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Robust and Dynamically
Consistent Model Order
Reduction for Nonlinear
Dynamic Systems
There is a great importance for faithful reduced order models (ROMs) that are valid over
a range of system parameters and initial conditions. In this paper, we demonstrate
through two nonlinear dynamic models (pinned–pinned beam and thin plate) that are
both randomly and periodically forced that smooth orthogonal decomposition (SOD)-
based ROMs are valid over a wide operating range of system parameters and initial con-
ditions when compared to proper orthogonal decomposition (POD)-based ROMs. Two
new concepts of subspace robustness—the ROM is valid over a range of initial condi-
tions, forcing functions, and system parameters—and dynamical consistency—the ROM
embeds the nonlinear manifold—are used to show that SOD, as opposed to POD, can
capture the low order dynamics of a particular system even if the system parameters or
initial conditions are perturbed from the design case. [DOI: 10.1115/1.4028470]

1 Introduction

ROMs are having a greater impact with the increasing and
advancing computing technologies. These advances in computing
technologies that allow one to numerically interrogate larger
scale, more complex dynamical systems (i.e., structural dynamics
and acoustics, computational oceanographic/atmospheric dynam-
ics, molecular dynamics, and rationale drug template design) for
longer time periods and across multiple temporal and spatial
scales.

A goal across the low order modeling community is to develop
a ROM that is valid over an appropriate range of initial condi-
tions, system parameters, and forcing functions. If the ROM is
robust enough to yield faithful results over these ranges then the
ROM has successfully captured or embedded the nonlinear mani-
fold of the particular system of interest.

However, the following two questions still remain on the topic
of ROMs: (1) “What is the lowest dimensional ROM?” and (2)
“How well does the ROM capture the dynamics of the full scale
system model or a perturbed version of that model?” Using the
newly developed concepts of subspace robustness and dynamical
consistency, the authors demonstrate through a periodically and
randomly forced pinned–pinned beam and flat thin plate that
SOD-based ROMs develop both dynamically consistent and
robust ROMs as compared to POD-based ROMs.

2 Background

The approach for model reduction of linear and nonlinear
systems is achieved in two different ways. For the sake of
completeness, the methodology for linear systems will be briefly
mentioned. Given a set of equations describing a linear dynamical
system, one projects the equations onto a set of basis vectors
obtained through some empirical methods. These methods can
include linear normal modes (LNMs), Kyrlov subspaces,
and POD [1–6] (also known as singular value decomposition [2],
principal component analysis [2,7], and Karhunen–Loev�e
Decomposition [2,8]).

Model reduction for nonlinear systems is a much harder prob-
lem and currently the topic of many investigations. Some of these
investigations have yielded techniques such as inertial manifold
approximation, bilinearization about the equilibrium point, center
manifold theory, nonlinear normal modes (NNMs), and POD.
Thorough reviews can be found in Refs. [9–13].

Due to the scope of this paper, we will focus on the methodol-
ogy which develops ROMs by taking the nonlinear system and
projecting it onto a linear subspace spanned by a set of appropriate
basis vectors. One such common set of basis vector is proper or-
thogonal mode (POM). In the formulation of POD, we seek to
find a set of orthogonal subspaces that maximize the variance of
its projections. These subspaces may miss the dominant mode if
the system is randomly forced or there are perturbations to the
system parameters which cause changes in energy levels. How-
ever, if the goal were to find a set of orthogonal subspaces that
would maximize the overall smoothness of the projections, which
would not rely on energy alone, the formulation would lead to
SOD.

The multivariate multiscale data analysis method of SOD is
proposed to find linear subspaces that fully embed the nonlinear
manifold in an efficient low dimensional subspace. SOD can be
thought of as an extension of POD [14–21]. In addition to consid-
ering spatial (i.e., statistical) characteristics of the data set as in
POD, SOD considers temporal (i.e., dynamical) characteristics of
the data set as well. In particular, SOD identifies coordinates
(smooth orthogonal coordinates—SOCs) that have both minimal
temporal roughness and maximal spatial variance. Therefore,
SOD obtains the smoothest low dimensional approximation of a
high dimensional system.

