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2. Fundamentals II

• Phase separation

– Helmholtz and Gibbs free energies of solutions [pln26]

– homogeneous state vs phase-separated state [pln27]

– osmotic pressure [pln28]

– chemical potential [pln29]

– dilute solutions [pln30]

– two-phase coexistence [pln31]

– lattice mean-field model free-energy density [pln32]

– phase diagram of mixing-unmixing transition [psl4]

– stability - metastability - instability [pln33]

– osmotic pressure in two-component fluid system [pex48]

– chemical potential in two-component system [pex46]

– phase diagram of two-component fluid [pex47]

– water solubility of hydrocarbon [pex45]

– osmotic weight lifting [pex49]

– spinodal decomposition process [pln34]

– kinetics of spinodal decomposition [psl5]

– solution of linearized Cahn-Hilliard equation [pex20]

– nucleation and growth of domains [pln35]

• Freezing

– Gibbs free energy near freezing/melting [pln36]

– homogeneous vs heterogeneous nucleation [pln37]

– catalytic freezing of spherical cap [pex21]

– advancing font of solidification [pln38]



Free Energy of Solutions [pln26]

Two-component incompressible fluid system: solute (p) and solvent (s).

Terms of specification:

• Np, Ns; mp,ms: numbers and masses of molecules,

• vp, vs; ρp
.
= mp/vp, ρs

.
= ms/vs: specific volumes1 and mass densities,

• V = Npvp +Nsvs: volume,

• c .= Npmp

V
: weight concentration of solute,

• xm
.
=

Np

Np +Ns

: molar fraction of solute,

• φm
.
=

Npmp

Npmp +Nsms

: mass fraction of solute,

• φ .
=

Npvp
Npvp +Nsvs

=
Npvp
V

: volume fraction of solute.

Relation : c = ρpφ.

Helmholtz free energy: F (T,Np, Ns) = U − TS,

B internal energy U to be constructed from interactions,

B entropy S to be derived from combinatorics,

B volume V via Np, Ns (see above).

Extensivity: F (T, αNp, αNs) = αF (T,Np, Ns).

Set α = vp/V ⇒ F

(
T,
Npvp
V

,
Nsvp
V

)
=
vp
V
F (T,Np, Ns).

⇒ F (T,Np, Ns) =
V

vp
F

(
T, φ,

vp
vs

(1− φ)

)
.
= V f((T, φ).

Gibbs free energy: G(T, p,Np, Ns) = F + pV = V
[
p+ f(T, φ)

]
.

The function f(T, φ) has yet to be determined from molecular interactions
and the combinatorics of molecular configurations.

1In the fluids considered here all volume is taken up by either solute or solvent particles.
In gases the specific volume, V/N , is unrelated to the size of the particles.



Homogeneous State vs Phase-Separated State [pln27]

When we mix solutions of the same solute and solvent materials in different
amounts and concentrations the system equilibrates either in a homogeneous
state or in a phase-separated state.

Initial state: (V1, φ1), (V2, φ2) with φ1 < φ2.

Amounts expressed by x
.
=

V1
V1 + V2

, 1− x =
V2

V1 + V2
.

Concentrations expressed by volume fractions of solute: φ1, φ2.

Homogeneous state: (V, φ) with V = V1 +V2 and φ = xφ1 + (1−x)φ2.

Stability criterion for homogeneous state:

(V1 + V2)f(T, φ) < V1f(T, φ1) + V2f(T, φ2)

⇒ f
(
T, xφ1 + (1− x)φ2

)
< xf(T, φ1) + (1− x)f(T, φ2)

⇒ ∂2f

∂φ2
> 0, φ1 < φ < φ2.

Free energy minimized at F = V f(T, φ).

Phase-separated state: (Va, φa), (Vb, φb) with V = Va+Vb and φa < φb.

φ(Va + Vb) = φaVa + φbVb ⇒ Va = V
φb − φ
φb − φa

, Vb = V
φ− φa

φb − φa

.

Free energy minimized at F = Vaf(T, φa) + Vbf(T, φb).



