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Novel  Function  of 
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L e w i s  C. Cantleys 
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Hospital and Department of Cell Biology, Harvard 
Medical School, Boston, Massachusetts 02115, and the 

Health Sciences, University of Rho& Island, 
**Department of Pharmacognosy and Environmental 
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The activation of  phospholipase D (PLD) is a  receptor- 
mediated  event  that  has  been  implicated  in  signal  trans- 
duction  and  membrane  traffic in eukaryotic  cells.  Little 
is known about  the  biochemical  and  molecular  proper- 
ties of signal-activated PLDs,  and  none  has  been iso- 
lated. Here  we  report  that  phosphatidylinositol  4,5- 
bisphosphate  (PIP,)  potently  stimulates  brain  mem- 
brane  PLD activity in vitro in  a  highly  specific  manner. 
PIP,  increases  10-fold  the  maximal  activity  of  a  partially 
purified PLD with  an EC, of  c0.5  mol %. Other acidic 
phospholipids,  including  phosphatidylinositol  4-phos- 
phate,  phosphatidylinositol,  phosphatidylserine,  and 
phosphatidic  acid,  are  completely  or  nearly  ineffective. 
Neomycin, a  high  affinity  ligand of  PIP,, inhibits mem- 
brane-bound  PLD  but has  no  effect  on  the  activity of a 
detergent-solubilized or  partially  purified  enzyme.  The 
addition  of  PIP,  restores  the  sensitivity of partially  pu- 
rified PLD to  neomycin  inhibition,  indicating  that  neo- 
mycin  blocks  membrane  PLD activity by  binding  to en- 
dogenous  PIP,.  These  results  define  a  novel  function  of 
PIP, as a  cofactor  for  brain  membrane  PLD  and  suggest 
that  PIP,  synthesis  and  hydrolysis  could  be  important 
determinants in regulating PLD action  in  signal  trans- 
duction  and  membrane  transport. 

Phosphatidylinositol  4,5-bisphosphate (PIP,)’ is a quantita- 
tively  minor,  highly  acidic  phospholipid that serves as a 

* This research was supported in part by Grant GIF 1-165-078  from 
the German-Israeli Foundation (to M. L.) and National Institutes of 
Health Grant GM 36624 (to L.  C. C.). The costs of publication of this 
article were defrayed in part by the payment of page charges. This 
article must therefore be hereby marked “aduertisement” in accordance 
with 18 U.S.C. Section 1734  solely to indicate this fact. 
ll Incumbent of the Shloimo and Mlchla  Tomarin career development 

chair in membrane physiology. 

Research. 
11 Supported by a fellowship  from the  Italian Association  for Cancer 

phate; ARF, ADP-ribosylation factor; C,-NBD-PC, l-palmitoyl-2-[6-N- 
The abbreviations used are: PIP,, phosphatidylinositol 4,5-bisphos- 

(7-nitrobenzo-2-oxa-1,3-diazol-4-yl~aminolcaproyl-phosphatidylcholine; 
GAP, GTPase-activating protein; GTPyS, guanosine 5’-0-(3-thiotri- 
phosphate); PA, phosphatidic acid; PC, phosphatidylcholine; PLD,  phos- 
pholipase D; PPr, phosphatidylpropanol; AMP-PNP, adenosine 5’-0- 

precursor  for three second  messengers:  inositol  1,4,5-trisphos- 
phate (1) and diacylglycerol (2), both  produced  by  phospho- 
inositide-specific  phospholipases C (31, and phosphatidylino- 
sitol3,4,5-trisphosphate, generated  by a phosphoinositide 3-ki- 
nase (4). The  mobilization of these  signaling  pathways  by  cell 
surface  receptors  is  often  accompanied  by  activation of phos- 
pholipase D (PLD). PLD activation has been implicated in a 
novel signal transduction  pathway  employed  by a wide  variety 
of extracellular signal molecules in eukaryotic  cells (5, 6). The 
activation of PLD is regulated  by G protein(s) and protein  ki- 
nase(s).  Recent  results  have  implicated PLD activation  also in 
intracellular  membrane  traffic (7, 8). However,  there is little 
information  on the biochemical and molecular  properties of 
signal-activated PLDs, and, to  date,  none of the mammalian 
PLDs has been  isolated  or  cloned  (reviewed  in Ref. 6). 

