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[tex14] Entropy and internal energy of the classical ideal gas

The classical ideal gas for a fixed number N of particles is specified by the equation of state
pV = NkBT and the constant heat capacity CV = αNkB [α = 3

2 (monatomic), α = 5
2 (diatomic),

α = 3 (polyatomic)].
(a) Use this information to calculate the internal energy U(T, V ) and show that the result is, in
fact, independent of V . Use the same information to calculate the entropy S(T, V ). Introduce
reference values T0, V0, U0, S0 for the integrations.
(b) Determine the mechanical response functions αp (thermal expansivity), κT (isothermal com-
pressibility), and κS (adiabatic compressibility).

Solution:



[tex15] Thermodynamic potentials of the classical ideal gas

The classical ideal gas for a fixed number N of particles is specified by the equation of state
pV = NkBT and the constant heat capacity CV = αNkB [α = 3

2 (monatomic), α = 5
2 (diatomic),

α = 3 (polyatomic)]. From the functions U(T ) and S(T, V ) determined in [tex14] calculate the
thermodynamic potentials U(S, V ) (internal energy), E(S, p) (enthalpy), A(T, V ) (Helmholtz po-
tential) and G(T, p) (Gibbs potential). Use the reference values T0, V0, U0, S0 from [tex14].

Solution:



[tex17] Chemical potential of the classical ideal gas

Calculate the chemical potential µ(T, p) of the classical ideal gas by integrating the Gibbs-Duhem
equation, SdT −V dp+Ndµ = 0, with V (T, p) from the equation of state and S(T, p) from [tex14].
Compare the result with the Gibbs free energy per particle, G/N = µ, calculated in [tex15].

Solution:



[tex35] Ideal gas heat capacity by design

Consider 1mol of a classical ideal gas [pV = RT, CV = 3
2R].

(a) If CX is the heat capacity of a reversible process in which the thermodynamic variable X is
kept constant, show that this process is described by a curve pV f = const in the (p, V )-plane with
f = (Cp − CX)/(CX − CV ).
(b) Discuss the result for three special cases: X = p, X = V, X = S.

Solution:



[tex18] Sound velocity in the classical ideal gas I

In a sound wave the classical ideal gas [pV = nRT , CV = αnR = const, molar mass M ] is
adiabatically compressed and expanded.
(a) Show that the sound velocity is related to the adiabatic compressibility κS and the mass density
ρ as follows:

c2 =
1
ρκS

=
(
∂p

∂ρ

)
S

.

(b) Use thermodynamic properties of the classical ideal gas to infer from this expression the result
c2 = γRT/M , where γ = 1 + 1/α.

Solution:



[tex99] Sound velocity in the classical ideal gas II

Show that the internal energy per unit mass and the enthalpy per unit mass of a classical ideal
gas with heat capacity CV = const can be expressed as follows in terms of the sound velocity
c =

√
(∂p/∂ρ)S and the ratio of heat capacities γ = Cp/CV :

Ū = Ū0 +
c2

γ(γ − 1)
, Ē = Ū0 +

c2

γ − 1
,

where Ū0 is a constant.

Solution:



[tex134] Absolute temperature from measurements

Consider a compressible fluid in an insulating cylinder with a movable piston, a calibrated heat
source, a pressure gauge, and a thermometer with arbitrary temperature scale θ. The experiment
consists of measurements over a range of θ of the following quantities:

• rate A(θ) = (δV/δθ)p at which volume increases during isobaric heating up,
• rate B(θ) = (δQ/δp)θ at which heat is supplied during isothermal decompression.

Show that from the data of these two experiments we can infer the following differential relation
between the thermometer reading θ and the absolute temperature T :

d lnT
dθ

= −A(θ)
B(θ)

.

The (undetermined) integration constant of lnT (θ) can be used to fix the scale of the absolute
temperature (e.g. by using the triple point of H2O).

Solution:



[tex138] Polytropic process of classical ideal gas

Consider an ideal monatomic gas [pV = NkBT, CV = 3
2NkB ] confined to a cylinder by a movable

piston. The gas is compressed from volume V1 to volume V2 < V1 under circumstances such
that the relation pV x = a with a = const is satisfied. In this polytropic process, determine the
quantities ∆W (work done on the system), ∆U (change in internal energy), and ∆Q (heat added
to the system) as functions of V1 and V2. Determine for which values of x (0 < x < 2) each of
these quantities is positive or negative.

