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Fundamental equation of thermodynamics [tln16]

The first and second laws of thermodynamics imply that

dU = TdS + Y dX + µdN (1)

with (
∂U

∂S

)
X,N

= T,

(
∂U

∂X

)
S,N

= Y,

(
∂U

∂N

)
S,X

= µ

is the exact differential of a function U(S, X,N).

Here X stands for V, M, . . . and Y stands for −p, H, . . ..

Note: for irreversible processes dU < TdS + Y dX + µdN holds.

U, S, X, N are extensive state variables.

U(S, X,N) is a 1st order homogeneous function: U(λS, λX, λN) = λU(S, X,N).

U [(1 + ε)S, (1 + ε)X, (1 + ε)N ] = U +
∂U

∂S
εS +

∂U

∂X
εX +

∂U

∂N
εN = (1 + ε)U.

Euler equation:
U = TS + Y X + µN. (2)

Total differential of (2):

dU = TdS + SdT + Y dX + XdY + µdN + Ndµ (3)

Subtract (1) from (3):

Gibbs-Duhem equation: SdT + XdY + Ndµ = 0.

The Gibbs-Duhem equation expresses a relationship between the intensive
variables T, Y, µ. It can be integrated, for example, into a function µ(T, Y ).

Note: a system specified by m independent extensive variables possesses
m− 1 independent intensive variables.

Example for m = 3: S, V, N (extensive); S/N, V/N or p, T (intensive).

Complete specification of a thermodynamic system must involve at least one
extensive variable.



Free energy [tln3]

Mechanical system:

Consider a mechanical system in the form of a massive particle moving in a
potential (e.g. harmonic oscillator, simple pendulum).

• Energy can be stored in a mechanical system when some agent does
work on it.

• If the work involves exclusively conservative forces, then all energy
added can be retrieved as work performed by the system.

• If the work done also involves dissipative forces, then only part of the
energy added is retrievable as work performed by the system.

• The energy stored in and retrievable from the system is called mechan-
ical energy (kinetic energy plus potential energy).

Thermodynamic system:

Consider a thermodynamic system in contact with a work source and (op-
tionally) also with a heat reservoir and/or a particle reservoir.

• Energy can be stored in a thermodynamic system when some agent
does work on it.

• If the work is done reversibly, then all the energy added can be retrieved
as work performed by the system.

• If the work is done irreversibly, then only part of the energy added is
retrievable as work performed by the system.

• The energy stored and retrievable as work is called free energy.

• The free energy stored in or retrieved from a thermodynamic system is
expressed by some thermodynamic potential.

• The form of thermodynamic potential depends on the constraints im-
posed on the system during storage and retrieval of free energy.



[tex6] Retrievable and irretrievable energy put in heat reservoir

Consider the amount n = 1mol of a monatomic classical ideal gas inside a cylinder with a piston
on one side. This system is in thermal contact with a heat bath at temperature T0 = 293K. An
external work source pushes the piston from position 1 (V1 = 5m3) in to position 2 (V2 = 3m3)
and then back out to position 1. Calculate the work ∆W12 done by the source during step
1→ 2 and the (negative) work ∆W21 done during step 2→ 1 under three different circumstances:
Compression and expansion of the gas take place (a) quasi-statically, i.e. isothermally; (b) rapidly,
i.e. adiabatically, and in quick succession; (c) adiabatically again, but with a long waiting time
between the two steps.
For each case calculate also the energy EW wasted in the heat bath after one full cycle. Find the
highest temperature TH and the lowest temperature TL reached by the gas in case (c).
The equation of state is pV = nRT , and the heat capacity is CV = 3

2nR. During the adiabatic
process: pV γ = const with γ = 5

3 .

Solution:



Legendre transform [tln77]

Given is a function f(x) with monotonic derivative f ′(x). The goal is to
replace the independent variable x by p = f ′(x) with no loss of information.

Note: The function G(p) = f(x) with p = f ′(x) is, in general, not invertible.

The Legendre transform solves this task elegantly.

• Forward direction: g(p) = f(x)− xp with p = f ′(x).

• Reverse direction: f(x) = g(p) + px with x = −g′(p)

Example 1: f(x) = x2 + 1.

• f(x) = x2 + 1 ⇒ f ′(x) = 2x ⇒ x =
p

2
⇒ g(p) = 1− p2

4
.

• g(p) = 1− p2

4
⇒ g′(p) = −p

2
⇒ p = 2x ⇒ f(x) = x2 + 1.

