ }, then there exists a ball Bδ (x̄, y′) such that T(Bδ (x̄, y′)) ⊂ Bε(T(x̄, y′)) ⊂
int(Q(E)), which implies Tn(x, y) → (,∞) as n → ∞ for all (x, y) ∈ Bδ (x̄, y′). Similarly,
one can prove that then there exists a ball Bδ (x̄ + δ/, ȳ) such that Tn(x, y) → (∞, ) as
n → ∞ for all (x, y) ∈ Bδ (x̄ + δ/, ȳ). Let y′′ = sup{y : limn→∞ Tn(x̄ + δ/, y) = (∞, )}. It is
easy to see that (x̄ + δ/, y′′) ∈ S ∩ int(Q(E)). The assertion concerning S is proved in a
similar fashion.

(d) Take (x, y) ∈ S ∪ S. Assume that T(x, y) /∈ S ∪ S. Since S ∪ S = ∂B(∞, ) =
B(∞, )\ int(B(∞, )), then either T(x, y) ∈ int(B(∞, )) or T(x, y) /∈ B(∞, ). Assume that
T(x, y) ∈ int(B(∞, )). This implies that there exists a ball Bε(T(x, y)) with the property
Bε(T(x, y)) ⊂ int(B(∞, )). Since T is a continuous map on the set R

+ \ {(, y) : y ≥ }, then
there exists a ball Bδ(x, y), δ >  such that T(Bδ(x, y)) ⊂ Bε(T(x, y)), which implies Bδ(x, y) ⊂
B(∞, ). This is in contradiction with (x, y) ∈ S ∪ S = ∂B(∞, ). Hence T(x, y) ∈ S ∪ S

in this case. Similarly, one can prove that T(x, y) ∈ S ∪S if T(x, y) /∈ B(∞, ). This implies
that T(S ∪ S) ⊆ (S ∪ S).
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(e) Assume that (x, y), (x, y) ∈ S ∪S ⇒ (x, y) 	se (x, y) and (x, y) �= (x, y). Since
T is strongly competitive, we get T(x, y) �ne T(x, y). This contradicts (e) and (b), which
completes the proof. �

In view of Claim , we have that (S ∪S,�ne) is a totally ordered set which is invariant
under T . If (x, y) ∈ S ∪S, then {T (n)(x, y)} is eventually component-wise monotone.
Then there exists a minimal period-two solution {(
,�), T(
,�)} ∈ S ∪ S ⊂ Q(E) ∪
Q(E) such that T (n)(x, y) → (
,�) as n → ∞. By Theorem , {(
,�), T(
,�)} is
a non-hyperbolic or a saddle point. Assume that T has no minimal period-two solu-
tions which are non-hyperbolic points and, for example, that (
,�), T(
,�) ∈ S such
that E �ne (
,�) �ne T(
,�). Since {(
,�), T(
,�)} is a saddle point, in view of
Theorems ,  and , we have that the global stable manifolds W s({(
,�), T(
,�)})
are the union of two curves W s(
,�) and W s(T(
,�)) whose endpoints are repeller
points such that T(W s(
,�)) = W s(T(
,�)) and E �ne W s(
,�) �ne W s(T(
,�)). If
P and P (P 	ne P) are endpoints of W s(
,�), then T(P) and T(P) are endpoints
of T(W s(
,�)) and either T(P) 	ne T(P) or T(P) 	ne T(P). Assume, for example,
that P �ne W s(
,�) �ne P �ne T(P) �ne W s(T(
,�)) �ne T(P). By Theorem  be-
tween two repellers P and T(P), there exists a saddle point S where its stable manifold
is the union of two invariant curves W s(S) and W s(T(S)) whose endpoints are repellers
such that P �ne W s(S) �ne T(P). Continuing in this way, we obtain that T has infinitely
many minimal period-two solutions {Pi, T(Pi)}, which is in contradiction with the fact that
T has at most eleven minimal period-two solutions. Hence (
,�) �ne E �ne T(
,�).

