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Elements of Set Theory [nln4]

A set S is a collection of elements εi: S = {ε1, ε2, . . .}.

All elements of subset A are also elements of S: A ⊂ S.

The empty set ∅ contains no elements.

If S contains n elements then the number of subsets is 2n.

Hierarchy of subsets: ∅ ⊂ A ⊂ A ⊂ S.
Transitivity: If C ⊂ B and B ⊂ A then C ⊂ A.
Equality: A = B iff A ⊂ B and B ⊂ A.

Union: C = A + B or C = A ∪B.
All elements of S that are contained in A or in B or in both.

Intersection: C = AB or C = A ∩B.
All elements of S that are contained in A and in B.

Union and intersection are commutative, associative, and distributive:
A + B = B + A, AB = BA;
(A + B) + C = A + (B + C), (AB)C = A(BC);
A(B + C) = AB + AC.

Some consequences:
A + A = A, A + ∅ = A, A + S = S; AA = A, A∅ = ∅, AS = A.

Mutually exclusive subsets have no common elements: AB = ∅.

Partition P = [A1, A2, . . .] of S into mutually exclusive subsets:
S = A1 + A2 + . . . with AiAj = ∅ for i 6= j.

The complement Ā of subset A has all elements of S that are not in A.

Some consequences:
A + Ā = S, AĀ = ∅, ¯̄A = A, S̄ = ∅, ∅̄ = S.

DeMorgan’s law: A + B = ĀB̄, AB = Ā + B̄.

Duality principle:
A set identity is preserved if all sets are replaced by their complements.



[nex88] Set identities

Use De Morgan’s law and the duality principle to derive the set identity on the right from the set
identity on the left.

A(B + C) = AB + AC ⇒ A + BC = (A + B)(A + C).

Solution:



Elementary Probabilities [nln42]

Probabilities can be defined (i) axiomatically, (ii) from relative frequencies
of events, or (iii) by assignment to elementary events based on one of two
criteria [e.g. Papoulis 1991, Sec. 1-2]:

• symmetry (somewhat circularly),

• principle of insufficient reason (somewhat dubiously).

Ambiguities may arise if the range of events is

• discrete and infinite,

• continuous (such as in Bertrand’s paradox [nln41]).

In general, probability densities change under a transformation of variables.
Particular assignments are often hard to justify.

In classical equilibrium statistical mechanics, uniform probability densities
are assigned to canonical coordinates. This choice is most readily justifi-
able in the case of action-angle coordinates. Canonical transformations leave
probability densities invariant. However, the existence of action-angle coor-
dinates is limited to integrable systems. Only a tiny minority of many-body
systems are integrable.



[nex94] Probabilities of complements, unions, and intersections

Given are the probability axioms (i) P (A) ≥ 0, (ii) P (S) = 1, and (iii) P (A + B) = P (A) + P (B)
if AB = ∅, where S is the sample space and A, B are events.
Derive from these axioms the following simple theorems regarding complements, unions, and in-
tersections of events:

(a) P (∅) = 0, (b) P (Ā) = 1− P (A), (c) P (A + B) = P (A) + P (B)− P (AB).
The notions A + B, AB, Ā, ∅, mean union, intersection, complement, and empty set, respectively.

Solution:



Joint and Conditional Probabilities [nln44]

Joint probability: P (AB) (event A and event B)

Conditional probability: P (A|B) (event A if event B)

Relations: P (AB) = P (A|B)P (B) = P (B|A)P (A)

Simple consequences:

• If A ⊂ B then P (A|B) = P (A)/P (B)

• If B ⊂ A then P (A|B) = 1

Conditional probabilities satisfy probability axioms [nex90].

Bayes’ theorem: P (A|B) = P (B|A)
P (A)

P (B)

Applications:

B Successive random picks [nex91]

B Heads or tails [nex93]

B Quantity and quality [nex76]

B Diagnosis of a rare disease [nex77]

B Event or complement [nex9]



[nex90] Conditional probability

Given the simple probabilites P (A), P (B) of two events A, B and their joint probability P (AB)
defined as the probability of their intersection, the conditional probabilities P (A|B), P (B|A) are
then defined via

P (AB) = P (A|B)P (B) = P (B|A)P (A).