Example 2: f(x) = e2x.

• f(x) = e2x ⇒ f ′(x) = 2e2x = p ⇒ x =
1

2
ln

p

2
⇒ g(p) =

p

2
− p

2
ln

p

2
.

• g(p) =
p

2
− p

2
ln

p

2
⇒ g′(p) = −1

2
ln

p

2
= −x

⇒ p = 2e2x ⇒ f(x) = e2x.



Thermodynamic potentials [tln4]

• All thermodynamic potentials of a system are related to each other via
Legendre transform. Therefore, every thermodynamic potential has its
distinct set of natural independent variables.

• All thermodynamic properties of a system can be inferred from any
of the thermodynamic potentials. Any thermodynamic potential thus
yields a complete macroscopic description of a thermodynamic system.

• Any quantity U,E,A, G, Ω which is not expressed as a function of its
natural independent variables is not a thermodynamic potential and
thus contains only partial thermodynamic information on the system.

• In thermodynamics, we determine thermodynamic potentials from em-
pirical macroscopic information such as equations of state and response
functions.

• In statistical mechanics, we determine thermodynamic potentials via
partition functions from the microscopic specification (Hamiltonian) of
the thermodynamic system.

• Any spontaneous i.e. irreversible process at constant values of the natu-
ral independent variables is accompanied by a decrease of the associated
thermodynamic potential.

• The equilibrium state for fixed values of a set of natural independent
variables is the state where the associated thermodynamic potential is
a minimum.

• In the total differentials below, “=” holds for reversible processes and
“<” for irreversible processes.

Internal energy: (set X ≡ V, M and Y ≡ −p, H)

U(S, X,N) = TS + Y X + µN, dU = TdS + Y dX + µdN .

Enthalpy:

E(S, Y, N) = U − Y X = TS + µN, dE = TdS −XdY + µdN .

Helmholtz free energy:

A(T,X, N) = U − TS = Y X + µN, dA = −SdT + Y dX + µdN .

Gibbs free energy:

G(T, Y,N) = U − TS − Y X = µN, dG = −SdT −XdY + µdN .

Grand potential:

Ω(T, X, µ) = U − TS − µN = Y X, dΩ = −SdT + Y dX −Ndµ.



Alternative set of thermodynamic potentials [tln9]

Intensive variables: α = −µ

T
, β =

1

T
, γ =

p

T

The following four thermodynamic potentials are related to each other via
Legendre transform.

Entropy (microcanonical potential):

S(U, V,N) = αN + βU + γV, dS = αdN + βdU + γdV

Massieu function (canonical potential):

Φ(β, V, N) = S − βU = −A(T, V, N)/T, dΦ = αdN − Udβ + γdV

Kramers function (grandcanonical potential):

Ψ(β, V, α) = S − βU − αN = −Ω(T, V, µ)/T, dΨ = −Ndα− Udβ + γdV

Planck function:

Π(β, γ, N) = S − βU − γV = −G(T, p,N)/T, dΠ = αdN − Udβ − V dγ

Gibbs-Duhem relation: Ndα + Udβ + V dγ = 0

Distinct properties:

• Any spontaneous i.e. irreversible process at constant values of the
natural independent variables is accompanied by an increase of the
associated thermodynamic potential.

• The equilibrium state for fixed values of a set of natural independent
variables is the state where the associated thermodynamic potential is
a maximum.



Entropy of mixing [tln25]

Consider two dilute gases in a rigid and insulat-
ing box separated by a mobile conducting wall:
n1 = x1n (helium) and n2 = x2n (neon) with
x1 + x2 = 1. Thermal equilibrium: p, T, V1 =
x1V, V2 = x2V.

p

n

p T T

Vn1 1 2 V2

When the interior wall is removed, the gases mix spontaneously (irreversible
process). By how much does the entropy increase?

To calculate ∆S, consider a reversible mixing process involving an isothermal
expansion of semipermeable walls:

U = U1 + U2 with Ui(T ) = const ⇒ dUi = TdSi − pidVi = 0.

pi =
niRT

Vi

are the partial pressures exerted on the semipermeable walls.

⇒ dSi =
pi

T
dVi =

niR

Vi

dVi = nRxi
dVi

Vi

.

Entropy of mixing: ∆S = nR
∑

i

xi

∫ V

xiV

dVi

Vi

= −nR
∑

i

xi ln xi > 0.