�

Corollary  Assume that a > Ac, 	(ȳ) <  and D(p) �= . Then there exists one equi-
librium point E which is a repeller. Further, the set int(Q(E)) ∪ int(Q(E)) contains an
odd number of minimal period-two solutions {(
i,�i), (
̃i, �̃i)}, i = , . . . , n + , such
that (
i+,�i+) �ne (
i,�i) �ne E and E �ne (
̃i, �̃i) �ne (
̃i+, �̃i+), where (
̃i, �̃i) =
T(
i,�i). Furthermore, odd indexed period-two points are saddles and even indexed
period-two points are repellers.

Proof By Theorem  we have that T has one equilibrium point E(x̄, ȳ), which is a re-
peller. By Theorem  all minimal period-two solutions are hyperbolic and the number
of minimal period-two solutions is finite. In view of Claim , T has at least one min-
imal period-two solution which is a saddle point. Let {P, T(P)} be a minimal period-
two solution which is a saddle point such that P �ne E �ne T(P) and T has no minimal
period-two solutions in �E, T(P)� and �P, E�. Such a minimal period-two solution exists
in view of Theorem . The map T satisfies all conditions of Theorems ,  and , which
yields the existence of the global stable manifolds W s({P, P̃}) which are the union of two
curves W s(P) and W s(P̃) that have a common endpoint E. If T has minimal period-two
solutions in int(Q(T(P))) ∪ int(Q(P)), let {P, P̃} (P �ne P̃) denote minimal period-
two solutions such that T has no other minimal period-two solutions in �T(P), T(P)�

and �P, P �. Then W s(P) has the second endpoint at P and W s(T(P)) has the second
endpoint at T(P) and P �ne P �ne E �ne T(P) �ne T(P). Furthermore, a minimal
period-two solution {P, T(P)} is a repeller. Similarly as in Theorem , one can prove
that int(Q(T(P))) ∪ int(Q(P)) contains at least one minimal period-two solution which
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is a saddle point. Since the number of minimal period-two solutions is finite, continuing
in this way, we will end with a minimal period-two solution which is a saddle point, from
which the proof follows. �

Corollary  If a > Ac and 	(ȳ) > , then there exists one equilibrium point E which is a
saddle point. If D(p) �= , then int(Q(E)) ∪ int(Q(E)) contains an even number of minimal
period-two solutions {(
i,�i), (
̃i, �̃i)}, i = , . . . , n, such that (
i+,�i+) �ne (
i,�i) �ne

E and E �ne (
̃i, �̃i) �ne (
̃i+, �̃i+) and (
̃i, �̃i) = T(
i,�i). Furthermore, even indexed
period-two points are saddles and odd indexed period-two points are repellers.

Proof The proof is similar as the proof of Corollary  and it will be omitted. �

Based on a series of numerical simulations, we propose the following conjecture.

Conjecture  System () has at most one minimal period-two solution.

5 Global behavior
In this section we present global dynamics of system () in different parametric regions.
We have five parametric regions with different dynamics which will be characterized by
the following five theorems.

5.1 The case where the equilibrium points and period-two solutions are
hyperbolic points (�1 �= 0 and D(p) �= 0)

Theorem  Assume that � < . Then system () has three equilibrium solutions E �ne

E �ne E, where E and E are saddle points and E is a repeller. In this case there exist
four invariant continuous curves W s(E), W s(E), Wu(E), Wu(E), where W s(E), W s(E)
have end points at E, and are graphs of increasing functions. The curves Wu(E), Wu(E)
are the graphs of decreasing functions. Every solution {(xn, yn)} which starts below W s(E)∪
W s(E) in the south-east ordering is asymptotic to (,∞), and every solution {(xn, yn)} which
starts above W s(E) ∪ W s(E) in the south-east ordering is asymptotic to (∞, ). The first
quadrant of initial condition Q = {(x, y) : x > , y ≥ } is the union of five disjoint basins
of attraction, i.e.,

Q = B(,∞) ∪B(∞, ) ∪B(E) ∪B(E) ∪B(E),

where B(E) = {E}, B(E) = W s(E), B(E) = W s(E) and

B(,∞) =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E) ∪W s(E)
}

,

B(∞, ) =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E) ∪W s(E)
}

.

