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One Degree of Freedom [mln71]

Newton’s equation of motion (for autonomous system):

mẍ = F (x, ẋ). (1)

• Conservative system: F = F (x) ⇒ solution by quadrature [mln4].

• Non-autononmous system: F = F (x, ẋ, t) ⇒ transformation to au-
tonomous system with two degrees of freedom.

Equivalent (phase-plane) representation of (1):

ẋ = y, mẏ = F (x, y). (2)
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• Equations (2) determine a vector field in phase plane (x, my).

• Any solution of (2) for given initial condition (x0, my0) describes a
trajectory in phase plane.

• Trajectories are tangential to vector field (ẋ, mẏ).

• Phase plane is filled with trajectories (phase flow).

• Trajectories do not intersect (Cauchy’s existence theorem).

• At fixed points (ẋ = 0, mẏ = 0) system is at rest.

• In conservative systems, all trajectories lie on lines of constant energy,
E(x, y) = const.

• Phase portrait describes salient features of phase flow [msl5].

• Closed trajectories describe periodic motion.

• In conservative systems the phase flow is incompressible.



Solution by Quadrature [mln 4]

Any conservative, autonomous system with one degree of freedom is solvable
by quadrature.

Equation of motion: mẍ = F (x) (2nd order ODE).

Solution by quadrature is a three-step process:

• Identify the first integral (conserved energy):

Define V (x) = −
∫ x

x0

dxF (x), F (x) = −dV

dx
;

write mẋẍ− ẋF (x) =
d

dt

[
1

2
mẋ2 + V (x)

]
= 0;

⇒ E = T + V =
1

2
mẋ2 + V (x) = const.

• The first integral reduces the equation of motion to a 1st order ODE:
dx

dt
=
√

2 [E − V (x)] /m ⇒
∫ t

0

dt =

∫ x

x0

dx√
2 [E − V (x)] /m

.

• Invert the resulting function t(x) to obtain the solution x(t).

Application: harmonic oscillator

• mẍ = −kx ⇒ mẋẍ + mω2
0ẋx =

d

dt

[
1

2
mẋ2 +

1

2
mω2

0x
2

]
= 0, ω2

0 =
k

m
.

⇒ E =
1

2
mẋ2 +

1

2
mω2

0x
2 = const.

• t =

∫ x

x0

dx√
2E/m− ω2

0x
2

=
1

ω0

arcsin

(
xω0√
2E/m

)
+ const.

• x(t) =

√
2E

mω2
0

sin(ω0t + const).



[mex5] Periodic motion in quadratic and quartic potentials

Use the expression

T = 2
∫ xmax

xmin

dx√
2[E − V (x)]/m

to calculate the dependence on the amplitude xmax of the period T for the motion of a particle
with mass m moving
(a) in the quadratic potential V2(x) = 1

2mω
2
0x

2,
(b) in the quartic potential V4(x) = 1

4αx
4.

Solution:



[mex232] Potential energy of periodic motion reconstructed

Consider a particle of mass m undergoing oscillatory motion at energy E in a symmetric potential
V (x) with V (0) = 0. Show that for given period T (E) of the motion the shape of the potential
energy can be reconstructed from the expression

x(V ) =
1

2π
√

2m

∫ V

0

dE
T (E)√
V − E

.

Note the inverse relationship of this result to that of [mex5]. Apply the above expression to the
case where T = 2π/ω0 independent of E.

Solution:



[mex6] Periodic motion in 2D phase space

Let S(E) be the area enclosed by the trajectory corresponding to a periodic motion with energy
E in 2D phase space (x, ẋ).
(a) Show that the period of the motion along this trajectory is

T = m
dS

dE
.

(b) Use this relation to calculate the period T of a particle with mass m moving in the quadratic
potential V2(x) = 1

2mω2
0x2 and for a particle of mass m moving in the linear potential V1(x) = a|x|.

Solution:



[mex111] Separatrix tangent lines at hyperbolic point

Consider a particle of mass m moving along the x-axis under the influence of a conservative force
described by a potential energy function V (x) which has a smooth maximum at x = x̄ with
curvature |V ′′(x̄)| = k.
(a) Find the slope of the tangent lines to the separatrix at the resulting hyperbolic fixed point
(x̄, 0) in the (x, ẋ)-plane.
(b) Calulate the time it takes the particle to move between two points x1 and x2 very close to the
hyperbolic point (x = x̄, ẋ = 0) on the separatrix.

Solution:



Solution by Separation of Variables [mln72]

Velocity-dependent attenuation

Equation of motion: mẍ = F with F = f(ẋ)g(t).

⇒ m
dv

dt
= f(v)g(t) ⇒ m

∫ v

v0

dv

f(v)
=

∫ t

0

dt g(t).