2.1 Proper and Smooth Orthogonal Decomposition. Con-
sider a dynamical system of which n state variables are measured.
In addition, each n variable is sampled m times, which are
arranged into a m� n ensemble matrix Y. If the n state variables
are measurements at n spatial locations, then the Yij element repre-
sents the ith time instant value for the jth spatial location.

Next, an ensemble of time derivatives for each of the state vari-
ables is formed. These time derivatives can be available directly
like in our case of model reduction, or given by _Y � DY where D
is some discrete differential operator (e.g., based on forward
difference).
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Provided that Y and _Y are zero mean, the autocovariance matri-
ces can be formed by

Ryy ¼
1

m� 1
YTY; R _y _y ¼

1

m� 1
_YT _Y (1)

In the solution of POD, one tries to maximize the variance of
the scalar field, Y. This is achieved by solving the eigenvalue
problem of autocovariance matrix Ryy in Eq. (1)

Ryy/k ¼ kk/k (2)

where kk are proper orthogonal values (POVs), /k are POMs, and
proper orthogonal coordinates (POCs) are q¼UTY where
U ¼ ½/1;/2;…;/n� 2 Rn. POVs are ordered such that k1� k2�
…kn. In practice, the solution for solving POD is achieved using
singular value decomposition on the matrix Y.

Likewise, in the solution of SOD, one tries to not only maxi-
mize the variance of the scalar field, Y, but also minimize the local
fluctuations of Y. Minimizing the local fluctuations is accom-
plished by minimizing the variance in the time derivative of the
scalar field, _Y. This is achieved by solving the generalized eigen-
value problem of the matrix pair Ryy and R _y _y in Eq. (1)

Ryywk ¼ kkR _y _ywk (3)

where kk are now smooth orthogonal values (SOVs), wk 2 Rn are
smooth projection modes (SPMs), smooth orthogonal modes
(SOMs) are U¼W�T, and SOCs are given by q¼WY where
W ¼ ½w1;w2;…;wn� 2 Rn. It should be noted that if we were to
replace R _y _y with the identity matrix, then the formulation would
yield the POD. In practice, especially if Y is ill-conditioned, the
solution for solving SOD is achieved using generalized singular
value decomposition on the matrix pair Y and DY.

3 Nonlinear Model Reduction

Consider the general class of nonlinear ordinary and differential
equations described as

M€xþ C _xþ Kx ¼ Fð _x; x; tÞ (4)

where x 2 Rn is a dynamic state variable, t is time,
M;C;K 2 Rnxn are the global mass, damping, and stiffness matri-
ces, respectively, and F 2 Rn describes any nonlinear forcing
components. Using a coordinate transformation of x¼Pq where
q 2 Rk where k � n is a reduced state variable and P¼ [e1,
e2,…, en] is an appropriate set of basis vectors obtained through some
empirical methods (e.g., POD or SOD), the corresponding ROM is

PTMP€qþ PTCP _qþ PTKPq ¼ PTFðP _q;Pq; tÞ (5)

4 Model Reduction Subspace Selection

The purpose of this paper is to show that using SOD one can
develop robust ROMs that embed the active nonlinear manifold as
compared to POD. This is demonstrated using the newly devel-
oped concepts of subspace robustness and dynamical consistency.
In Refs. [20,22], the authors describe two criteria in choosing an
appropriate subspace for model order reduction, the selected sub-
space needs to: (1) embed or capture the active NNM manifold
and (2) be insensitive to a varying set of initial conditions, system
parameters, and forcing functions.