Proof Theorem  implies that there exist three equilibrium points, namely E, E and E,
such that E �ne E �ne E. In this case, E and E are saddle points and E is a repeller. In
view of (), the map T is competitive on R and strongly competitive on int(R). It follows
from the Perron-Frobenius theorem and a change of variables [] that at each point the
Jacobian matrix of a strongly competitive map has two real and distinct eigenvalues, the
larger one in absolute value being positive, and that corresponding eigenvectors may be
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chosen to point in the direction of the second and first quadrant, respectively. Also, one
can show that if the map is strongly competitive, then no eigenvector is aligned with a
coordinate axis.

Since � <  implies a < Ac, we have that det JT (Ei) > , i = , . Hence, all condi-
tions of Theorems ,  and  are satisfied, which yields the existence of the global sta-
ble manifolds W s(E), W s(E) and the global unstable manifolds Wu(E), Wu(E), where
W s(E), W s(E) are passing through the point E and are graphs of increasing functions.
The curves Wu(E), Wu(E) are the graphs of decreasing functions. Let

W– =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E) ∪W s(E)
}

,

W+ =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E) ∪W s(E)
}

.

Take (x, y) ∈ W– ∩ R. By Theorem  we have that there exists n >  such that
Tn(x, y) ∈ int((Q(E) ∪ Q(E)) ∩R), n > n. In view of Theorem , since E and E are
saddle points, we obtain that for all (x, y) ∈ int((Q(E)∪Q(E))∩R), there exists a sub-
solution (u, v) such that (x, y) 	se (u, v). By monotonicity we have that (, ∞) 	se

Tn(x, y) 	se Tn(u, v) � E if (x, y) ∈ int(Q(E) ∩ R) and (,∞) 	se Tn(x, y) 	se

Tn(u, v) � E if (x, y) ∈ int(Q(E) ∩ R). For the sequence (un, vn) = Tn(u, v), we
have (un+, vn+) 	se (un, vn) 	se (u, v). The sequence {un} is monotone decreasing and
bounded from below and {vn} is monotone increasing. Since T has no other equilibrium
point except E, E and E, this implies that the sequence {un} has finite limit and vn → +∞
as n → ∞. From un+ = (bu

n)/(A + v
n) we obtain that un →  as n → ∞. This implies

Tn(x, y) → (,∞) as n → ∞. If (x, y) ∈W+ ∩R, the proof is similar and we skip it.
Another way of completing the proof is by using () of Lemma . �

Theorem  Assume that � > . If

a ≤ Ac

or

a > Ac and 	(ȳ) >  and T has no minimal period-two solution,

then system () has one equilibrium solution E(x̄, ȳ), which is a saddle point. There exists the
global stable manifoldW s(E) which is the graph of a continuous increasing function and the
global unstable manifold Wu(E), which is the graph of a continuous decreasing function.
Every solution {(xn, yn)} which starts below W s(E) in the south-east ordering is asymptotic
to (,∞), and every solution {(xn, yn)} which starts above W s(E) in the south-east ordering
is asymptotic to (∞, ). The first quadrant of initial condition Q = {(x, y) : x > , y ≥ }
is the union of three disjoint basins of attraction, Q = B(,∞) ∪ B(∞, ) ∪ B(E), where
B(E) = W s(E) and

B(,∞) =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E)
}

;

B(∞, ) =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E)
}

.
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Figure 1 (a) Visual illustration of Theorem 17. (b) Visual illustration of Theorem 18.

Proof The conditions of this theorem and a �= Ac imply all assumptions of Theorems ,
 and  for R. The proof of this theorem in this case is similar to the proof of Theorem 
and will be skipped.