Osmotic Pressure [pln28]

Mixing solute and solvent raises the entropy S. If molecular interactions
make the internal energy U either increase by an amount smaller than TS
or decrease then the free energy F = U − TS decreases.

Mixing is thermodynamically favorable in these conditions. This tendency
can be converted into a thermodynamic force that acts, for example, on a
semi-permeable wall.

Helmholtz free energy: Ftot = V f(T, φ) + (Vtot − V )f(T, 0),

Definition of osmotic pressure: π
.
= −

(
∂Ftot

∂V

)
T

.

Use φ =
Npvp
V

from [pln26] and infer
∂φ

∂V
= − φ

V
.

General expression for osmotic pressure:

π(T, φ) = −f(T, φ) + φf ′(T, φ) + f(T, 0), f ′ .=
∂f

∂φ
.



Chemical Potential [pln29]

Gibbs free energy (from [pln26]): G(T, p,Np, Ns) = V
[
p+ f(T, φ)

]
.

Thermodynamic functions from first derivatives:

• entropy and volume: S
.
= −

(
∂G

∂T

)
p,Np,Ns

, V
.
=

(
∂G

∂p

)
T,Np,Ns

,

• chemical potentials: µp
.
=

(
∂G

∂Np

)
T.p,Ns︸ ︷︷ ︸

solute

, µs
.
=

(
∂G

∂Ns

)
T.p,Np︸ ︷︷ ︸

solvent

B Heat tends to flow, diffuse, or radiate from regions of high T to regions
of low T .

B Fluid tends to flow from regions of high p to regions of low p.

B Solute (solvent) tends to migrate from regions of high µp (µs) to regions
of low µp (µs).

Expressions for the chemical potentials from part (a) of [pex46].

• solute: µp(T, p, φ) = vp
[
p+ f(T, φ) + (1− φ)f ′(T, φ)

]
,

• solvent: µs(T, p, φ) = vs
[
p+ f(T, φ)− φf ′(T, φ)

]
,

where φ = Npvp/V , V = Npvp +Nsvs.

Chemical potential of solvent depends on osmotic pressure (from [pln28]):

µs(T, p, φ) = µ(0)
s (T ) + vs

[
p− π(T, φ)

]
, µ(0)

s (T )
.
= vsf(T, 0).

Dependence of chemical potentials on volume fraction of solute:

∂µp

∂φ
= vp(1− φ)f ′′(T, φ),

∂µs

∂φ
= −vsφf ′′(T, φ).

B f ′′(T, φ) > 0 ⇒ ∂µp

∂φ
> 0,

∂µs

∂φ
< 0,

⇒ solute migrates from high to low φ and solvent from low to high φ,
⇒ homogeneous state favored.

B f ′′(T, φ) < 0 ⇒ ∂µp

∂φ
< 0,

∂µs

∂φ
> 0,

⇒ solute migrates from low to high φ and solvent from high to low φ,
⇒ phase-separated state favored.



Dilute Solutions [pln30]

Criterion: φ� 1.

Expansion of osmotic pressure in powers of volume fraction:

π(T, φ) =
kBT

vp
φ + A2φ

2 + A3φ
3 + · · · (1)

B A2, A3: virial coefficients.

B Leading van’t Hoff term, nkBT , with number density, n
.
= Np/V =

φ/vp, is independent of molecular interactions.

B A2 > 0 is realized for repulsive solute interaction; A2 < 0 is possible if
solute interaction is attractive.

Consistent expansion of free energy function f(T, φ) (from [pln26]):

f(T, φ) = f(T, 0) + k0φ+
kBT

vp
φ lnφ+ A2φ

2 +
1

2
A3φ

3 + · · · (2)

with T -dependent k0, A2, A3.

To prove consistency use π(φ) = f(0)+φf ′(φ)−f(φ) from [pln28] and convert
the rhs into f(0) + φ2[f(φ)/φ)]′.

Chemical potentials inferred from (2):

• solvent

µs(T, φ) = µ(0)
s (T ) + vsp−

vs
vp
kBTφ− vs

[
A2φ

2 + A3φ
3 + · · ·

]
,

• solute

µp(T, φ) = µ(0)
p (T ) + vpp+ kBT lnφ

+ vp

[(
2A2 −

kBT

vp

)
φ+

(
3

2
A3 − A2

)
φ2 + · · ·

]
.