We have  previously  shown that neomycin and other ami- 
noglycosides inhibit brain membrane PLD activity, as well as 
GTPyS-induced  activation of PLD in permeabilized  neural  de- 
rived NG108-15 cells (9). Because  neomycin  binds  with  high 
afflnity  to  negatively  charged  phospholipids  such as phospho- 
inositides,  we  suggested that acidic  phospholipids  may  act as 
essential  cofactors  for PLD activity (9). The  evidence  provided 
herein  indicates that PIP, functions as such a cofactor. 

EXPERIMENTAL  PROCEDURES 
Materials-Phosphatidylinositol 4,5-bisphosphate was obtained 

from U. S. Biochemical  Corp. and Sigma.  l-Palmitoyl-2-16-N-(7- 
nitrobenzo-2-oxa-l,3-diazol-4-yl)amino]caproyl-phosphatidylcholine 
(C,-NBD-PC) was from  Avanti Polar Lipids. The  chemical synthesis of 
dipalmitoylphosphatidylinositol3,4,5-trisphosphate will  be described in 
detail elsewhere. Other phospholipids,  sodium oleate, and neomycin 
were  from Sigma. 

Purification and Assay of Rat Brain Membrane PLD-Rat brain 
membranes were prepared and  treated with a high salt concentration 
(to remove peripheral membrane proteins) according to Danin et ai. 
(10). These membranes were then utilized in measurements of mem- 
brane-bound PLD activity and for solubilization and purification of 
PLD.  PLD activity was  solubilized as described  previously (lo), except 
that Triton X-100 (l%, w/v)  was utilized as the solubilizing detergent. 
The solubilized  PLD activity was further purified by chromatography 
on Q-Sepharose, reactive dye-agarose, and hydroxylapatite columns. 
Details of the purification procedure will  be published elsewhere. The 
activity of both  membrane-bound and partially purified PLD was as- 
sayed utilizing C,-NBD-PC as a fluorescent substrate. The basic PLD 
reaction mixture (125 pl) contained 50 mM Na-Hepes, pH  7.2, and C,- 
NBD-PC (0.3 mM). Membrane-bound PLD activity was determined by 
measuring C,-NBD-phosphatidylpropanol (C,-NBD-PPr)  production 
(via trans-phosphatidylation) in the presence of 1-propanol (l%, v/v) as 
substrate, sodium oleate (0.45 mM, -50 mol %) as  an activator, and 12.5 
pg of membrane protein. Partially purified PLD activity was deter- 
mined by measuring either C,-NBD-phosphatidic  acid  (C,-NBD-PA) or  
C,-NBD-PPr  production, in  the presence of Triton X-100 (1 mM) and 2.5 
pg of partially purified PLD.  PIP,, other activators, and neomycin  were 
added to the reaction mixtures as indicated in the figures. Reactions 
were carried out for 10 min at 37  “C. Termination and TLC separation 
of the products were  performed essentially as described (10). The PLD 
products were  visualized on a UV transilluminator, and a video  image 
was captured on a U W  Gel Documentation System. The bands corre- 
sponding to C,-NBD-PA and/or C,-NBD-PPr  were scraped from the 
plates and extracted with methanol. The fluorescence of the methanol 
extracts was determined in  a Hitachi F200 spectrofluorometer (excita- 
tion at 468  nm and emission at 520 nm). Unless otherwise indicated, 
PLD activity is expressed as the amount (in fluorescence units) of C,- 
NBD-PA or  C,-NBD-PPr  produced in 10 min. 

(P,y-imino)triphosphate; AMP-PCP, adenosine 5‘-O-(P,y-methylene)- 
triphosphate. 
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FIG. 1. Effect of PIP, and other acidic phospholipids on brain 

membrane  PLD activity. The  activity of a partially  purified  prepara- 
tion of brain  membrane PLD was  determined  either  in  the  absence of 
added  lipid  or  in the presence of 10 p~ (0.76 mol 5 6 )  of the indicated 
phospholipids. Following incubations,  lipids  were  extracted  and  sepa- 
rated by TLC, and  fluorescent  lipids  were  visualized over a IJV light  and 
photographed ( A ) .  The  bands  corresponding  to C,-NBD-PPr and C,- 
NBD-PA were  scraped,  extracted,  and  quantitated by spectrofluorom- 
etry ( R ) .  PIP, phosphatidylinositol  4-phosphate; PI,  phosphatidylinosi- 
tol; PS, phosphatidylserine; F.U., fluorescence units. 