Now, we assume that a = Ac. In view of Lemma , the set

I =
{(

x,
√

bx – Ax̄
x̄

)
: x ≥

√
Ax̄
b

}

is invariant and contains equilibrium E, and T(x, y) = E for (x, y) ∈ I . In view of the unique-
ness of the global stable manifold, we conclude that W s(E) = I . Let

W– =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E)
}

;

W+ =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E)
}

.

Take any point (x, y) ∈ W+(E). Then there exists the point (xl, yl) ∈ I such that
(xl, yl) �se (x, y). Since the map T is strongly competitive, then E = T(xl, yl) �se T(x, y).
This implies T(x, y) ∈ int(Q(E) ∩ R). If (x, y) ∈ W–(E), then there exists the point
(xr , yr) ∈ I such that (x, y) �se (xr , yr). Since the map T is strongly competitive, then
T(x, y) �se E = T(xr , yr). This implies T(x, y) ∈ int(Q(E) ∩ R). Similarly as in Theo-
rem , one can prove that Tn(x, y) → (,∞) as n → ∞ if (x, y) ∈ int(Q(E) ∩R) and
Tn(x, y) → (∞, ) as n → ∞ if (x, y) ∈ int(Q(E) ∩R), from which the proof follows in
this case. �

See Figure  for visual illustration of Theorems  and .

Theorem  If a > Ac and 	(ȳ) < , then there exists one equilibrium point E which is a
repeller. If D(p) �= , then int(Q(E))∪ int(Q(E)) contains an odd number of minimal period-
two solutions {(
i,�i), (
̃i, �̃i)}, i = , . . . , n + , such that (
i+,�i+) �ne (
i,�i) �ne E
and E �ne (
̃i, �̃i) �ne (
̃i+, �̃i+) and (
̃i, �̃i) = T(
i,�i). Furthermore, the odd indexed
period-two points are saddles and the even indexed period-two points are repellers. The

http://www.advancesindifferenceequations.com/content/2014/1/301


Hadžiabdić et al. Advances in Difference Equations 2014, 2014:301 Page 24 of 32
http://www.advancesindifferenceequations.com/content/2014/1/301

global stable manifolds are given by

W s({(
k+,�k+), (
̃k+, �̃k+)
})

= W s(
k+,�k+) ∪W s(
̃k+, �̃k+),

k = , . . . , n,

where W s(
k+,�k+) and W s(
̃k+, �̃k+) are the graphs of a continuous strictly in-
creasing function such that W s(
̃k+, �̃k+) = T(W s(
k+,�k+)) with endpoints at
(
̃k , �̃k), (
̃k+, �̃k+) and (
k+,�k+), (
k ,�k), k = , . . . , n – , respectively, where
(
̃, �̃) = (
,�) = E. The curve

C =
n⋃

k=

(
W s(
k+,�k+) ∪W s(
̃k+, �̃k+) ∪ {

(
k ,�k), (
̃k , �̃k)
})

separates R into two components W– and W+, which are basins of attraction of (,∞) and
(∞, ), respectively, where

W– =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈ C
}

;

W+ =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈ C
}

.

Further, for k = , . . . , n, we have

B
({

(
k+,�k+), (
̃k+, �̃k+)
})

= W s(
k+,�k+) ∪W s(
̃k+, �̃k+);

B
({

(
k ,�k), (
̃k , �̃k)
})

=
{

(
k ,�k), (
̃k , �̃k)
}

.

The global unstable manifolds are given by

Wu({(
k+,�k+), (
̃k+, �̃k+)
})

= Wu(
k+,�k+) ∪Wu(
̃k+, �̃k+),

k = , . . . , n,

whereWu(
k+,�k+) andWu(
̃k+, �̃k+) are the graphs of continuous strictly decreas-
ing functions such that Wu(
̃k+, �̃k+) = T(Wu(
k+,�k+)) with endpoints at (,∞)
and (∞, ).