Show that the conditional probability P (A|B) = P (AB)/P (B) is indeed a probability in the formal
sense by showing that it satisfies the probability axioms: (i) P (A|B) ≥ 0, (ii) P (S|B) = 1, (iii)
P (A + C|B) = P (A|B) + P (C|B) if AC = ∅.

Solution:



Elements of Probability Theory [nln43]

Transcription from set theory:

• set → sample space

• subset → event

• element → elementary event

Sample space S: set of all possible outcomes in an experiment.

Event A ⊂ S: possible outcome of experiment.

Probability axioms [Kolmogorov 1933]:

• P (A) ≥ 0 for all A ⊂ S,

• P (S) = 1,

• P (A + B) = P (A) + P (B) if AB = ∅.

Some immediate consequences [nex94]

• P (∅) = 0,

• P (Ā) = 1− P (A),

• P (A + B) = P (A) + P (B)− P (AB).

Under idealized circumstances the sample space is divisible into elementary,
mutually exclusive, events to which equal probabilities can be assigned for
reasons of symmetry:

S = A1 + · · ·+ AN with AiAj = ∅ for i 6= j and P (Ai) =
1

N
.



Statistical Independence [nln45]

Case of two events A, B.

Criterion: P (AB) = P (A)P (B)

Simple consequences:

• P (A|B) = P (A), P (B|A) = P (B)

• P (AB̄) + P (A)P (B̄), P (ĀB) = P (Ā)P (B), P (ĀB̄) = P (Ā)P (B̄)

Case of three events A, B, C.

Criteria: pairwise statistical independence is not sufficient!

• P (AB) = P (A)P (B)

• P (AC) = P (A)P (C)

• P (BC) = P (B)P (C)

• P (ABC) = P (A)P (B)P (C)

Applications:

B Subtlety of statistical independence [nex1]

B Random train connections [nex92]

B Random inkjet printer [nex10]



Statistical Uncertainty and Information [nln5]

An experiment has n possible outcomes that occur with probabilities P1, P2, . . . , Pn.

Properties that must be satisfied by any quantitative measure of uncertainty:

1. The uncertainty is a function of the probabilities of all possible out-
comes: Σ = Σ(P1, P2, . . . , Pn).

2. The uncertainty is symmetric under all permutations of the Pi.

3. The maximum uncertainty occurs if all Pi are equal.

4. The uncertainty is zero if one of the outcomes has probability Pi = 1.

5. The combined outcome of two independent experiments has an uncer-
tainty equal to the sum of the uncertainties of the outcomes of each
experiment.

⇒ Σ(P1, P2, . . . , Pn) = −
n∑

i=1

Pi ln Pi = −〈ln P 〉.

Information comes in messages: A1, A2, . . .. A message carries information
only if it contains some news, i.e. something not completely expected.

P (A): probability that message A is sent.
I(A): information gain if message is indeed received.

The less likely the message, the greater the information gain if the message
is received:

If P (A) < P (B) then I(A) > I(B), if P (A) = 1 then I(A) = 0.

If two independent messages are received, then the information gain is the
sum of the information gains pertaining to each individual message:

P (AB) = P (A)P (B) ⇒ I(AB) = I(A) + I(B).

The information content of a message is equal to the change in (statistical)
uncertainty at the receiver:

P1, P2, . . . , Pn
A−→ P̄1, P̄2, . . . , P̄n ⇒ I(A) = Σ(P1, P2, . . . , Pn)−Σ(P̄1, P̄2, . . . , P̄n)

Information as used here refers only to the scarcity of events. Any aspects
of usefulness and meaningfulness are disregarded.



[tex47] Statistical concept of uncertainty

An experiment has n possible outcomes that occur with probabilities P1, . . . , Pn. The uncertainty
about the outcome of the experiment is defined as

Σ(P1, . . . , Pn) = −
n∑

i=1

Pi ln Pi.

(a) Prove that the maximum uncertainty occurs if all Pi are equal.
(b) The n2 combined outcomes of two independent experiments have probabilities Pij = P I

i P II
j .