[extracted from Doi 2013]



Two-Phase Coexistence [pln31]

Coexistence of two phases with φa < φb.

Conservation of volume and solute volume: V = Va+Vb, φV = φaVa+φbVb.

⇒ Va =
φb − φ
φb − φa

V, Vb =
φ− φa

φb − φa

V, φa ≤ φ ≤ φb.

Profile of f(T, φ) that accommodates phase separation:

Helmholtz free energy of (i) homogeneous and (ii) phase-separated states:

(i) F = V f(T, φ),

(ii) F = Vaf(T, φa) + Vbf(T, φb) = V

[
φb − φ
φb − φa

f(T, φa) +
φ− φa

φb − φa

f(T, φb)

]
.

Minimum free energy of states (i) and (ii) in comparison (see graph).

Transition points φb, φb from geometric criteria:

f ′(T, φa) = f ′(T, φb), f(T, φa) + f ′(T, φa)[φb − φb] = f(T, φb).

Consequences for chemical potential and osmotic pressure [pex46]:

• µp(T, φa) = µp(T, φb), µs(T, φa) = µs(T, φb),

• π(T, φa) = π(T, φb).

[extracted from Doi 2013]



Model Free-Energy Density [pln32]

Lattice-gas model of two-component incompressible fluid with internal en-
ergy determined in mean-field approximation and entropy by maximum ran-
domness in configuration space. The calculation of both ingredients ignores
spatial correlations between solute particles (p) and solvent particles (s).

• Number of cells: N = Np +Ns = φN + (1− φ)N .

• Cell volume: vp = vs
.
= vc.

• Total volume: V = Nvc.

• Volume fraction of solute: φ = Np/N .

• Hardcore repulsion implied by single occupancy of all cells.

• VDW attraction via nearest-neighbor cell coupling: εpp, εss, εps.

• Coordination number: z (z = 6 in cubic lattice shown).

Statistical mechanical task:

• Energy of microstate: Ei = N
(pp)
i εpp +N

(ss)
i εss +N

(ps)
i εps.

• Canonical partition function: ZN =
∑
i

e−Ei/kBT .

• Helmholtz free energy: F = −kBT lnZN = U − TS.

• Task here carried out by approximating U and S.

Average numbers of nearest-neighbor pairs (ignoring correlations):

• N̄pp = 1
2
Npzφ = 1

2
Nzφ2,

• N̄ss = 1
2
Nsz(1− φ) = 1

2
Nz(1− φ)2,

• N̄ps = Npz(1− φ) = Nzφ(1− φ).



Internal energy (relative to unmixed state):

U =
1

2
zN
{[
εppφ

2 + εss(1− φ)2 + 2εpsφ(1− φ)
]
−
[
εppφ+ εss(1− φ)

]}
= −1

2
zN
[
εpp + εss − 2εps︸ ︷︷ ︸

∆ε

]
φ(1− φ).

Energetically, ∆ε > 0 favors mixing and ∆ε < 0 favors unmixing.

Multiplicity of microstates: W =

(
N
Np

)
=

N !

Np!(N −Np)!
.

Entropy of mixing (ignoring correlations): S = kB lnW .

Use Stirling approx., lnN ! ' N lnN −N , and volume fraction, φ = Np/N .

S = NkB
[

lnN − 1− φ lnNp + φ− (1− φ) ln(N −Np) + 1− φ
]

= NkB
[
− φ lnφ− (1− φ) ln(1− φ)

]
.

Helmholtz free-energy density, f(T, φ)
.
= [U − TS]/V :

f(T, φ) =
kBT

vc

[
φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ)

]
, χ

.
= − z

2kBT
∆ε.

Typically, χ > 0 is realized. Overall then (energetically and entropically),
low χ (high T ) favors mixing and high χ (low T ) favors unmixing.