Solution:



[tex141] Heavy piston

A cylinder of cross section A with insulating walls has two compartments separated by a disk of
mass m. The axis of the cylinder is vertical. A uniform gravitational field g is present. The disk is
initially held at a fixed position by an external agent. The upper compartment is evacuated and
the lower compartment contains 1 mol of a monatomic, classical, ideal gas [pV = RT , CV = 3

2R]
at temperature T0, volume V0, and pressure p0. When the disk is released, it moves without (wall)
friction and comes to rest at a lower position. Calculate the final values p1, V1, T1 of pressure,
volume, and temperature, respectively. The disk does not exchange heat. The only significant
action of the gravitational field is on the disk.

Hint: Use energy conservation and Newton’s third law. Assume thermal equilibrium for the inital
and final states.

m

p = 0

A

gp
0 V

0

T
0

Solution:



[tex150] Isothermal atmosphere

Consider a column of air [molar mass M = 29g] treated as a classical ideal gas [pV = nRT ] in a
uniform gravitational field g = 9.81m/s2. The column is assumed to be in thermal equilibrium.
(a) Calculate the dependence of pressure p on height z and (unifom) temperature T , assuming
that the pressure is p0 at z = 0.
(b) At what height z1 (in meters) has the pressure fallen to half of p0 and at what height z2 to one
percent of p0 if the temperature is 20◦C everywhere?
Hint: Start from the relation, dp(z) = −ρ(z)dU(z), between pressure p, mass density ρ, and
gravitational potential U at height z. This relation expresses the increment of pressure caused by
the weight of a thin layer of air. The ideal-gas equation of state is assumed to hold locally at all
heights.

Solution:



[tex151] Adiabatic atmosphere

Consider a column of air [molar mass M = 29g] treated as a classical ideal gas [pV = nRT ,
Cp/CV = γ = 1.41] in a uniform gravitational field g = 9.81m/s2. The column is assumed to be
in mechanical equilibrium but not (yet) in thermal equilibrium. The mechanical equilibrium is
established by gravitational pressure and governed by the adiabatic relation pV γ =const.
(a) Calculate the dependence on height z of the pressure p, the mass density ρ, and the temperature
T , assuming that p = p0 and T = T0 at z = 0.
(b) Find the height zm, expressed as a function of T0, at which T , p, and ρ all reach zero. What
is that height (in meters) if T0 is room temperature?
Hints: (i) Infer from pV γ =const the differential relation dT/T = [(γ − 1)/γ]dp/p. (ii) Use
the relation dp(z) = −ρ(z)dU(z) from [tex150] linking pressure, mass density, and gravitational
potential to infer differential equations for T (z) and p(z).

Solution:



[tex152] Homogeneous atmosphere

Meteorological modeling uses the concept of homogeneous atmosphere with constant density over
some vertical distance. Consider a column of air [molar mass M = 29g] treated as a classical ideal
gas [pV = nRT ] in a uniform gravitational field g = 9.81m/s2. The column is assumed to have
constant mass density ρ(z) = ρ0 = const.
(a) Calculate the dependence on height z of the pressure p and the temperature T , assuming that
p = p0 and T = T0 at z = 0.
(b) Find the height zh, expressed as a function of T0, at which T and p both reach zero.
(c) What must be the temperature (in ◦C) at sea level so that the homogeneous atmosphere just
reaches the tip of Mount Everest?
Hints can be gleaned from [tex150] and [tex151].

Solution:



Van der Waals equation of state [tln22]

Atoms of gases interact via short-range force. The ideal gas equation of state,
pV = nRT , neglects the interaction completely. The van-der Waals equation
of state takes it into account summarily:

(
p +

an2

V 2

)
(V − nb) = nRT,

where a, b are empirical parameters.

• nb: excluded volume due to the repulsive core of the interaction at
short distances,

• −an2/V 2: pressure correction due to the attractive tail of the interac-
tion at long distances.