Gibbs paradox: No entropy increase should result if the two gases happen
to be of the same kind. This distinction is not reflected in the above deriva-
tion. The paradox is resolved by quantum mechanics, which requires that
distinguishable and indistinguishable particles are counted differently.

To calculate the change in Gibbs free energy during mixing, we use the
result for G(T, p,N) of an ideal gas (see [tex15]) rewritten as G(T, p, n) =
−nRT [ln(T/T0)

α+1 − ln(p/p0)].

Initially: p1 = p2 = p ⇒ Gini = −
∑

i

nxiRT

[
ln

(
T

T0

)α+1

− ln
p

p0

]
.

Finally: pi = pxi ⇒ Gfin = −
∑

i

nxiRT

[
ln

(
T

T0

)α+1

− ln
pxi

p0

]
.

Change in Gibbs free energy: ∆G = nRT
∑

i

xi ln xi.

Use S = −
(

∂G

∂T

)
p

to recover ∆S = −nR
∑

i

xi ln xi.

Change in chemical potential: use G =
∑

i

niµi ⇒ ∆µi = RT ln xi.



Thermodynamic functions [tln5]

First partial derivatives of thermodynamic potentials with respect to natural
independent variables

Entropy:

S = −
(

∂A

∂T

)
X,N

= −
(

∂G

∂T

)
Y,N

= −
(

∂Ω

∂T

)
X,µ

Temperature:

T =

(
∂U

∂S

)
X,N

=

(
∂E

∂S

)
Y,N

Volume/magnetization (X ≡ V, M):

X = −
(

∂E

∂Y

)
S,N

= −
(

∂G

∂Y

)
T,N

Pressure/magnetic field (Y ≡ −p, H):

Y =

(
∂U

∂X

)
S,N

=

(
∂A

∂X

)
T,N

=

(
∂Ω

∂X

)
T,µ

Number of particles:

N = −
(

∂Ω

∂µ

)
T,X

Chemical potential:

µ =

(
∂U

∂N

)
S,X

=

(
∂E

∂N

)
S,Y

=

(
∂A

∂N

)
T,X

=

(
∂G

∂N

)
T,Y



Osmotic pressure [tln26]

Consider a dilute solution. It consists of a sol-
vent (e.g. water) and a solute (e.g. sugar). Sys-
tem A (pure solvent) is separated from system
B (solution) by a membrane that is permeable
to the solvent only. At thermal equilibrium, this
causes an excess pressure in system B, which is
called osmotic pressure.

B
water

+
sugar

h

water membrane
A

System A: pressure p0, concentrations xS = 0, xW = 1.
System B: pressure p = p0 + π, concentrations xS = 1− xW � 1.

Observed osmotic pressure: π = ρBgh, where ρB is the mass density of B.

The osmotic pressure is a consequence of the requirement that the solvent
on either side of the membrane must be in chemical equilibrium:

µW (T, p, xW ) = µW (T, p0, 1).

(1) Effect of solute concentration on chemical potential:

∆µ
(1)
W ≡ µW (T, p, xW )− µW (T, p, 1) = RT ln xW = RT ln(1− xS) ' −RTxS.

(2) Effect of pressure on chemical potential: (use nW = nxW , nS = nxS)

∆µ
(2)
W ≡ µW (T, p, 1)− µW (T, p0, 1) =

(
∂µW

∂p

)
T,nW

∆p =

(
∂V

∂nW

)
T,p

∆p

=
V

nW

∆p ' V π

n
.

At thermal equilibrium: ∆µ
(1)
W + ∆µ

(2)
W = 0 ⇒ V π

n
−RTxS = 0.

Van’t Hoff’s law for osmotic pressure: π =
RTnS

V
.



Maxwell’s relations [tln17]

inferred from second partial derivatives of thermodynamic potentials with
respect to two different natural independent variables

Fluid system:

dU = TdS − pdV ⇒
(

∂T

∂V

)
S

= −
(

∂p

∂S

)
V

dE = TdS + V dp ⇒
(

∂T

∂p

)
S

=

(
∂V

∂S

)
p

dA = −SdT − pdV ⇒
(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

dG = −SdT + V dp ⇒
(

∂S

∂p

)
T

= −
(

∂V

∂T

)
p

Magnetic system:

dU = TdS + HdM ⇒
(

∂T

∂M

)
S

=

(
∂H

∂S

)
M

dE = TdS −MdH ⇒
(

∂T

∂H

)
S

= −
(

∂M

∂S

)
H

dA = −SdT + HdM ⇒
(

∂S

∂M

)
T

= −
(

∂H

∂T

)
M

dG = −SdT −MdH ⇒
(

∂S

∂H

)
T

=

(
∂M

∂T

)
H



Free energy stored and retrieved [tln18]

Consider a classical ideal gas confined to a cylinder with walls in thermal
equilibrium with a heat reservoir at temperature T .