Protein Assay-Protein was  determined  using  the modified Lowry 
procedure of Markwell et al. (11). 

RESULTS AND DISCUSSION 

Neomycin is  a cationic  aminoglycoside  antibiotic t h a t  exhib- 
its  high  binding  affinity for inositol  phospholipids  but  not  for 
choline  phospholipids (12-14). Yet, neomycin and  related  ami- 
noglycosides potently  inhibit  brain  membrane PC-specific PLD 
activity  assayed in vitro in  the  presence of a detergent  activator 
(sodium  oleate) as well as G protein-mediated  activation of 
PLD  in  permeabilized NG108-15 cells (9). We have  therefore 
postulated that neomycin  inhibits  PLD  activity  by  interaction 
with  an  essential  membrane  cofactor  for  PLD.  The  high  affinity 
of aminoglycosides for inositol  lipids  and, specifically, for  PIP, 
raised  the  possibility  that  the  postulated  membrane  cofactor  is 
PIP,. This  hypothesis  was  examined  by  testing the effects of 
PIP,  on  the  activity of a partially  purified  PLD  in  comparison 
with  other  acidic  phospholipids. PIP, dramatically  stimulated 
PLD  activity,  causing a 6-  and 8-fold increase  in  PLD  hydrolytic 
and  trans-phosphatidylation  activity,  respectively  (Fig. 1). In 
contrast,  phosphatidylinositol  4-phosphate,  phosphatidylinosi- 
tol,  phosphatidylserine,  and PA were  completely  or  nearly  in- 
effective, indicating that the  action of PIP,  on  PLD  is  highly 
specific. 

The  dependence of PLD on PIP,  concentration  was  examined 
in  mixed  micellar  systems  containing  either C,-NBD-PC/Triton 
X-100  (65:35,  mol/mol) or  Triton X-lOO/C,-NBD-PC (77:23, mol/ 
mol),  with  increasing  concentrations of PIP,. Fig. 2 shows  the 
results  obtained  with C,-NBD-PC/Triton X-100 (65:35, mol/ 
mol). The  activity of PLD  was  stimulated by PIP,  in a dose- 
dependent  manner,  with a half-maximal effect at a concentra- 
tion (EC,,) of 0.2-0.4 mol 5% and a maximal 10-fold stimulation 

~Phorphal~d~l~nos~lol[4,5)-bisphosphale] (mol%) 

FK:. 2. Dependence of PLD activation on  PIP, concentration. 
The  activity of a  partially purified preparation of brain  membrane PLD 
was  determined  in  the  presence of increasing  PIP,  concentrations. Fol- 
lowing incubations  lipids  were  extracted  and  separated by TLC. The 
bands  corresponding  to C,;-NBD-PPr and C,-NBD-PA were  quantitated 
by spectrofluorometry. FU, fluorescence units. 

at a PIP,  concentration of 6 mol %. At a higher  concentration 
(18 mol 8) the  stimulatory effect of PIP,  was  somewhat  dimin- 
ished.  Essentially  identical  results  were  obtained  with  the 
standard  system of Triton X-lOO/C,-NBD-PC (77:23, mol/mol) 
(Fig.  3),  indicating that the effect of PIP, is  independent of the 
physical  nature of the  micellar  system.  Fig. 3 also  shows  that 
phosphatidylinositol  3,4,5-trisphosphate,  which  is  produced 
from  PIP,  by a phosphoinositide  3-kinase  (4),  can  activate  PLD 
with  about  the  same  potency as PIP, but  with  somewhat  lower 
efficacy. Since  phosphatidylinositol  3,4,5-trisphosphate  is  more 
negatively  charged  than PIP,, the results  suggest  that  the ac- 
tivation of PLD  by  PIP,  is  not a simple  charge effect. Given that  
the  levels of phosphatidylinositol  3,4,5-trisphosphate  in  mem- 
branes  are  substantially  lower  than  those of its  precursor, PIP,, 
the  possibility that  PLD  is  activated by phosphatidylinositol 
3,4,5-trisphosphate,  subsequent  to  activation of phosphoinosi- 
tide  3-kinase,  seems  unlikely. 