Show that the uncertainty about the combined outcome of the two independent experiments is
equal to the sum of the uncertainties of the outcomes of each experiment: Σ({Pij}) = Σ({P I

i }) +
Σ({P II

i }).

Solution:



[nex9] Event or complement? That is the question.

Ten people throw two dice each, once per minute, at ten tables. When any person hits a 12, he/she
leaves the room. Find the probability that not everybody has left the room after one hour.

Solution:



[nex91] Successive random picks

A bin contains three white balls and two red balls. We remove at random two balls in succession.
What is the probability that the first ball is white and the second is red?

Solution:



[nex93] Heads or tails

We have two coins, one of which is fair and the other two-headed. Now we pick one coin at random
and toss it twice. Heads shows both times. Find the probability that we had picked the fair coin.

Solution:



[nex76] Quantity and Quality

A company has two plants producing identical cars. In a particular year, plant 1 produced 60%
of the cars, 35% of which were defective. Of the remaining 40% of cars produced in plant 2, only
25% were defective.
(a) What percentage of cars in that year were defective?
(b) What is the probability that a defective car produced in that year came from plant 1?

Solution:



[nex77] Diagnosis of a rare deadly disease

A fatal disease is known to afflict one person in a million during his or her life time. There exists
a test which detects the presence of the deadly virus in a blood sample with 99% reliability.
With what probability is a person who tests positive indeed afflicted by the disease?

Solution:



[nex1] Subtlety of statistical independence

(i) Given that events A, B are statistically independent, P (AB) = P (A)P (B), show that the event
pairs Ā, B and Ā, B̄ are also statistically independent: P (ĀB) = P (Ā)P (B), P (ĀB̄) = P (Ā)P (B̄).
(ii) Consider three events A, B, C occurring with probabilities P (A), P (B), P (C), respectively, and
satisfying the relations P (AB) = P (A)P (B), P (BC) = P (B)P (C), P (CA) = P (C)P (A). Show
that these relations are compatible with the relation P (ABC) 6= P (A)P (B)P (C), in which case
the three events are not statistically independent.

Solution:



[nex92] Random train connections

Trains X and Y reach a station at random and independently of each other between 8:00am and
8:20am. Train X stops for 4 minutes and train Y for 5 minutes.
(a) Find the probability that train X arrives before train Y .
(b) Find the probability that the two trains meet at the station.
(c) Find the probability that train Y pulls into the station while train X is already there.

Solution:



[nex10] Random inkjet printer

A number N of black inkdots, all with area AD, are printed randomly on a sheet of paper with
area AS . Assume that N and AS are sufficiently large, so that edge effects can be neglected.
(a) Calculate the average blackened area 〈AB〉 on the sheet as a function of N , AD, and AS .
(b) Show that for very large N and finite NAD/AS the asymptotic expression,

〈AB〉 AS

[
1− e−NAD/AS

]
,

ensues, telling us that some white area is likely to persist in the face of a multitudes of random
inkdots.

Solution:



[tex48] Statistical uncertainty and information

The number of bird species living on some continent is known to be 100. An ornithologist visits
a small island off the coast of that continent to find out how many of the 100 bird species have
migrated to the island.
One month after her arrival on the island she sends a first message to the Ornithological Society,
stating that there exist only five of the 100 bird species on the island.
A month later she sends a second message stating that the relative abundance of the five bird
populations identified previously is 80%, 10%, 5%, 3%, 2%.
Determine the numerical value of the information contained in each message.

Solution:



[tex61] Information of sequenced messages

In which months of the year do Ellen, Nancy, and Susan have their birthdays? Three messages
X, Y, Z about their birthdays are received by persons a, b, c:
Person a receives the messages in the sequence X, Y, Z.
Person b receives the messages in the sequence Z, X, Y .
Person c receives the messages in the sequence Y, Z, X.
The three messages are the following:
X: Nancy’s birthday is in April.
Y : Ellen’s birthday is in a later month than Nancy’s birthday.
Z: Susan’s birthday is in the same month as Ellen’s birthday.
Find the numerical value of the information contained in the messages X,Y, Z as received by each
person a, b, c.

Solution:
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