Van der Waals

attractive tail

repulsive core excludedvolume

infinite−range
attraction

approximation

(r) (r)

r r

φ φ



Cooling of gases [tln23]

During expansion, a gas does work against attractive intermolecular forces.
In the process, the average potential energy increases and, by virtue of en-
ergy conservation, the average kinetic energy decreases. The result is a drop
in temperature. We discuss two processes to illustrate this effect.

Joule effect: free expansion

Free expansion involves no heat transfer and no work performance:
∆Q = 0, ∆U = 0,.

Initial state: Vi, pi, Ti; final state: Vf , pf , Tf with pf < pi.

The temperature change in the expanding gas is calculated for a quasi-static
process between the same equilibrium states.

Use

(
∂U

∂T

)
V

= CV ,

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p = T

(
∂p

∂T

)
V

− p

Joule coefficient:

(
∂T

∂V

)
U

= −(∂U/∂V )T

(∂U/∂T )V

=
1

CV

[
p− T

(
∂p

∂T

)
V

]
.

Ideal gas: T

(
∂p

∂T

)
V

= p ⇒ no effect.

Joule-Thomson effect: throttling

The gas is forced through a porous wall between two chambers. During
the process the pressure is constant in both chambers. In the following we
consider quasi-static throttling.

Initial state: Vi, pi, Ti; final state: Vf , pf , Tf with pf < pi.

∆Q = 0, ∆U = ∆W = −
∫ Vf

0

pfdV −
∫ 0

Vi

pidV = −pfVf + piVi.

⇒ Ui + piVi = Uf + pfVf = const. ⇒ E = const. ⇒ dE = TdS + V dp = 0.

Use

(
∂E

∂T

)
p

= Cp,

(
∂E

∂p

)
T

= T

(
∂S

∂p

)
T

+ V = −T

(
∂V

∂T

)
p

+ V .

Joule-Thomson coefficient:

(
∂T

∂p

)
E

= − (∂E/∂p)T

(∂E/∂T )p

=
1

Cp

[
T

(
∂V

∂T

)
p

− V

]
.

Ideal gas: T

(
∂V

∂T

)
V

= V ⇒ no effect.



Joule−Thomson inversion curves [tsl1]

• Hydrogen gas: experimental data.

• Van der Waals gas:

(
p +

an2

V 2

)
(V − nb) = nRT.

• Dieterici gas: p =
nRT

V − nb
exp

(
− an

RTV

)
.

[from Kubo: Thermodynamics]



[tex27] Heat capacities of the van der Waals gas

Consider the van der Waals equation of state for n = 1mol of a gas:(
p +

a

V 2

)
(V − b) = RT.

(a) Show that the heat capacity CV may depend on T but is independent of V .
(b) Calculate the quantity Cp − CV as a function of p and V . Verify that Cp − CV → R in the
ideal gas limit.

Solution:



[tex38] Internal energy and entropy of van der Waals gas

Calculate the internal energy U(T, V ) and the entropy S(T, V ) of the van der Waals gas, specified
by the equation of state (

p+
aN2

V 2

)
(V −Nb) = NkBT

and the specific heat CV = αNkB .

Solution:



[tex31] Joule coefficient of van der Waals gas

The cooling of a gas via free expansion is described by the Joule coefficient(
∂T

∂V

)
U

=
1
CV

[
p− T

(
∂p

∂T

)
V

]
.

(i) Determine the Joule coefficient for 1 mol of the ideal gas [pV = RT,CV = αR] and for 1mol of
the van der Waals gas [(p+ a/V 2)(V − b) = RT,CV = αR].
(ii) Calculate the temperature change Tf −Ti when the van der Waals gas is freely expanded from
Vi to Vf > Vi.

Solution:



[tex32] Joule−Thomson coefficient of van der Waals gas

The cooling of a gas via throttling is described by the Joule-Thomson coefficient(
∂T

∂p

)
E

=
1
Cp

[
T

(
∂V

∂T

)
p

− V

]
.

(i) Determine the Joule-Thomson coefficient for 1 mol of the van der Waals gas [(p+a/V 2)(V −b) =
RT,CV = αR].
(ii) Throttling results in cooling only if (∂T/∂p)E > 0. In the (T, p)-plane, this region is bounded
by the inversion curve, which is determined by the condition (∂T/∂p)E = 0. Calculate the inversion
condition p∗(T ) for the van der Waals gas.
(iii) Throttling is most efficient for cooling if it starts at the highest possible pressure. Find the
temperature at which the inversion curve has a maximum.