Proof In view of Corollary , the set int(Q(E)) ∪ int(Q(E)) contains an odd number of
minimal period-two solutions {(
i,�i), (
̃i, �̃i)}, i = , . . . , n+, such that (
i+,�i+) �ne

(
i,�i) �ne E and E �ne (
̃i, �̃i) �ne (
̃i+, �̃i+) and (
̃i, �̃i) = T(
i,�i). Furthermore,
the odd indexed period-two points are saddles and the even indexed period-two points
are repellers. The map T satisfies all conditions of Theorems ,  and , which yields the
existence of the global stable and unstable manifolds with the above properties. In view of
Theorem , for (x, y) ∈W– ∩R, there exists n >  such that

Tn(x, y) ∈
n⋃

k=

(
int

(
Q(
k+,�k+)

) ∪ int
(
Q(
̃k+, �̃k+)

)) ∩R, n > n,
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Figure 2 Visual illustration of Theorem 19.

and for (x, y) ∈W+ ∩R, there exists n >  such that

Tn(x, y) ∈
n⋃

k=

(
int

(
Q(
k+,�k+)

) ∪ int
(
Q(
̃k+, �̃k+)

)) ∩R, n > n.

Similarly as in the proof of Theorem , one can prove that

n⋃
k=

(
int

(
Q(
k+,�k+)

) ∪ int
(
Q(
̃k+, �̃k+)

)) ∩R⊂ B(,∞)

and

n⋃
k=

(
int

(
Q(
k+,�k+)

) ∪ int
(
Q(
̃k+, �̃k+)

)) ∩R⊂ B(∞, ),

which completes the proof. �

See Figure  for visual illustration of Theorem .

5.2 The case where at least one of the equilibrium points is non-hyperbolic and
all minimal period-two solutions are hyperbolic (�1 = 0 and D(p) �= 0)

Theorem  Assume that � = , � �= . Then there exist two equilibrium points
E(x̄, ȳ) and E(x̄, ȳ) such that E �ne E, and the following hold:

(a) If E is non-hyperbolic, then there exist two invariant curves C+
 and C+

 that are con-
tained in Q(E) with endpoint in ∂Q(E), which are the graphs of continuous strictly in-
creasing functions. Further, there exists the global stable manifold W s(E) with endpoint
at E, which is a graph of a continuous increasing function and the global unstable mani-
fold Wu(E), which is a graph of a continuous decreasing function. Every solution {(xn, yn)}
which starts below W s(E) ∪ C+

 in the south-east ordering is asymptotic to (,∞), and ev-
ery solution {(xn, yn)} which starts above W s(E) ∪ C+

 in the south-east ordering is asymp-
totic to (∞, ). The first quadrant of initial condition Q = {(x, y) : x > , y ≥ } is the
union of four disjoint basins of attraction, Q = B(,∞) ∪ B(∞, ) ∪ B(E) ∪ B(E), where
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B(E) = W s(E) and

B(E) =
{

(x, y) ∈R : (x̃, ỹ) 	se (x, y) 	se (x̃, ỹ)

for some (x̃, ỹ) ∈ C+
 and (x̃, ỹ) ∈ C+


}

,

B(,∞) =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E) ∪ C+

}

,

B(∞, ) =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E) ∪ C+

}

.

(b) If E is non-hyperbolic, then there exist two invariant curves C–
 and C–

 that are con-
tained in Q(E) with endpoint in ∂Q(E), which are the graphs of continuous strictly in-
creasing functions. Further, there exists the global stable manifold W s(E) with endpoint
at E, which is a graph of a continuous increasing function, and the global unstable mani-
fold Wu(E), which is a graph of a continuous decreasing function. Every solution {(xn, yn)}
which starts below W s(E) ∪ C–

 in the south-east ordering is asymptotic to (,∞), and ev-
ery solution {(xn, yn)} which starts above W s(E) ∪ C–

 in the south-east ordering is asymp-
totic to (∞, ). The first quadrant of initial condition Q = {(x, y) : x > , y ≥ } is the
union of four disjoint basins of attraction, Q = B(,∞) ∪ B(∞, ) ∪ B(E) ∪ B(E), where
B(E) = W s(E) and

B(E) =
{

(x, y) ∈R : (x̃, ỹ) 	se (x, y) 	se (x̃, ỹ)

for some (x̃, ỹ) ∈ C–
 and (x̃, ỹ) ∈ C–


}

,

B(,∞) =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E) ∪ C–

}

,

B(∞, ) =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E) ∪ C–

}

.