[extracted from Doi 2013]
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Mixing-Unmixing Transition [psl4]

Helmholtz free energy density (scaled) versus volume fraction φ for se-
lected values of interaction parameter χ:
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• χ ≤ 2: convex function with zero slope at φ = 1
2
,

• χ = 2: zero curvature at φ = 1
2

in addition to zero slope,

• χ > 2: concave portion centered at φ = 1
2

gradually grows.

Phase diagram in the (φ, χ)-plane:

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2
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4

5

Φ

Χ

stable mixed state

stable unmixed state

regions of
metastability

•critical point
coexistence

curve
spinodal

line

Critical point: Lowest value of χ for which phase separation exists.

B Criterion: f ′(φ) = f ′′(φ) = 0.

B Solution: φc = 1
2
, χc = 2.



Spinodal line: Boundary of region of stable phase-separated states.

B Criterion: f ′′(φ) = 0 at φ 6= 1
2

(inflection points).

B Solution: χsp =
1

2φ(1− φ)
[pex47].

Coexistence line: Boundary of region of stable mixed states.

B Criterion: f ′(φ) = 0 at φ 6= 1
2

(local minima).

B Solution: χco =
1

1− 2φ
ln

1− φ
φ

[pex47].

Osmotic pressure:

General expression from [pln28]:

π(T, φ) = −f(T, φ) + φf ′(T, φ) + f(T, 0).

Prediction of mean-field model [pex48]:

π(T, φ) =
kBT

vc

[
− ln(1− φ)− χφ2

] φ�1
 

kBT

vc

[
φ+

(
1
2
− χ

)
φ2
]
.

Interpretation of last expression:

B First term represents van’t Hoff osmotic pressure,

B Second term with 2nd virial coefficient A2 = 1
2
−χ represents correction

with opposite trends due to hardcore repulsion (1
2
) and nearest-neighbor

coupling (χ).

Stability criterion for osmotic pressure: π′(T, φ) > 0.

B χ < χc: π is stable for exactly one value of φ,

B χ > χc: π is stable for two distinct values of φ.

[extracted in part from Doi 2013]

2



Stability – Metastability – Instability [pln33]

Examine local stability of mixed (homogeneous) state in two regions.

• φ = φ1 in region of global metastability: χco(φ) < χ < χsp(φ);
convex segment of function f(T, φ);
curve segment falls below straight-line segment;
mixed state is stable against local fluctuations.

• φ = φ2 in region of global instability: χ > χsp(φ) (see [psl4]);
concave segment of function f(T, φ);
curve segment lies above straight-line segment;
mixed state is unstable against local fluctuations.

Kinetics of unmixing is different in the two regions:

• χco(φ) < χ < χsp(φ): unmixing reguires fluctuations of wide range;
energy barriers present; (slow) nucleation process.

• χ > χsp(φ): unmixing initiated by small fluctuations; energy barriers
absent; (fast) spinodal decomposition process.

Distinguish two types of nucleation processes:

- homogeneous nucleation involves high barriers and thus entails longer
time scales;

- heterogeneous nucleation relies on presence of impurities/interfaces,
which lower the barriers and thus shorten the time scales.



[pex48] Osmotic pressure in two-component fluid system

Consider a two-component fluid system with Helmholtz free energy,

F = V f(T, φ) + (Vtot − V )f(T, 0),

where V = Npvp +Nsvs is the volume of the solution on one side of a semi-permeable membrane
and Vtot − V the volume of the pure solvent on the other side. The numbers of solute and
solvent particles in the solution are Np and Ns, respectively. Their specific volumes are vp and
vs, respectively. The free-energy density f(T, φ) is an unspecified function of temperature T and
volume fraction φ = Npvp/V of solute particles.
(a) Derive, via the standard thermodynamic relation π = −(∂F/∂V )T , the following general
expression of the osmotic pressure in a two-component fluid:

π(T, φ) = −f(T, φ) + φf ′(T, φ) + f(T, 0), f ′
.
= ∂f/∂φ.

(b) Apply this expression to the explicit free-energy density f(T, φ) used in [pex47] for a two-
component fluid in a single compartment (no membrane). Plot π(T, φ) thus obtained in explicit
form versus φ for three parameter values χ > χc, χ = χc, and χ > χc. Identify the number of
coexisting phases and their volume fractions φ in each case. Expand the expression to second order
in powers of φ and interpret the physical significance of the first two terms.