Reversible cyclic process:

1. Push the piston in from position 1 to position 2 quasi-statically.
The work on the system is done reversibly.

∆W12 =

∫ 2

1

Fdx =

∫ 2

1

dA =

∫ 2

1

(−SdT − pdV ) with dT = 0, dV < 0.

⇒ ∆W12 = A2 − A1 > 0.
The work done is equal to the excess Helmholtz potential (free energy).

2. Move the piston out from position 2 to position 1 quasi-statically.

∆W21 =

∫ 1

2

dA =

∫ 1

2

(−SdT − pdV ) with dT = 0, dV > 0.

⇒ ∆W21 = A1 − A2 = −∆W12 < 0.
All the energy stored (in the form free energy) is converted back into
work done by the system.

Irreversible cyclic process:

1. Push the piston in from position 1 to position 2 rapidly.
The initial and final equilibrium states are the same as previously, but
the process requires more work. The gas heats up, which produces a
larger pressure than in the quasi-static process.
⇒ ∆W12 > A2 − A1 > 0.
Only part of the work done on the system is stored as free energy.

2. (a) Move the piston out from position 2 to position 1 quasi-statically.
⇒ |∆W21| = |A1 − A2| < |∆W12|.
All the free energy is converted back into work but that amount is
smaller than the work previously done on the system.
(b) Move the piston out from position 2 to position 1 rapidly.
⇒ |∆W21| < |A1 − A2| < |∆W12|.
Only part of the available free energy is converted back into work, where
the full amount of free energy is only part of the work previously done
on the system.



Useful relations between partial derivatives [tln6]

Consider state variables x, y, z, w. Only two of the variables are independent.

#1

(
∂x

∂y

)
z

=

(
∂y

∂x

)−1

z

#2

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

#3

(
∂x

∂w

)
z

=

(
∂x

∂y

)
z

(
∂y

∂w

)
z

#4

(
∂x

∂y

)
z

=

(
∂x

∂y

)
w

+

(
∂x

∂w

)
y

(
∂w

∂y

)
z

Proof:

Start with total differential of x(y, z): dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz.

Substitute total differential of y(x, z): dy =

(
∂y

∂x

)
z

dx +

(
∂y

∂z

)
x

dz.

⇒
[(

∂x

∂y

)
z

(
∂y

∂x

)
z

− 1

]
dx +

[(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

]
dz = 0.

Expressions in brackets must vanish independently ⇒ #1 and #2.

Introduce parameter w: x(y, z) with y = y(w) and z = z(w).

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz ⇒ dx

dw
=

(
∂x

∂y

)
z

dy

dw
+

(
∂x

∂z

)
y

dz

dw
.

Specify path: z =const i.e. dz = 0: ⇒ #3.

Introduce parameter y: x(y, w) with w = w(y) and z = z(y).

dx =

(
∂x

∂y

)
w

dy +

(
∂x

∂w

)
y

dw ⇒ dx

dy
=

(
∂x

∂y

)
w

+

(
∂x

∂w

)
y

dw

dy
.

Specify path: z =const i.e. dz = 0: ⇒ #4.



Response functions [tln7]

Second partial derivatives of thermodynamic potentials with respect to nat-
ural independent variables. Response functions describe how one thermo-
dynamic function responds to a change of another thermodynamic function
under controlled conditions. Response functions are important because of
their experimental accessibility. Consider a system with N = const.

Thermal response functions (heat capacities): C ≡ δQ

δT

δQ = TdS =


T

(
∂S

∂T

)
X

dT + T

(
∂S

∂X

)
T

dX for S(T,X)

T

(
∂S

∂T

)
Y

dT + T

(
∂S

∂Y

)
T

dY for S(T, Y )

⇒ CX = T

(
∂S

∂T

)
X

= −T

(
∂2A

∂T 2

)
X

, CY = T

(
∂S

∂T

)
Y

= −T

(
∂2G

∂T 2

)
Y

where X ≡ V, M and Y ≡ −p, H.