Proof We will prove statement (a). The proof of statement (b) is similar. By Theorem 
we have that T has two equilibrium points E and E such that E �ne E. Then either E

is non-hyperbolic and E is a saddle point or E is non-hyperbolic and E is a saddle point.
Assume that E is non-hyperbolic. From Descartes’ rule of signs applied to () we have
that a < Ac. Lemma  implies that Tn(x, y) is asymptotic to either (,∞) or (∞, ) or
to an equilibrium point for all (x, y) ∈R. Let B(,∞) be the basin of attraction of (,∞),
and let B(∞, ) be the basin of attraction of (∞, ). By using Theorem  one can prove that
int(Q(E)) ⊂ B(,∞) and int(Q(E)) ⊂ B(∞, ). Let C+

 denote the boundary of B(,∞)
considered as a subset of Q(E) and C+

 denote the boundary of B(∞, ) considered as a
subset of Q(E). It is easy to see that E ∈ C+

 and E ∈ C+
 . Now Theorems ,  and  yield the

existence of the global stable manifold W s(E) and the global unstable manifold Wu(E),
where W s(E) has an endpoint at E and it is a graph of an increasing function. Similarly
as in the proof of Theorem , one can see that

W– =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈W s(E)
} ⊂ B(,∞),

W+ =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈W s(E)
} ⊂ B(∞, ),

and B(E) = W s(E).

Similarly as in Claim , one can prove the following claim.
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Claim  Let C+
 and C+

 be the sets defined as above. Then we have the following:
(a) If (x, y) ∈ B(∞, ), then (x, y) ∈ B(∞, ) for all (x, y) 	se (x, y);
(b) If (x, y) ∈ B(,∞), then (x, y) ∈ B(,∞) for all (x, y) 	se (x, y);
(c) If (x, y) ∈ C+

 , then (x, y) ∈ int(B(,∞)) for all (x, y) �se (x, y) and
(x, y) /∈ B(,∞) for all (x, y) �se (x, y);

(d) If (x, y) ∈ C+
 , then (x, y) ∈ int(B(∞, )) for all (x, y) �se (x, y) and

(x, y) /∈ B(∞, ) for all (x, y) �se (x, y);
(e) C+

 ∩ int(Q(E)) �=  and C+
 ∩ int(Q(E)) �= ;

(f ) T(C+
 ) ⊆ C+

 and T(C+
 ) ⊆ C+

 ;
(g) (x, y), (x, y) ∈ C+

 ⇒ (x, y) �ne (x, y) or (x, y) �ne (x, y);
(h) (x, y), (x, y) ∈ C+

 ⇒ (x, y) �ne (x, y) or (x, y) �ne (x, y).

Proof We prove statement (f ). Since W s(E) ∪ C+
 is the boundary of B(,∞) similar as in

the proof of statement (d) of Claim , we have that T(W s(E) ∪ C+
 ) ⊆ W s(E) ∪ C+

 . Take
(x, y) ∈ C+

 \ E. If T(x, y) ∈ W s(E), then Tn(x, y) → E as n → ∞, which is in con-
tradiction with B(E) = W s(E) and B(E) ∩C+

 = {E}. Hence, T(x, y) ∈ C+
 which implies

that T(C+
 ) ⊆ C+

 . The corresponding assertion for C+
 is proved in a similar fashion. �

Now, we prove that C+
 and C+

 are the graphs of continuous strictly increasing functions.
Let J be the projection of C+

 onto the first coordinate. From (g), no two distinct elements of
C+

 can be weakly related nor can they have the same projection onto the first coordinate.
Further, J contains [x, x] whenever x ≤ x belong to J . Indeed, if x ≤ x belong to J , then
there exist y and y such that (x, y), (x, y) ∈ C+