Solution:



[pex46] Chemical potential in two-component system

Consider a two-component fluid system with Gibbs free energy,

G = V
[
p+ f(T, φ)

]
,

where V = Npvp + Nsvs is the volume and p the pressure. The numbers of solute and solvent
particles are Np and Ns, respectively. Their specific volumes are vp and vs, respectively. The free-
energy density f(T, φ) is an unspecified function of temperature T and volume fraction φ = Npvp/V
of solute particles.
(a) Derive, via standard thermodynamic relations µp = (∂G/∂Np)T,p,Ns

and µs = (∂G/∂Ns)T,p,Np
,

the following general expressions for the chemical potentials of the solute and solvent particles:

µp(T, p, φ) = vp
[
p+ f(T, φ) + (1 − φ)f ′(T, φ)

]
, µs(T, p, φ) = vs

[
p+ f(T, φ) − φf ′(T, φ)

]
,

where we use the convention f ′
.
= ∂f/∂φ.

(b) If the profile of f(T, φ) permits the coexistence of two phases with volume fractions φa <
φb then the common-tangent conditions must be satisfied: f ′(T, φa) = f ′(T, φb) and f(T, φa) +
f ′(T, φa)[φb − φa] = f(T, φb). Show that it follows that the chemical potentials must be the same
in both phases: µp(T, φa) = µp(T, φb) for the solute and µs(T, φa) = µs(T, φb) for the solvent.

Solution:



[pex47] Phase diagram of two-component fluid

The free-energy density describing the phase separation of a two-component fluid as derived in a
mean-field lattice model has the form

f(T, φ) =
kBT

vc

[
φ lnφ+ (1 − φ) ln(1 − φ) + χφ(1 − φ)

]
, χ = − z∆ε

2kBT
> 0,

where φ is the volume fraction of the solute, vc is the specific volume of solute and solvent particles,
z is the coordination number, and ∆ε is a measure of the (attractive) interaction between solute
particles and between solvent particles.
(a) Derive explicit expressions for the spinodal line χsp(φ) as the locations of inflection points and
the coexistence curve χco(φ) as the locations of local minima.
(b) Plot the phase diagram in the (φ, χ) plane with proper labels and the proper identifications of
regions where the mixed macrostate is stable, unstable, or metastable.
(c) For a certain realization of this model the energy parameter assumes the value χ = 600/T ,
where T is the temperature measured in units of Kelvin. What is the highest temperature for
which phase separation is a possibility? In the phase-separated state at temperature 273K what
are the solute volume fractions φco on the coexistence curve and φsp on the spinodal line?

Solution:



[pex45] Water solubility of hydrocarbons

The hydrophobicity of some linear hydrocarbons is expected and observed to increase with carbon
content. This attribute is incorporated into the model free-energy density

f(T, φ) =
kBT

vc

[
φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ)

]
by an interaction-energy parameter (at room temperature) that depends on the number nC of
carbon atome in a hydrocaron as follows:

χ = 3.04 + 1.37nC .

Find the solubilites in water thus predicted by this model for hexane (C6H14), octane (C8H18),
and decane (C10H22).

[adapted from Jones 2002]

Solution:



[pex49] Osmotic weight lifting

Consider a cylinder of cross-sectional area A. The space between two pistons, a distance 2h apart,
is divided into two compartments by an immobile semi-permeable membrane. In the initial state
both compartments have equal size and are filled with a solution of equal solute volume fraction
φ0 = 0.4. The pistons are stabilized by ambient air pressure. A reservoir of volume equal to either
initial compartment contains a more highly concentrated solution (φr = 0.9).
When a force w is applied to one piston as shown, some solvent is forced through the membrane.
This changes the solute concentrations in the two compartments until the difference in osmotic
pressure, ∆π, balances the applied force.
When the valve is opened, the solutions in the reservoir and in the compartment on the left are
allowed to mix. This changes ∆π and lifts the weight w to a new balance of forces.
Use the expression π(φ) = p0[− ln(1 − φ) − χφ2] derived in [pex48] for the osmotic pressure and
set χ = 1, indicating strong solubility.
(a) Plot ∆π/p0 as a function of the relative displacement x/h (i) with the valve still closed and (ii)
with the valve open. In both cases x is the diplacement of both pistons from their initial position.
(b) Assuming that the weight is w = p0A calculate the equilibrium displacement x = a before the
valve has been opened and x = b after the valve has been opened.