4.1 Subspace Robustness. The key idea behind subspace
robustness is a quantitative metric that determines whether the
subspace will be insensitive to perturbations of the system param-
eters and initial conditions. If a subspace is insensitive to these
perturbations (e.g., off-design configurations), the subspace will
still provide a faithful ROM of the system of interest.

Therefore, a subspace spanned by the basis vectors for model
order reduction needs to be insensitive to variations in forcing
functions, initial conditions, and system parameters. Conventional
choices like POMs would be a good choice but they can vary with
initial conditions, system parameters, and forcing functions [23].
Therefore, a decomposition identifies a robust subspace if all sub-
spaces estimated from trajectories starting from different initial
conditions and/or perturbed system parameters are mutually and
nearly linearly dependent.

Given a matrix S 2 Rn�ks whose columns contain a set of basis
vectors fPk

i g
s
i¼1 for each k-dimensional subspace, the correspond-

ing subspace robustness ck
s is given by the following expression:

ck
s ¼ 1� 4

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼kþ1

r2
i

Xk

i¼1

r2
i

vuuuuuuut

�����������

�����������

(6)

From Eq. (6), if ck
s ¼ 0 then the individual subspace realizations

Pk
i ði ¼ 1;…; sÞ are mutually linearly dependent. However, if

ck
s ¼ 1 then the individual subspace realizations are mutually line-

arly independent. Therefore, the subspace identified through some
empirical procedure can only be used for model reduction if its

subspace robustness ck
s is close to unity. Otherwise, that subspace

may not capture all the needed system dynamics for particular
sets of parameters.

4.2 Dynamical Consistency. The idea behind dynamical
consistency stems from the idea of false nearest neighbors [24]—
which determines how many dimensions are needed, in phase
space, such that your trajectory does not intersect with itself. If
there are no intersections (singularities), then two neighboring
points on the trajectory are neighbors because of the dynamics
and not due to projection. If a particular subspace creates a trajec-
tory that contains zero false nearest neighbors, then that subspace
fully captures the dynamics (i.e., embeds the nonlinear manifold).
From a mathematical perspective, dynamical consistency is deter-
mined by estimating a ratio of the number of false nearest neigh-
bors over the total number of nearest neighbor pairs in a particular
k-dimensional subspace

fk ¼ 1�
Nk

fnm

Nnm
(7)

where Nk
fnm is the estimated number of false nearest neighbors in a

k-dimensional subspace and Nnm is the total number of nearest
neighbor pairs used in the estimation. If fk is close to unity, then
that k-dimensional subspace is dynamically consistent.

Nk
fnm is estimated by comparing the distance between the tempo-

rally uncorrelated nearest neighbors in a k-dimensional space to
the same distance in the kþ 1-dimensional space. If the change in
the distances is one order of magnitude larger than the original
k-dimensional distance, then these points are denoted as false
nearest neighbors in k-dimensional space.

5 Nonlinear Dynamical Systems

5.1 Simply Supported Pinned–Pinned Beam. The eighteen
degree-of-freedom (DOF) pinned–pinned beam is shown in
Fig. 1. The length of the beam is 0.6 m, height 0.001 m, width
015 m, Young’s modulus is 10e9 N/m, and density is 7850 kg/m3.
The beam is discretized into nine Euler Bernoulli beam elements
with two DOF (displacement and rotation) per node. The first and
last nodes experience pinned boundary conditions. The steady-
state simulation trajectory consisted of 100,000 points with the
time step of 0.007. The equations of motion describing the

021011-2 / Vol. 137, FEBRUARY 2015 Transactions of the ASME
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dynamics of the beam are given by an 18-dimensional second-
order equation which is described by Eq. (4), where M � R

18�18

is the global mass matrix, K � R18�18 is the global stiffness ma-
trix, C � R

18�18 is the global proportional damping matrix, and
Fðx; _x; tÞ can be decomposed into two terms: namely, fe(t) and
fn(x). Two nonlinear springs whose nonlinear force fn(x) is
described by Eq. (8) are positioned left and right of the center of
the beam

fnðxÞ ¼ 3x� 8x3 (8)

For external forcing, a sine wave with frequency x¼ 2p was cho-
sen for the periodic forcing, feðtÞ ¼ f sin xt, and the random forc-
ing was generated by interpolated random sequences. To generate
the data for the subspace robustness, the model was simulated for
four different forcing amplitudes, 0.1, 0.7, 1.3, and 2.0, where
each was simulated using ten different initial conditions. This
resulted in 40 different simulations.