Equivalent expressions of CX , CY are derived from δQ = dU − Y dX:

δQ =

(
∂U

∂T

)
X

dT +

[(
∂U

∂X

)
T

− Y

]
dX for U(T,X)

⇒ CX ≡
δQ

δT

∣∣∣∣
X

=

(
∂U

∂T

)
X

⇒ CY ≡
δQ

δT

∣∣∣∣
Y

= CX +

[(
∂U

∂X

)
T

− Y

](
∂X

∂T

)
Y

Also, from δQ = dE + XdY we infer CY =

(
∂E

∂T

)
Y

Note that U(T,X) and E(T, Y ) are not thermodynamic potentials.

1



Mechanical response functions

Isothermal compressibility: κT ≡ −
1

V

(
∂V

∂p

)
T

= − 1

V

(
∂2G

∂p2

)
T

Adiabatic compressibility: κS ≡ −
1

V

(
∂V

∂p

)
S

= − 1

V

(
∂2E

∂p2

)
S

Thermal expansivity: αp ≡
1

V

(
∂V

∂T

)
p

Relations with thermal response functions Cp, CV :

Cp

CV

=
κT

κS

, Cp =
TV α2

p

κT − κS

, CV =
TV α2

pκS

κT (κT − κS)

⇒ Cp − CV =
TV α2

p

κT

> 0

Magnetic response functions

Isothermal susceptibility: χT ≡
(

∂M

∂H

)
T

= −
(

∂2G

∂H2

)
T

=

(
∂2A

∂M2

)−1

T

Adiabatic susceptibility: χS ≡
(

∂M

∂H

)
S

= −
(

∂2E

∂H2

)
S

“You name it”: αH ≡ −
(

∂M

∂T

)
H

Relations with thermal response functions CH , CM :

CH

CM

=
χT

χS

, CH =
Tα2

H

χT − χS

, CM =
Tα2

HχS

χT (χT − χS)

⇒ CH − CM =
Tα2

H

χT

2



Isothermal and adiabatic processes [tln8]

Fluid system:

Start from TdS = dU + pdV with U = U(T, V )

TdS =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ p

]
dV

(a)
= CV dT +

1

αpV
(Cp − CV )dV

Isotherm: dT = 0 ⇒ TdS =
1

αpV
(Cp − CV )dV

(b)
= −κT

αp

(Cp − CV )dp

Adiabate: dS = 0 ⇒ dT = − 1

αpV

Cp − CV

CV

dV
(c)
=

κS

αp

Cp − CV

CV

dp

(a) Use Cp − CV =

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

,

(
∂V

∂T

)
p

= V αp

(b) Use dV =

(
∂V

∂p

)
T

dp = −V κT dp

(c) Use dV = −V κSdp

Magnetic system:

Start from TdS = dU −HdM with U = U(T, M).

TdS =

(
∂U

∂T

)
M

dT +

[(
∂U

∂M

)
T

−H

]
dM = CMdT − 1

αH

(CH − CM)dM

Isotherm: dT = 0 ⇒ TdS = − 1

αH

(CH − CM)dM = −χT

αH

(CH − CM)dH

Adiabate: dS = 0 ⇒ dT =
1

αH

CH − CM

CM

dM =
χS

αH

CH − CM

CM

dH



Conditions for thermal equilibrium [tln19]

Consider a fluid system in a rigid and isolated container that is divided into
two compartments A and B by a fictitious partition.

Conserved extensive quantities:
U = UA + UB = const, V = VA + VB = const, N = NA + NB = const.

Fluctuations in internal energy: ∆UA = −∆UB

Fluctuations in volume: ∆VA = −∆VB

Fluctuations in number of particles: ∆NA = −∆NB

Entropy: S(U, V,N), dS =
1

T
dU +

p

T
dV − µ

T
dN

∆S =
∑

α=A,B

[(
∂Sα

∂Uα

)
VαNα

∆Uα +

(
∂Sα

∂Vα

)
UαNα

∆Vα +

(
∂Sα

∂Nα

)
UαVα

∆Nα

]
=

(
1

TA

− 1

TB

)
∆UA +

(
pA

TA

− pB

TB

)
∆VA +

(
µA

TA

− µB

TB

)
∆NA

At thermal equilibrium, the entropy is a maximum. Hence the entropy change
due to fluctuations in U, V,N must vanish.

⇒ TA = TB, pA = pB, µA = µB

If the fictitious wall is replaced by a real, mobile, conducting wall, then
particle fluctuations in the two compartments are suppressed: ∆NA = 0. In
this case, µA 6= µB is possible at equilibrium.