w

φ
r

φ
0

φ
0

φ
r

φ
1

φ
2

φ
3

φ
3

φ
4

h − ahh h + a h − b h + b

w

Solution:



Spinodal Decomposition Process [pln34]

Unmixing process from unstable mixed macrostate initiated by local fluctu-
ations unimpeded by energy barriers.

Normal diffusion (in 1D) as benchmark. It is realized in stable solutions:
solute particles migrate from regions of high to regions of low concentration.

B φ(x, t): volume fraction of solute,

B J(x, t): flux of solute particles,

B D: diffusion constant.

(1) Fick’s law: J = −D∂φ
∂x

(constitutive equation)

(2) continuity equation:
∂φ

∂t
= −∂J

∂x
(conservation law)

(3) diffusion equation: (1) & (2)⇒ ∂φ

∂t
= D

∂2φ

∂x2
.

Reverse diffusion: solute particles spontaneously migrate from regions of
low to regions of high concentration.

General direction of particle migration: from regions of high to regions of
low chemical potential. Inside spinodal region, where mixing is unstable,
gradient of chemical potential is opposite to gradient of concentration.

Phenomenological model of reverse diffusion:

(4) Exchange chemical potential: µ
.
= µp − µs.

(5) Transport equation: Jp = −M∂µ

∂x
.

(6) Free-energy functional: F = A

∫
dx

[
f0(φ) + κ

(
dφ

dx

)2
]

.

B Jp: flux of solute particles relative to solvent,

B M > 0: Onsager transport coefficient,

B A: cross sectional area perpendicular to gradient,

B f0(φ): free-energy density of homogeneous macrostate,

B f ′′
0 (φ) < 0 inside spinodal region,

B κ: gradient energy coefficient with κ > 0 favoring homogeneity.



Exchange chemical potential (4) from (6) via variational derivative:

(7) µ = f ′
0(φ)− 2κ

d2φ

dx2
(first term consistent with [pex46]).

Resulting transport equation (5):

(8) Jp = −Mf ′′
0 (φ)

∂φ

∂x
+ 2Mκ

∂3φ

∂x3
(constitutive law).

Continuity equation:

(9)
∂φ

∂t
= −∂Jp

∂x
(conservation law).

Cahn-Hilliard equation for reverse diffusion:

(8)
∂φ

∂t
= Mf ′′

0 (φ)
∂2φ

∂x2
− 2Mκ

∂4φ

∂x4
, Deff = Mf ′′

0 < 0.

Linearizing assumptions: M, f ′′
0 , κ are treated as constants.

Solution of linearized Cahn-Hilliard equation from [pex20]:

φ(x, t) = φ0 + a cos(qx) exp
(
R(q)t

)
, R(q)

.
= M(|f ′′

0 |q2 − 2κq4),

B R(q): amplification factor,

B |f ′′
0 |: measure for instability of mixed macrostate,

B q: wave number of emerging morphological pattern,

B q0: wave number with maximum amplification.

Amplification at q < q0 (longer wavelengths) suppressed owing to the need
of longer-distance transport.

Amplification at q > q0 (shorter wavelengths) suppressed due to the higher
cost of interfacial energy (encoded in κ).

Experimental evidence: [psl5]

• microscopy → random patterns emerge with characteristic pixel size
(encoded in q0).

• light scattering → observation of pattern coarsening (nonlinear effect).