5.2 Simply Supported Plate. The 78 DOF plate is shown in
Fig. 2. The length of the plate is 10.0 m, thickens 0.1 m, width
10.0 m, Young’s modulus is 30e6 N/m, shear correction factor is
5/6, Poisson’s ratio is 0.3, and density is 7000 kg/m3.

The plate is discretized into sixteen shear deformable plate ele-
ments with four nodes per element. Two-point integration is used
for the bending term, while one-point integration is used for the

shear. All the nodes on the perimeter of plate are simply sup-
ported. The steady-state simulation trajectory consisted of
100,000 points with the time step of 0.002. The equations of
motion describing the dynamics of the plate are given by a 39-
dimensional second-order equation described by Eq. (4). The
matrices for the plate are M � R39�39, K � R39�39, C � R39�39,
and Fðx; _x; tÞ can be decomposed into two terms: namely, fe(t) and
fn(x). A nonlinear spring whose nonlinear force fn(x) is described
by Eq. (9) is positioned at the center of the plate

fnðxÞ ¼ 4x� 8x2 (9)

For external forcing, a sine wave with frequency x¼ 4p/5 was
chosen for the periodic forcing, feðtÞ ¼ f sin xt, and the random
forcing was generated by interpolated random sequences. To gen-
erate the data for the subspace robustness, the model was simu-
lated for four different forcing amplitudes, 50, 100, 150, and 200,
where each was simulated using ten different initial conditions.
This resulted in 40 different simulations.

6 Results

The subspace robustness for the beam is depicted in Fig. 3 (left)
and for the plate in Fig. 4 (left). For the SOD-based ROM in both
the periodically and randomly forced beam (� and �, respec-
tively), the similar trend can be observed. As the dimension is
increased, the robustness increases monotonically until it reaches
a value of unity at roughly a three-dimensional subspace. For both
forcing cases in the plate model, there is a slight decrease in sub-
space robustness until a four-dimensional subspace is reached.
Then, the trends increase monotonically until they reach a value
of unity at roughly a ten-dimensional subspace. On the other
hand, the robustness for the POD-based (r and �, respectively)
subspaces do not exhibit a monotonically increasing trend.
Actually, they seem to oscillate as the dimension is increased
where they approach unity at some points but then rapidly
decrease.

The dynamical consistency is depicted for the beam in Fig. 3
(right) and for the plate in Fig. 4 (right). For both forcing cases,
the POD-based (r and �, respectively) and SOD-based (r and
�, respectively) ROMs are similar in results. For the beam model,
POD- and SOD-based ROMs are dynamically consistent in four
dimensions or greater. In the plate model, they are consistent in
three dimensions or greater. This suggests that both model order
reduction techniques do provide subspaces which are dynamically
consistent in equally low dimensional subspaces.

Figure 5 (left) shows the phase space trajectory for the eight
DOF for the periodically forced beam with a forcing amplitude of
f¼ 1.0 and frequency x¼ 2p. Figure 5 (right) depicts the

Fig. 2 A simply supported pate with a nonlinear spring posi-
tioned at the center node

Fig. 1 A simply supported beam with two nonlinear springs
positioned left and right of center

Fig. 3 (Left) Subspace robustness and (Right) dynamical consistency for both periodically
and randomly forced POD-based ($ and �, respectively) and SOD-based (� and �, respec-
tively) ROMs for the beam
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corresponding L2-norm between the full scale trajectory and the
SOD (- -) and POD (–) based trajectory for increasing subspace
dimension. POD-based ROM requires a four-dimensional sub-
space to reconstruct or track the phase space trajectories whereas
SOD-based ROM requires six dimensions to completely recon-
struct the same results.