Neomycin (1 mM) inhibits  the  activity of the  membrane- 
bound  PLD  (assayed  in  the  presence of sodium  oleate,  without 
exogenously  added PIP,) by -75% (Fig. 4A). This  result con- 
firms  our  previous  observations  obtained  with P3H1PC as a PLD 
substrate.  However, as shown  in Fig. 4, B and C, solubilization 
and  further  purification of brain  membrane  PLD  result  in a 
nearly  complete  loss of the  inhibitory effect of neomycin on both 
basal  (Fig.  4B)  and  oleate-activated  PLD  activity  (Fig.  4C). 
This  observation  is  consistent  with  our  previous  suggestion 
tha t  neomycin  does  not  interact  with  PLD  directly (9). Rather, 
it  indicates  that  neomycin  interacts  with a membrane cofactor 
that is  essential  for  optimal  PLD  activity  and that has  been 
removed  during  the  purification  process.  The  inhibitory effect 
of neomycin,  lost  upon the  solubilization  and  purification of 
PLD,  can  be  restored if PLD  activity  is  assayed  in  the  presence 
of PIP,. As shown  in  Fig. 4 0 ,  neomycin  inhibits  PIP,-stimu- 
lated  PLD  activity  in a dose-dependent  manner,  causing 50% 
inhibition at a concentration  (IC5o) of 90 PM, in  very good agree- 
ment  with  its IC,, on  PLD  in  membrane  preparations (65 p ~ )  
(9). This  result  indicates that neomycin  inhibits  PLD  activity  in 
membranes  and  permeabilized  cells  by  binding  to  endogenous 
membrane PIP,. 

The  present  data  demonstrate that exogenous  PIP,  is a spe- 
cific and  potent  activator of PLD.  The specificity of PIP,  action 
is  evinced by the  ineffectiveness of other  acidic  phospholipids, 
including  the closely related  phosphatidylinositol  and phos- 
phatidylinositol  4-phosphate.  Furthermore,  the  action of PIP, 
is   evident  at  physiological concentrations.  Sulpice et al. (15) 
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FIG. 3. Comparison of PLD activation by phosphatidylinositol 
3,4,&trisphosphate  and  PIP,. The activity of a partially purified 
preparation of brain membrane PLD  was determined in the presence of 
increasing phosphatidylinositol 3,4,5-trisphosphate or PIP, concentra- 
tions. Following incubations, lipids were extracted and separated by 
TLC. The band corresponding to C,-NBD-PPr was quantitated by spec- 
trofluorometry. Results represent the mean * S.D.  of two experiments 
carried out in duplicate. F. U., fluorescence units, 
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purified PLD activity. PLD activity was determined in  brain mem- 
FIG. 4. Effect of neomycin on membrane-bound and  partially 

branes (A) and in a partially purified preparation of PLD assayed in  the 
absence of any activator (B) ,  in  the presence of 0.7 m~ sodium oleate 
(C), or in  the presence of 1 mol % PIP, (D). Neomycin was included in 
the assay at a concentration of 1 m~ (A, B, and C )  or as indicated (D). 
Membrane-bound PLD activity (A) was determined by measuring for- 
mation of C,-NBD-PPr in the presence of 1-propanol, and the partially 
purified PLD activity was determined by measuring formation of C,- 
NBD-PA. Results are expressed as the percentage of maximal PLD 
activities which  were (mean * S.D.): 142 10 (A), 74 t 5 ( B ) ,  721 2 25 
(C), and 532 2 19 (D) fluorescence unitdl0 min. The absence of an error 
bar indicates error smaller than symbol size. 

have shown recently that  the concentration of PIP, in erythro- 
cyte membranes is -1% of total phospholipids.  Assuming that 
PIP, is asymmetrically distributed  and is present predomi- 
nantly in  the inner leaflet of the membrane, the surface con- 
centration of PIP, in  that leaflet will approach 2 mol %. At this 
concentration the activation of PLD by PIP, was nearly maxi- 
mal. Thus,  the concentration-response relationship for activa- 
tion of PLD by PIP, is  in excellent agreement with the proposal 
that PIP, acts as a PLD  cofactor. 