 . From (c), we have that int(Q(x, y)) ⊂
int(B(,∞)) and int(Q(x, y)) ⊂ int(B(∞, )). By using this it is easy to see that (x, ŷ) ∈ C+



if and only if ŷ = inf{y : y ∈ [y, y] and (x, y) ∈ int(B(,∞))}, where x ∈ [x, x]. This implies
that J contains [x, x]. By (e), C+

 ∩ int(Q(E)) �= . From this it follows that J is an interval
such that int(J) �= ∅ and C+

 is a connected set. Since points on C+
 are non-comparable, C+



is the graph of a strictly increasing function f (x) of x ∈ J . If there is a jump discontinuity at
x ∈ J , let y– and y+ respectively be the left and right (distinct) limits of f (x) as x approaches
x, respectively. The points (x, y–) and (x, y+) are comparable in 	se-ordering, which is
in contradiction with (g). Thus f (x) is a continuous function. Since T has no equilibrium
points in Q(E), similarly as in the proof of Theorem  [], one can prove that C+

 has its
endpoints in ∂Q(E). The proof that considers C+

 is similar and will be skipped.
Take (x, y) ∈ C+

 and (x, y) ∈ C+
 . Since E is the only equilibrium point in Q(E) and

(,∞), (∞, ) /∈ Q(E) we have that Tn(x, y) and Tn(x, y) converge to E as n → ∞. If
(x̃, ỹ) 	se (x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈ C+

 and (x̃, ỹ) ∈ C+
 , since T is competitive,

we get Tn(x̃, ỹ) 	se Tn(x, y) 	se Tn(x̃, ỹ), which implies Tn(x, y) → E as n → ∞. �
Based on a series of numerical simulations, we propose the following conjecture.
See Figure  for visual illustration of Theorem .

Conjecture  Suppose that all assumptions of Theorem  are satisfied, then the following
hold:

(a) B(E) = C+
 = C+

 ;
(b) B(E) = C–

 = C–
 .

Theorem  Assume that � = , � =  and a < Ac. Then there exist the unique non-
hyperbolic equilibrium point E(x̄, ȳ) and two invariant curves C– and C+ with endpoint in

http://www.advancesindifferenceequations.com/content/2014/1/301


Hadžiabdić et al. Advances in Difference Equations 2014, 2014:301 Page 28 of 32
http://www.advancesindifferenceequations.com/content/2014/1/301

Figure 3 Visual illustration of statements (a) and (b) of Theorem 20.

Figure 4 Visual illustration of Theorem 21.

∂R, which are the graphs of continuous strictly increasing functions. Every solution {(xn, yn)}
which starts below C in the south-east ordering is asymptotic to (,∞) and every solution
{(xn, yn)} which starts above C in the south-east ordering is asymptotic to (∞, ). The first
quadrant of initial condition Q = {(x, y) : x > , y ≥ } is the union of three disjoint
basins of attraction, Q = B(,∞) ∪B(∞, ) ∪B(E), where

B(E) =
{

(x, y) ∈R : (x̃, ỹ) 	se (x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈ C and (x̃, ỹ) ∈ C
}

;

B(,∞) =
{

(x, y)|(x, y) 	se (x̃, ỹ) for some (x̃, ỹ) ∈ C
}

;

B(∞, ) =
{

(x, y)|(x̃, ỹ) 	se (x, y) for some (x̃, ỹ) ∈ C
}

.

Proof The proof is similar to the proof of Theorem  and will be skipped. �

Based on a series of numerical simulations, we propose the following conjecture.
See Figure  for visual illustration of Theorem .
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Conjecture  Suppose that all assumptions of Theorem  are satisfied, then the following
holds:

B(E) = C = C.

Appendix: Values of coefficients pi for i = 0, . . . , 22
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