Solution:



[tex29] Assembling thermodynamic information

The following thermodynamic information is known about n = 1mol of a system:

• At constant temperature T0, the work done on the system when it is compressed from V0 to
V is ∆W0 = −RT0 ln(V/V0).

• The entropy is S(T, V ) = R(V0/V )(T/T0)a, where V0, T0, a are constants.

Use this information to determine (i) the Helmholtz free energy A(T, V ), (ii) the equation of state
f(p, V, T ) = 0, and (iii) the work of compression ∆W done at an arbitrary temperature T .

Solution:



[tex11] How not to modify the ideal gas equation of state

Suppose we know empirically that for a real system with fixed n, the product of the pressure p and
the volume V is a function of the temperature alone, pV = f(T ), and that the internal energy is
also a function of the temperature alone, U = U(T ). These properties are realized in the classical
ideal gas, where f(T ) = nRT and U(T ) = CV T with CV = αnR = const. Show that the only
function f(T ) in the equation of state of the above form which is compatible with U = U(T ), i.e.
with (∂U/∂V )T = 0 is linear in T with zero intercept: f(T ) = rT with r = const.

Solution:



[tex42] Reconstructing the equation of state of a fluid system

A fluid system is found to have a thermal expansivity αp = (nR/pV ) + (na/RT 2V ) and an
isothermal compressibility κT = (n/V )[Tf(p) + b/p], where a, b are constants and f(p) is an
unknown function.
(a) Find the function f(p) which makes the two response functions thermodynamically consistent.
(b) Reconstruct the equation of state V = V (T, p) from the two response functions.

Solution:



[tex43] Reconstructing the equation of state of a gas

It is found for a gas that αp = RV/np+ aV/nT 2 and κT = T (V/n)f(p), where a is a constant and
f(p) is an unknown function.
(a) Find the function f(p) which makes the two response functions thermodynamically consistent.
(b) Reconstruct the equation of state g(V, T, p) = 0 from the two response functions.

Solution:



[tex33] Effects of first virial correction on ideal gas properties

The ideal gas equation of state supplemented by the first virial correction reads p = (nRT/V )[1 +
(n/V )B(T )]. The associated heat capacity at constant volume can be written in the form CV =
3
2nR−(n2R/V )F (T ), where F (T ) and B(T ) are related by thermodynamic consistency conditions.
(a) Express F (T ) as a function of B(T ).
(b) Find the function U(T, V ) (internal energy) and S(T, V ) (entropy) for this system.
(c) Find the first virial correction B(T ) for the van der Waals gas, [p + a(n/V )2](V − nb) = nRT ,
and calculate the associated virial correction F (T ) to the heat capacity CV .

Solution:



Entropy due to electronic spins
in iron ammonium alum [tsl2]

Dependence of entropy on temperature and magnetic field for paramagnet.

(a) Carnot cycle operating on this system.

(b) Cooling of this system via adiabatic demagnetization.



Adiabatic demagnetization [tln24]

Equation of state for paramagnetic salt in a
weak magnetic field: M(T, H) = χT (T )H .

Helmholtz free energy:

dA = −SdT + HdM,

(

∂A

∂M

)

T

= H =
M

χT

⇒ A(T, M) = A(T, 0) +
M2

2χT

.

S

T
T T2 1

2

1
H = 0

H = H1

Entropy: S(T, M) = −

(

∂A

∂T

)

M

= S(T, 0) −
1

2
M2

[

d

dT
χ−1

T

]

⇒ S(T, H) = S(T, 0) +
1

2
H2

dχT

dT
; χT > 0,

dχT

dT
< 0 for paramagnet.

Third law: lim
T→0

S(T, H) = 0 independent of H ⇒ lim
T→0

dχT

dT
= 0.

1. Isothermal magnetization: ∆S =
1

2

dχT

dT
H2

1
< 0.

Heat expelled from system: ∆Q = T1∆S.