Similar results can be drawn for the periodically forced plate as
shown in Fig. 6. Here the plate is forced with an amplitude of
f¼ 100.0 and frequency x¼ 4p/5. The plot on the left illustrates
that phase portrait for the 21st DOF of the full scale system. Both
two-dimensional POD- and SOD-based ROMs track the full scale
dynamics quite well but a three-dimensional ROM fully captures
the dynamics. If we consider a one-dimensional ROM, SOD cap-
tures the general structure whereas POD does not. This is reflected
in the large difference in the first dimension for the corresponding
L2-norm.

The results for the randomly forced models are parallel to that
of the periodically forced models. For the beam whose forcing
amplitude is f¼ 0.6, a four-dimensional POD-based ROM cap-
tures the dynamics, whereas a five- or six-dimensional SOD-based
ROM is needed, Fig. 7.

The results from the randomly forced plate with forcing ampli-
tude f¼ 100.0 are shown in Fig. 8 where POD outperforms SOD-
based ROMs. POD can capture the full scale dynamics better in
all dimensions as compared to SOD until six dimensions where
they both capture the dynamics.

Now, we can investigate how well the subspace extracted for
model reduction from one set of system parameters and initial

conditions approximates the full scale dynamics for a perturbed
set of system parameters and initial conditions. For the periodi-
cally forced beam, the SOD- and POD-based subspaces were
developed from the full scale dynamical system, which are excited
with a forcing amplitude of f¼ 2.0 and a random initial condition.
These extracted subspaces are now used to approximate the full
scale dynamic model with forcing amplitude f¼ 1.3 and zeroes as
the initial condition. The results are depicted in Fig. 9 where the
full scale trajectory is shown for the off-design configuration that
we wish to reconstruct. Using a one-dimensional subspace, POD
outperforms SOD. However, in POD there are some added dy-
namics in the left lobe, which are not present in the full scale tra-
jectory. In going to a two-dimensional subspace, SOD surpasses
POD in almost fully capturing the dynamics. POD needs three
dimensions to capture the same information.

The periodically forced plate is shown in Fig. 10 whose full
scale dynamics are forced at a frequency of x¼ 4p/5 with a ran-
dom initial condition. The ROM is developed for the model with
frequency of x¼ 3p/5 and zeroes as the initial condition. SOD is
able to fully capture the dynamics in six dimensions where the
ROM is continually improved as dimensions are increased.
Furthermore, SOD outperforms POD in each dimension. It is
interesting to note that after a two-dimensional subspace, POD
does not get any better with increasing dimension.

The randomly forced beam Fig. 11 is excited with a forcing
amplitude of f¼ 2.0 and zeroes as the initial condition for both the
full scale model and the ROM is used. However, the coefficient in
front of the nonlinear spring term is changed from b¼ 10 to

Fig. 4 (Left) Subspace robustness and (Right) dynamical consistency for both periodically
and randomly forced POD-based ($ and �, respectively) and SOD-based (� and �, respec-
tively) ROMs for the plate

Fig. 5 (Left) Phase portrait for the eight DOF’s full scale trajectory with periodic forcing with
amplitude f 5 1.0 for the beam that we wish to reconstruct. (Right) Corresponding L2-norm
between the full scale trajectory and the POD-based ROM (–) and the SOD-based ROM (- -) for
the periodically forced beam.
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b¼ 5. SOD is able to track the dynamics in a four-dimensional
space which agrees with POD as well. However, the L2-norm
increases from a one- to a two-dimensional POD-based ROM.
This further supports the subspace robustness which showed this
exact result. In SOD, continual improvement is demonstrated with
increasing dimension.