[extracted in part from Jones 2002]
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Spinodal decomposition:
coarsening of morphological patterns [psl5]

Computation: nonlinear Cahn-Hilliard kinetics

[from J. Zhu et al. Phys. Rev. E 60, 3564 (1999)]

Experiment: Light scattering on polymer mixture

[from Jones 2002]



[pex20] Solution of linearized Cahn-Hilliard equation

The unmixing process of two liquids from an unstable macrostates, spinodal decomposition, is
initiated by small local fluctuations in concentration. A quantitative analysis of this process leads,
under certain assumptions, to a nonlinear partial differential equation for the concentration φ(~r)
of one or the other liquid: the Cahn-Hilliard equation. One characteristic attribute of the mor-
phological patterns emerging during the unmixing process can be found already in the linearized
Cahn-Hilliard equation for a single space coordinate,

∂φ

∂t
= −Mc

∂2φ

∂x2
− 2Mκ

∂4φ

∂x4
,

where M > 0 is a transport coefficient, κ > 0 is an energy coefficient associated with inhomo-
geneities, and c > 0 is a measure for the instability of the mixed macrostate.
(a) Show that the concentration profile with characteristic wave number q,

φ(x, t) = φ0 + a cos(qx) exp
(
R(q)t

)
, R(q)

.
= M(cq2 − 2κq4)

is an exact solution of the linearized Cahn-Hilliard equation.
(b) Visualize the amplification factor R(q) in a scaled plot of universal shape.
(c) Morphological patterns with different wave numbers q are amplified or suppressed at different
rates. Find the wave number q0 for which morphological patterns are amplified most.

[adapted from Jones 2002]

Solution:



Nucleation and Growth of Domains [pln35]

Unmixing process from metastable mixed macrostate initiated by local fluc-
tuations impeded by energy barrier.

Consider spontaneously formed, small droplets of unmixed liquids in the
otherwise homogeneous mixed bulk state.

Free energy of droplets with radius r relative to mixed reference state:

∆F (r) = −4π

3
r3∆fV + 4πr2γ,

• ∆fV : bulk difference in free-energy density,

• γ: interface free-energy density.

The graph of ∆F (r) versus r first rises quadratically, reaches a smooth max-
imum, then goes negative as the cubic term becomes dominant.

Threshold radius: r∗ =
2γ

∆fV
(location of energy-barrier maximum).

Activation energy: ∆F (r∗) =
16πγ3

3∆f 2
V

(height of energy barrier).

Nucleation probability: P ∝ exp

(
−∆F (r)

kBT

)
,

• nucleated droplets of radius r < r∗ tend to shrink and disappear,

• nucleated droplets of radius r > r∗ tend to continue growing.

Distinguish homogeneous nucleation (in bulk) and heterogeneous nucleation
(from walls or impurities) with significantly reduced energy barriers.

Growth of phase-separated domains driven by reduction in interfacial energy:

• initiation: via spinodal decomposition (from unstable mixed state) or
via nucleation (from metastable mixed state),

• early stage of growth: domain size and interface width both grow (fluc-
tuations slow down as their wavelengths increase),

• intermediate stage of growth: domain size grows and interface width
shrinks (toward energetically optimized value),

• late stage of growth: domain size continues to grow at roughly constant
interface width,

• Ostwald ripening: smaller domains are absorbed in larger domains.



Gibbs Free Energy Near Freezing/Melting [pln36]

First-order phase transition at p = const.

Control variables: T, p,N .

Gibbs free energy: G(T, p,N) = U − TS + pV = µN .

Differential: dG = −SdT + V dp+ µdN .

Volume: V =

(
∂G

∂p

)
T,N

.

Entropy: S = −
(
∂G

∂T

)
V,N

.

Chemical potential: µ =

(
∂G

∂N

)
T,p

=
G

N
.

Freezing/melting point at (Tm, pm) for N →∞.

Latent heat of melting: Lm = Tm∆S.



Freezing by Nucleation [pln37]

Homogeneous nucleation:

Spontaneous formation of crystal nuclei of radius r in undercooled melt:

Gibbs free energy relative to undercooled liquid state:

∆G(r) = −4π

3
r3
Lm

Tm
∆T︸ ︷︷ ︸

volume

+ 4πr2γsl︸ ︷︷ ︸
interface

,

• Tm: melting temperature,

• Lm: latent heat of melting (per volume),

• ∆T
.
= Tm − T > 0: undercooling temperature,

• Sm = −Lm

Tm
: drop in entropy (per volume) during freezing,

• ∆Gm = −Sm(−∆T ) = −Lm

Tm
∆T : change in free energy (per volume),

• γsl: liquid-solid interfacial tension.