2. Adiabatic demagnetization: ∆S = 0 ⇒ S(T1, H1) = S(T2, 0).

⇒ S(T2, 0) = S(T1, 0) +
1

2
H2

1

dχT

dT

∣

∣

∣

∣

T1

⇒ T2 < T1.

Consider the entropy function S(T, H) for iron ammonium alum.

• The sequence of steps 1 and 2 approaches absolute zero. As T →

0, adiabates and isotherms become increasingly parallel, implying a
diminishing efficiency of the cooling process.

• The sequence of steps requires heat reservoirs at various temperatures.
They can be established by employing a Carnot engine consisting of
steps 1 and 2 and their inverses.

• Magnetic refrigerators using paramagnetic salts attain ∼ 0.2K. Adia-
batic demagnetization attains mK temperatures.



[tex19] Thermodynamics of an ideal paramagnet I

For an ideal paramagnet specified by the equation of state M = H/T (Curie law) and internal
energy U = 0, find (a) the entropy S(T,H), (b) the thermodynamic potentials E(S,H), A(T,M),
G(T,H), and (c) the response functions CM , CH , χT , χS , αH .

Solution:



[tex20] Thermodynamics of an ideal paramagnet II

For an ideal paramagnet specified by the equation of state M = H/T (Curie law) and heat capacity
CM = const, find (a) the internal energy U(T,H), the entropy S(T,H), and the enthalpy E(T,H);
(b) the thermodynamic potentials A(T,M), G(T,H); (c) the response functions χT , χS , αH , CH .

Solution:



[tex21] Thermodynamics of an ideal paramagnet III

For an ideal Langevin paramagnet, which is specified by the equation of state M = tanh(H/T )
(Langevin function) and the internal energy U ≡ 0, find (a) the entropy S(T,H) and the enthalpy
E(T,H); (b) the thermodynamic potentials A(T,M), G(T,H); (c) the response functions χT , χS ,
αH , CH . Determine the integration constant S0 in S(T,H) such that S → 0 for T → 0 and H 6= 0
in accordance with the third law of thermodynamics.

Solution:



[tex36] Thermodynamics of a real paramagnet

The magnetization M of a paramagnetic system was measured over a certain temperature range,
and it was found to depend only on the ratio H/T : M = f(H/T ).
(a) Show that the internal energy is then independent of H: U = U(T ).
(b) Show that the entropy then has the following functional form:

S(T, H) = S1(T )− H

T
f

(
H

T

)
+
∫ H/T

0

dx f(x), where S1(T ) = S0 +
∫ T

T0

dT ′ U
′(T ′)
T ′ .

Solution:



[tex22] Thermodynamics of a classical ideal paramagnetic gas I

Consider 1mol of a paramagnetic gas, specified by the equations of state pV = RT (classical ideal
gas) and M = H/T (Curie paramagnet), and by a constant heat capacity CV M = 3

2R.
(a) Calculate the internal energy U(T, V, M) by integration of the differential dU = TdS − pdV +
HdM . Show that U only depends on T . (b) Calculate the entropy S(T, V,M) by integration of
the differential dS = (1/T )dU + (p/T )dV − (H/T )dM . (c) Calculate the Helmholtz potentials
AM (T, V,M) .= U − TS and AH(T, V,H) .= U − TS −MH. (d) Calculate the Gibbs potentials
GM (T, p, M) .= U − TS + pV and GH(T, p, H) .= U − TS + pV −MH.

Solution:



[tex133] Thermodynamics of a classical ideal paramagnetic gas II

Consider the fixed amount n = 1mol of a paramagnetic gas, specified by the equations of state
pV = RT , M = H/T , and by the heat capacity CV M = 3R/2.
(a) Characterize a general adiabatic process by a functional relation of the form f(T, p, H) = const.
Start from the function S(T, V,M) derived in [tex22].
(b) Show that the heat transfer is path-independent for isothermal processes. Derive an expression
for the heat transfer ∆QT of a general isothermal process between (p0, H0) and p1, H1.
(c) Show that the heat transfer for isobaric processes does depend on the path taken. Derive an
expression for the heat transfer ∆Qp of the isobaric process (T0, H0) → (T0, H1) → (T1, H1) →
(T1, H0)→ (T0, H0) along straight segments in the (T, H)-plane.
(d) Consider a process (T, P0, H0) → (T, P1, P1) with p0 > p1 that is both isothermal (no change
in energy) and adiabatic (no heat transfer). In this process mechanical work ∆Wp(T, p0, p1) done
by the system is matched by the same amount of magnetic work ∆WH(T, H0, H1) done on the
system. Find ∆Wp(T, p0, p1) and ∆Wp(T, p0, p1).