Finally, for the plate which is shown in Fig. 12, the full scale
dynamical system which is excited with a random initial condition
and a nonlinear spring coefficient b¼ 16. The extracted subspaces
are now used to approximate the full scale dynamic model with
zeroes as the initial condition and nonlinear spring coefficient
b¼ 8. Both POD and SOD perform equally well in this case. In

Fig. 6 (Left) Phase portrait for the 21st DOF’s full scale trajectory with periodic forcing with
amplitude f 5 100.0 for the plate that we wish to reconstruct. (Right) Corresponding L2-norm
between the full scale trajectory and the POD-based ROM (–) and the SOD-based ROM (- -) for
the periodically forced plate.

Fig. 7 (Left) Phase portrait for the eight DOF’s full scale trajectory with random forcing with
amplitude f 5 0.6 for the beam that we wish to reconstruct. (Right) Corresponding L2-norm
between the full scale trajectory and the POD-based ROM (–) and the SOD-based ROM (- -) for
the randomly forced beam.

Fig. 8 (Left) Phase portrait for the 21st DOF’s full scale trajectory with random forcing with
amplitude f 5 100.0 for the plate that we wish to reconstruct. (Right) Corresponding L2-norm
between the full scale trajectory and the POD-based ROM (–) and the SOD-based ROM (- -) for
the randomly forced plate.
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Fig. 9 (Left) Phase portrait for the eight DOF’s full scale trajectory with periodic forcing with
amplitude f 5 2.0 and random initial condition for the beam that we wish to reconstruct. Sub-
spaces were constructed with system parameters f 5 1.3 and zeroes as the initial condition.
(Right) Corresponding L2-norm between the full scale trajectory and the POD-based ROM (–)
and the SOD-based ROM (- -) for the periodically forced beam off-design configuration.

Fig. 10 (Left) Phase portrait for the 21st DOF’s full scale trajectory with periodic forcing fre-
quency of x 5 4p/5 and a random initial condition for the plate that we wish to reconstruct.
Subspaces were constructed with system parameters x 5 3p/5 and zeroes as the initial condi-
tion. (Right) Corresponding L2-norm between the full scale trajectory and the POD-based ROM
(–) and the SOD-based ROM (- -) for the periodically forced plate.

Fig. 11 (Left) Phase portrait for the eight DOF’s full scale trajectory with zeroes as the initial
condition and nonlinear spring coefficient b 5 10 for the beam that we wish to reconstruct.
Subspaces were constructed with system parameters zeroes as the initial condition and
nonlinear spring coefficient b 5 5. (Right) Corresponding L2-norm between the full scale tra-
jectory and the POD-based ROM (–) and the SOD-based ROM (- -) for the randomly forced
beam off-design configuration.
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fact, they both show continual improvement with increasing
dimension and reconstruct the dynamics with a six-dimensional
subspace.

7 Discussion

The purpose of this work was to show, using two new concepts
of subspace robustness and dynamical consistency, that SOD-
based ROMs are not only robust to perturbations of the system
parameters but also embed the nonlinear manifold of a nonlinear
dynamical system. This is demonstrated using an 18 DOF pin-
ned–pinned beam supported by two nonlinear springs left and
right of center and a 78 DOF plate with a nonlinear spring in the
center.

For both the periodically and randomly forced beam and plate
models, when the ROMs are created and compared against the
same full scale dynamic models POD always outperforms SOD.
By definition, POD tries to minimize the error in the projections
in the least squares sense. Therefore, the subspace that POD cap-
tures is going to be the lowest dimensional subspace needed to
capture the nonlinear manifold. In some instances, for example,
the periodically forced plate in Fig. 6, SOD’s performance is
comparable to POD.