Find location and height of free-energy barrier:

d∆G(r)

dr

∣∣∣
r∗

= 0 ⇒ r∗ =
2γslTm
Lm∆T

, ∆G0 =
16π

3
γ3sl

(
Tm

Lm∆T

)2

.

• Spontaneously created crystal nuclei with r < r∗ (r > r∗) tend to
shrink (grow).

• Probability of nucleation is ∝ exp
(
−∆G0/kBT

)
.

• Homogeneous nucleation typically requires ∆T & 10◦.



Heterogeneous nucleation:

Container walls or contaminant particles provide sites of nucleation with
lower activation barriers. They become catalysts for crystallization.

Example worked out in [pex21]: spherical cap nucleated at planar catalyst
surface.

cs θ

liquid

solid

catalyst

γ
cl

γ
sl

γ

The angle θ depends on the interfacial tensions between liquid (l), solid (s),
and catalyst (c) via Young’s equation, γsl cos θ = γcl − γcs.

The free-energy depends on the radius r of the cap and has a maximum at
rc:

rc =
2γslTm
Lm∆T

, ∆G(rc) =
1

4
(1− cos θ)2(2 + cos θ)︸ ︷︷ ︸

g(θ)

∆G0.

• 0 < g(θ) < 1: geometric factor,

• g(π) = 1: limit of homogeneous nucleation,

• ∆G0: energy barrier for homogeneous nucleation.

[extracted in part from Jones 2002]
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[pex21] Catalytic freezing of spherical cap

Container walls provide sites of nucleation for the freezing process with lower activation barriers
compared to nucleation from pure liquid (homogeneous nucleation). Consider a solid spherical cap
heterogeneously nucleated against a flat catalyst surface. The radius of the completed sphere is r.
The angle θ remains constant during the nucleation process. Its value is dictated by the balance
of interfacial tensions between liquid (l), solid (s), and catalyst (c):

γsl cos θ = γcl − γcs (Young′s equation).

If the melting temperature is Tm and the latent heat is Lm then the change in Gibbs free energy
when the liquid is undercooled by ∆T

.
= Tm − T has three terms that depend on r as follows:

∆G(r) = −Lm∆T

Tm
Vs(r) + γslAsl(r) + (γcs − γcl)Acs(r),

where Vs(r), Asl(r), and Acs(r) are the volume, the curved surface, and the flat surface of the cap,
respectively.
(a) Show that ∆G(r) has a maximum at rc = 2γslTm/Lm∆T , which means that caps with r > rc
grow spontaneously.
(b) Show that the energy barrier for this kind of heterogeneous nucleation is

∆G(rc) =
1

4
(1 − cos θ)2(2 + cos θ)∆G0, ∆G0 =

16π

3
γ3sl

(
Tm

Lm∆T

)2

.

The quantity ∆G0 is the energy barrier for homogeneous nucleation, represented by the case θ = π.

cs θ

liquid

solid

catalyst

γ
cl

γ
sl

γ

[adapted from Jones 2002]
Solution:



Advancing Front of Solidification [pln38]

Consider a flat portion of solid-liquid interface during the freezing process.

Front of solid phase advances as molecules in liquid phase are being immo-
bilized and incorporated into crystal structure.

Immobilization and binding entail release of energy (latent heat) at interface.

Continued freezing depends on transport of latent heat away from interface
into liquid.

Transport of latent heat is dominated by conduction (thermal diffusion).

Heat flux is proportional to temperature gradient (Fourier’s law).

Local deviations from flat interface produce regions where temperature gra-
dient is suppressed and regions where it is enhanced.

In the former regions the heat transport is slowed down, in the latter regions
it is accelerated.

Positive feedback renders flat surface unstable against random structures of
growing amplitude.

Dominant counteracting force: interfacial tension, favoring a flat interface.

Competing tendencies in balance: profile with a characteristic wavelength.

[extracted in part from Jones 2002]
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