If the mobile, conducting wall is replaced by a rigid, conducting wall, then
volume fluctuations in the two compartments are also suppressed: ∆VA = 0.
In this case, also pA 6= pB is possible at equilibrium.

If the conducting wall is replaced by an insulating wall, then energy fluctu-
ations in the two compartments are also suppressed: ∆UA = 0. In this case,
also TA 6= TB is possible at equilibrium.



Stability of thermal equilibrium [tln20]

Consider a fluid system with N = const in thermal equilibrium at tempera-
ture T0 and pressure p0. Any deviation from that state must cause an increase
in Gibbs free energy:

G(T0, p0) = U(S, V )− T0S + p0V.

Effects of fluctuations in entropy and volume:

δG =

[(
∂U

∂S

)
V

− T0

]
δS +

[(
∂U

∂V

)
S

+ p0

]
δV

+
1

2

[(
∂2U

∂S2

)
(δS)2 + 2

(
∂2U

∂SδV

)
δSδV +

(
∂2U

∂V 2

)
(δV )2

]

Equilibrium condition:

(
∂U

∂S

)
V

− T0 = 0,

(
∂U

∂V

)
S

+ p0 = 0

Stability condition:

(
∂2U

∂S2

)
(δS)2 + 2

(
∂2U

∂SδV

)
δSδV +

(
∂2U

∂V 2

)
(δV )2 > 0.

Condition for positive definite quadratic form:

∂2U

∂S2
> 0,

∂2U

∂V 2
> 0,

∂2U

∂S2

∂2U

∂V 2
−

(
∂2U

∂SδV

)2

> 0.

Implications: (
∂2U

∂S2

)
V

=

(
∂T

∂S

)
V

=
T

CV

> 0 ⇒ CV > 0.

(
∂2U

∂V 2

)
S

= −
(

∂p

∂V

)
S

=
1

V κS

> 0 ⇒ κS > 0.(
∂2U

∂S2

)
V

(
∂2U

∂V 2

)
S

>

(
∂2U

∂SδV

)2

⇒ T

V κSCV

>

(
∂T

∂V

)2

S



Jacobi transformations [tln21]

Change of independent variables in a state function. Unlike in a Legendre
transform, the state variable in question remains the same.

Task: Calculate Cp = T

(
∂S

∂T

)
p

from entropy function S(U, V ).

Use

(
∂S

∂U

)
V

=
1

T
,

(
∂S

∂V

)
U

=
p

T
and solve for T (V, U), p(V, U).

Solving T (V, U), p(V, U) for V (T, p), U(T, p) to obtain S(T, p) amounts to the
simultaneous solution of two nonlinear equations for two variables.

Solving

dT =

(
∂T

∂V

)
U

dV +

(
∂T

∂U

)
V

dU

dp =

(
∂p

∂V

)
U

dV +

(
∂p

∂U

)
V

dU

for

dV =
1

J(V, U)

[(
∂p

∂U

)
V

dT −
(

∂T

∂U

)
V

dp

]
≡ J1(V, U)

J(V, U)

dU =
1

J(V, U)

[
−

(
∂p

∂V

)
U

dT +

(
∂T

∂V

)
U

dp

]
≡ J2(V, U)

J(V, U)

with Jacobian determinants

J(V, U) =

∣∣∣∣∣∣∣∣
(

∂T

∂V

)
U

(
∂T

∂U

)
V(

∂p

∂V

)
U

(
∂p

∂U

)
V

∣∣∣∣∣∣∣∣ ,

J1(V, U) =

∣∣∣∣∣∣∣∣
dT

(
∂T

∂U

)
V

dp

(
∂p

∂U

)
V

∣∣∣∣∣∣∣∣ , J2(V, U) =

∣∣∣∣∣∣∣∣
(

∂T

∂V

)
U

dT(
∂p

∂V

)
U

dp

∣∣∣∣∣∣∣∣ ,

amounts to the solution of two linear equations for two variables.

⇒ dS =
1

T
dU +

p

T
dV

=
1

TJ

[
−

(
∂p

∂V

)
U

+ p

(
∂p

∂U

)
V

]
dT +

1

TJ

[
−p

(
∂T

∂U

)
V

+

(
∂T

∂V

)
U

]
dp

⇒ Cp = T

(
∂S

∂T

)
p

=
1

J

[
p

(
∂p

∂U

)
V

−
(

∂p

∂V

)
U

]
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