However, one particular goal in low order modeling is to develop
a ROM that is valid over a range of operating conditions. If the
ROM is only valid for the set of parameters and initial conditions
that were used to create the ROM, a new ROM will have to be
created for each new set of parameters and initial conditions. This
negates the reason for the ROM since the full scale model will
have to be simulated for at least a brief amount of time to create the
projection modes. The amount of time is dependent on the nonli-
nearity, time step needed to capture the fundamental mode, etc.

The subspace robustness for the beam and plate indicates that
SOD-based ROMs are robust across a set of perturbed system
parameters, or off-design configurations. This can be observed by
noting that the robustness trend approaches unity and stays at
unity. For POD-based ROMs, the subspace robustness never
reaches a value of unity, although it does come very close. How-
ever, a value near unity does not guarantee that by increasing your
dimension by one, that your new subspace will be robust.

POD- and SOD-based ROMs for the beam and plate are dynam-
ically consistent at the same dimension. This metric suggests that
both methods require the same dimensional linear subspace such
that the projections of the dynamics on this subspace yield trajec-
tories that are unique (i.e., completely unfolded in phase space).

In all the examples when the projection modes are generated
from a full scale model with a set of parameters but is then com-
pared against a full scale model that has different system parameter

values, initial conditions, or forcing functions, SOD outperforms
POD. This further supports the results from the subspace robust-
ness. Furthermore, SOD adds continual improvement in its ROMs.
This can be observed in Figs. 7, 11, and 12 that plot the L2-norm
between the full-scale and reduced trajectories. As the dimension
is increased, SOD always stays constant or decreases toward zero.
However, using POD, the value can increase which suggests that
the subspace captures less dynamics then the dimension prior. This
is exactly in line with the subspace robustness plots.

This is due to the definition of POD and SOD. Again, in POD,
we are looking for an orthogonal subspace such that the projec-
tions maximize the variance. If the data that are trying to be recon-
structed are random (i.e., generated from random forcing), the
dominant direction in the phase space becomes distorted. How-
ever, the direction remains constant when the data are determinis-
tic (i.e., periodic forcing). On the other hand, SOD seeks to find a
set of orthonormal subspaces that try to maximize the smoothness
of the projections. As a result, random forcing or perturbations to
system parameters which cause changes in energy levels have a
much less effect irrespective of the dimensionality of the subspace.

8 Conclusion

A simply supported pinned–pinned beam with two nonlinear
springs left and right of center and a simply supported plate with a
nonlinear spring at the center were used to demonstrate SODs
ability over POD to develop robust, faithful ROMs. Using the two
newly developed concepts of subspace robustness and dynamical
consistency, it was shown that SOD-based ROMs are valid over a
wide range of system parameters, forcing functions, and initial
conditions as compared to POD-based ROMs. Therefore, SOD is
able to embed the nonlinear manifold of the dynamical system in
a lower dimensional space than POD. Furthermore, SOD offers
continual improvement of its ROM as the number of dimensions
is increased until the ROM fully tracks the full scale dynamical
trajectories.
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Nomenclature

LNM ¼ linear normal mode
NNM ¼ nonlinear normal mode
POC ¼ proper orthogonal coordinate

Fig. 12 (Left) Phase portrait for the 21st DOF’s full scale trajectory with random initial condi-
tion and nonlinear spring coefficient b 5 16 for the plate that we wish to reconstruct. Subspa-
ces were constructed with system parameters zeroes as the initial condition and nonlinear
spring coefficient b 5 8. (Right) Corresponding L2-norm between the full scale trajectory and
the POD-based ROM (–) and the SOD-based ROM (- -) for the randomly forced plate.
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POD ¼ proper orthogonal decomposition
POM ¼ proper orthogonal modes
POV ¼ proper orthogonal values

ROMs ¼ reduced order model
SOC ¼ smooth orthogonal coordinate
SOD ¼ smooth orthogonal decomposition
SOM ¼ smooth orthogonal modes
SOV ¼ smooth orthogonal values
SPM ¼ smooth projection mode
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