The fact that exogenous PIP, stimulates PLD activity does 
not in itself prove that endogenous PIP, serves as  a cofactor  for 
PLD.  Evidence that  this  is indeed the case is provided by the 
experiments with neomycin. Whereas the activity of the mem- 
brane-bound PLD is inhibited by neomycin, the solubilized and 
partially purified enzyme is virtually insensitive to the amin- 
oglycoside. This result shows that neomycin  does not directly 
interact with PLD but,  rather, with a cofactor. The cofactor 

must be (i) membrane-associated; (ii) dissociable  following s o h -  
bilization with a non-ionic detergent; (iii) a high afflnity ligand 
of neomycin; and (iv) required for optimal PLD  activity. PIP, 
satisfies these criteria.  Further evidence that neomycin inhib- 
its membrane-bound PLD  by interaction with endogenous 
membrane PIP, is provided by the fact that  it inhibits with a 
very similar potency the membrane-bound PLD and  the puri- 
fied PLD stimulated with exogenous PIP, (Ref. 9  and Fig. 4 0 ,  
respectively). Moreover, the IC,, values for  neomycin inhibition 
of PLD (65 and 90 p ~ )  are comparable with that obtained for 
inhibition of PIP, hydrolysis by phosphoinositide-specific phos- 
pholipase C (150 p ~ ;  Ref. 16) and  are  in excellent agreement 
with the binding affinity of neomycin to PIP, (11-46 p ~ ;  Ref. 
17). We conclude that PIP, acts as a cofactor that is required for 
maximal PLD  activity. It should be noted that, under in vitro 
conditions, PIP, is not absolutely required for detecting PLD 
activity (e.g. Fig. 4, B and C ) .  Presumably the presence of 
detergents (Triton X-100,  sodium oleate) can substitute  in  part 
for the PIP, requirement. In addition, while PIP, would nor- 
mally act as a cofactor, it may also assume the role of a PLD 
activator under specific  conditions (see below). 

The present results shed new light on the effect of  MgATP  on 
PLD activation in cell-free systems. Although MgATP is not 
absolutely required, it greatly potentiates the activation of PLD 
by GTPyS in a variety of experimental systems (18-24).  Sig- 
nificantly, the non-phosphorylating analogs of  ATP, AMP-PNP 
and AMP-PCP, are incapable of potentiating PLD activation, 
suggesting that MgATP acts as a phosphoryl group donor in  a 
kinase-mediated phosphorylation reaction. The kinase  in- 
volved in MgATP action has not been identified. Protein kinase 
C (21), tyrosine kinase(s) (23, 241, and  a Ca2+-calmodulin-de- 
pendent kinase (22) were  proposed as mediators of this effect. 
The results presented herein raise  the possibility that MgATP 
potentiates PLD activation in permeabilized cells, because it  is 
required for the action of phosphoinositide kinases, i.e. phos- 
phatidylinositol4-kinase and phosphatidylinositol 4-phosphate 
5-kinase, in  maintaining sufficient PIP, for optimal PLD activ- 
ity. This possibility is consistent with the above  evidence, indi- 
cating that PIP, acts as a cofactor  for brain membrane PLD, 
and with our previous observation that neomycin inhibits 
GTPyS-induced activation of PLD in permeabilized cells (9). It 
is also consistent with recent results showing that inclusion of 
PIP, in mixed PC/phosphatidylethanolamine liposomes greatly 
potentiates the activation of granulocyte PLD  by the small G 
protein ADP-ribosylation factor (ARF) (25). Studies indicating 
that on-going  PIP, synthesis  is indeed critical for  PLD activa- 
tion in permeabilized cells are currently in progress.' 

ARF is involved in multiple membrane transport processes, 
where it promotes  vesicle  coat protein assembly and vesicle 
budding from  donor membranes (see Ref. 7 for  review). The 
identification of ARF as  an activator of PLD in myeloid  cells 
(25, 26) strongly implicates PLD and  its biologically active 
product, PA, in vesicular trafficking. The function(s) of PLD 
and PA in vesicular traffic are, however, currently unknown. 
Intriguingly, evidence that polyphosphoinositide synthesis may 
be important for membrane transport events is also emerging 
(27). A phosphatidylinositol transfer protein (the SECl4 gene 
product) is required for constitutive secretion in yeast (28,29), 
as well as for neurotransmitter release in PC12  cells (30). An- 
other yeast membrane traffic mutant,  WS34, involved in pro- 
tein  sorting to vacuoles, was identified recently as  a phosphati- 
dylinositol 3-kinase (31). In addition, phosphatidylinositol 
4-kinase activity is localized in secretory granules from adrenal 
chromaffin  cells (32, 33), in coated  vesicles (34), and in glucose 