Solve for v(t). Then calculate x(t) =

∫ t

0

dt v(t).

Applications: [mex15], [mex16], [mex230].

Rocket motion

Instantaneous momentum of rocket: pR(t) = m(t)v(t).

Momentum increment of exhaust gases: ∆pE(t) = −[u− v(t)](−∆m).

Speed of exhaust gases relative to rocket: u.

Equation of motion: ṗR + ṗE = Fext.

⇒ mv̇ + ṁv − (u− v)(−ṁ) = Fext.

⇒ mv̇ + ṁu = Fext.

Rocket motion in free space:

Fext = 0 ⇒ dv

u
= −dm

m
v(t) = u ln

m0

m(t)
.

Applications: [mex17], [mex18], [mex229].

Photon rocket [mex223].



[mex18] Rocket launch in uniform gravitational field

A rocket is launched from rest against a uniform gravitational field g by burning fuel at a constant
rate, m = m0(1− αt). The speed of the exhaust gases relative to the rocket is u.
(a) What is the minimum rate αmin at which fuel must be burned to ensure lift-off at t = 0.
(b) Calculate the velocity v(t) of the rocket and the height h(t) above ground.

Solution:



[mex101] A drop of fluid disappearing

A spherical drop of fluid with mass density ρ, initially of radius r0, shrinks at a rate that is
proportional to its size. Find the radius of the drop as a function of time.
(a) Assume that the mass decreases at a rate proportional to the surface area of the drop as a
result of evaporation.
(b) Assume that the mass decreases at a rate proportional to the volume of the drop as a result of
some kind of chemical instability.

Solution:



[mex15] Range and duration of attenuated motion

A particle of mass m and initial velocity v0 moves along the x-axis under the influence of a velocity-
dependent attenuation force:
(a) F (v) = −α

√
v, (b) F (v) = −βv, (c) F (v) = −γv2.

In each case determine the range R of the particle (maximum displacement) and the duration T
of the motion before the particle comes to a stop.

Solution:



[mex16] Projectile in resistive medium

A particle of mass m is projected vertically upward with initial velocity v0 against a uniform
gravitational field g and against a resistive force
(a) F (v) = −βv, (b) F (v) = −γv2.
In each case find the maximum height h reached by the particle and the time T it takes to get
there.

Solution:



[mex112] Balancing the water level in a cone

Water flows into a cone-shaped container at a constant
rate (volume per unit time) and evaporates at a rate
proportional to the free surface area.

(a) Determine the equilibrium position of the water level,
expressed as the volume Veq at which the two processes
are in balance.

(b) Determine whether or not that stationary state is
asymptotically stable.

(c) Determine the time dependence of the volume if the
container is empty at first.



[mex17] Rocket motion in resistive medium

A rocket is launched from rest in a resistive medium (Fext = −βv) by burning fuel at a constant
rate, m = m0(1− αt). The speed of the exhaust gases relative to the rocket is u.
(a) Calculate the velocity v(t) of the rocket.
(b) Take the limit β → 0 in the result of (a) to recover the result v(t) = u ln[m0/m(t)].

Solution:



[mex203] Position-dependent acceleration

Consider a particle of mass m moving along the x-axis. The particle experiences an acceleration
that depends on its position as follows:

a = 6γx1/3, γ = 1m2/3s−2.

What time does it take the particle to move from position x = 1m to position x = 8m if it has
zero velocity at x = 0?

Solution:



[mex229] Growth of falling raindrop

A spherical raindrop of mass density ρW falling through
fog of mass density ρF accumulates mass by absorbing
all fog droplets (assumed stationary) in its way. Con-
struct a differential equation (nonlinear second order
ODE) for the radius r of the raindrop. Neglect the
effects of air resistance on the raindrop.



[mex230] Modeling attenuation

An object with initial velocity v0 is observed to grind to a halt during the time interval 0 < t < τ
according to the emprical law,

x(t) =
1
3
v0τ

[
1−

(
1− t

τ

)3
]
,

where τ is a constant. Construct the equation of motion in the form mv̇ = f(v).

Solution:



[mex257] Exponential attenuation

A particle of mass m is launched at time t = 0 from position x = 0 in positive x-direction with
initial velocity v0. Acting on the particle, while it moves with v > 0, is the attenuating force
F = −fev/c, where f, c are positive constants.
(a) At what time τ does the particle come to a stop?
(b) At what position R does the particle come to a stop? Hint: Use dv/dx = (dv/dt)(dx/dt)−1.
(c) What are the maximum values of τ and R that this attenuating force permits, irrespective of
how large v0 is?
(d) For v0 � c, the attenuating force can be interpreted as kinetic friction, F ' −f = const with
f
.
= µkmg. What are the values of τ and R in this regime?

Solution:
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