Solution:



[tex132] Hydrostatic pressure

The chemical potential in a homogeneous fluid is a function µ = µ0(p, T ) such as calculated in
[tex17] for the classical ideal gas. What remains uniform throughout the fluid in the presence of a
uniform gravitational field is the potential

µ = µ0(p, T ) +mgz = const.,

where m is the mass of the fluid particle, g is the acceleration due to gravity, and the z-direction
is against the field. For a fluid of negligible compressibility derive from the condition dµ/dz = 0
the familiar result for the hydrostatic pressure,

p(z) = p0 − ρgz,

where ρ = Nm/V is the (average) mass density of the fluid.

Solution:



[tex39] Rubber band heat engine

Consider a heat engine that uses a rubber band in the three-step cycle shown. The equation of

state J = αLT with α = const relates the tension J in the band to the length L of the band and

to the absolute temperature T . The heat capacity of the band at constant length is CL = const.

Calculate the heat transfer ∆Q and the work performance ∆W in each of the three steps in the

cyclic process shown:

1→ 2 relaxation at T = const,

2→ 3 expansion at J = const,

3→ 1 heating up at L = const.

From these results calculate the efficiency η of the rubber band heat engine. Compare η with the

efficiency of a Carnot engine operating between the same temperatures.

J

2J0

0J

L0 2L0
L

2

1

3

Solution:

1



[tex40] Equation of state and adiabate of an elastic band

Experimentally one finds the following response functions of a band of elastic material(
∂J

∂L

)
T

=
aT

L0

[
1 + 2

(
L0

L

)3
]

,

(
∂J

∂T

)
L

=
aL

L0

[
1−

(
L0

L

)3
]

,

where J is the tension, L is the length, T is the temperature, and a, L0 are constants. The heat
capacity at constant length is CL = const.
(a) Use this empirical information to reconstruct the equation of state J(T, L).
(b) Calculate the response function (∂L/∂T )J and discuss its physical meaning.
(c) If the band is stretched adiabatically from length L0 at temperature T0 to length 2L0, what is
the final temperature?

Solution:



[tex28] Determining CV of condensed matter

The direct measurement of the heat capacity at constant volume CV for condensed matter is very
difficult. Therefore, express CV in terms of the following quantities, all of which are experimentally
more accessible: the heat capacity at constant pressure Cp, the isothermal compressibility κT , the
mass density ρ, and the sound velocity c =

√
(∂p/∂ρ)S .

Solution:



[tex23] Thermodynamics of black-body radiation

Electromagnetic radiation inside a cavity is in thermal equilibrium with the walls at temperature
T . The radiation has an energy density that depends only on the temperature, i.e. its internal
energy has the form U(T, V ) = V e(T ). The radiation pressure is determined by the energy density
alone: p = 1

3e(T ). (a) Use the consistency equations for the total differential dS to show that
the energy density has the form e(T ) = σT 4, where σ is a constant, now known as the Stefan-
Boltzmann constant. In this argument, the additional assumption enters that e(T )→ 0 for T → 0.
(b) Determine the entropy S(T, V ) and the thermodynamic potentials U(S, V ), E(S, p), A(T, V ),
G(T, p). (c) Determine the isotherms and adiabates in the (V, p)-plane. (d) Determine the response
functions CV , Cp, κT , κS , αp.

Solution:



[tex24] Carnot cycle of thermal radiation

Describe the four steps of a Carnot engine, where the operating material is black-body radiation.
The internal energy is given by Stefan’s law, U(T, V ) = σT 4V . The equation of state is p = 1

3σT
4.

Determine the work performance ∆W and the heat transfer ∆Q during each of the four steps and
derive the Carnot efficiency from these results. Sketch the cycle in the (V, p)-plane.

Solution:
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