P. Pertile, M. Liscovitch, V. Chalifa, and L.  C. Cantley, manuscript in 
preparation. 
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transporter-carrying (GLUT 4) vesicles (35). Thus,  the activa- 
tion of PLD by ARF and  the biosynthesis of PIP, may act  in 
concert in a general  mechanism for membrane vesiculation 
and/or fusion. This view is  supported by recent  studies showing 
that PA can  dramatically  stimulate  the activity of the type I 
phosphatidylinositol  4-phosphate  5-kinase, an  enzyme that 
produces PIP, (36, 37). 

The  ability of PIP, to  activate PLD and  the ability of  PA to 
activate phosphatidylinositol  4-phosphate 5-kinase  suggest a 
model in which the formation of  PA and PIP,, by PLD and 
phosphatidylinositol 4-phosphate  5-kinase, respectively, par- 
ticipates  in a positive feedback loop that may  play an  important 
role in vesicle fusion with acceptor membranes (Fig. 5). Accord- 
ing  to  this model, the GTP-bound form of ARF induces the 
assembly of coated vesicles on donor membranes  and  their 
budding off (38). Transport vesicles are likely to be enriched 
with phosphatidylinositol  4-phosphate  because they  carry 
phosphatidylinositol  4-kinase  activity (32-35). The  interaction 
of coated vesicles bearing ARF.GTP with acceptor membranes 
will activate PLD associated  with these  membranes, producing 
PA (25, 26). The activity of phosphatidylinositol  4-phosphate 
5-kinase, which is hypothesized to  be located at  acceptor mem- 
branes, will be stimulated by  PA resulting  in massive synthesis 
of PIP,  from  vesicular  phosphatidylinositol  4-phosphate. This, 
in  turn, will cause  further  stimulation of PLD activity. Such a 
positive feedback loop will effect a very rapid  and profound 
change  in  the lipid composition of the vesicular membranes, 
leading  to  the formation of microdomains that are depleted of 
PC and phosphatidylinositol and  are  greatly enriched in PA 
and PIP,. A positive feedback loop such  as  the one proposed 
here  must be controlled tightly by shut-off mechanisms. ARF 
GTPase-activating  protein (ARF GAP) is likely to subserve this 
function. The activity of ARF GAP is  stimulated  dramatically 
and synergistically by PIP, and PA(39). Thus,  the  interaction of 
ARF GAP with  the  PIPPA-rich vesicle membranes will cause 
its  activation,  stimulation of the GTPase  activity of ARF, and 
the conversion of active  ARF.GTP to inactive ARF.GDP. This 
will shut off PLD activity, thus  halting  the positive feedback 
loop, and  initiate  the disassembly of the coated vesicle (401, al- 
lowing its  subsequent fusion with acceptor membranes. Ac- 
cording to  this model ARF plays a role in  initiating  both vesi- 
cle budding and vesicle fusion. Indeed, an ARF N-terminal 
peptide inhibits catecholamine release  in  adrenal chromaffin 
cells (41), and  several  lines of evidence suggest  that PLD acti- 
vation is involved in exocytosis (reviewed in Ref. 6) .  The fu- 
sion of vesicles that  are enriched  with the negatively  charged 
phospholipids PIP, and PA is likely to  be  greatly facilitated by 
Ca" ions  (42). 

The  present  study defines a novel function of PIP, as a co- 
factor for brain  membrane PLD. The  requirement of PIP, for 
maximal PLD activity suggests  that PIP, synthesis  and  break- 
down may regulate PLD activation. Possible physiological func- 
tions  in which this  interaction  is likely to  be critical are delin- 
eated,  and a testable hypothetical model for its role in vesicular 
traffic is proposed. Further  studies aimed at  the  characteriza- 
tion and kinetic analysis of the  interaction between  PIP, and 
PLD and  the role of PIP, biosynthesis in PLD activation and 
membrane  transport  are  currently  in progress. 
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