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Abstract Estimates of quantitative characteristics of

nonlinear dynamics, e.g., correlation dimension or Lya-

punov exponents, require long time series and are sensi-

tive to noise. Other measures (e.g., phase space warping

or sensitivity vector fields) are relatively difficult to im-

plement and computationally intensive. In this paper,

we propose a new class of features based on Birkhoff

Ergodic Theorem, which are fast and easy to calculate.

They are robust to noise and do not require large data

or computational resources. Application of these met-

rics in conjunction with the smooth orthogonal decom-

position to identify/track slowly changing parameters

in nonlinear dynamical systems is demonstrated using

both synthetic and experimental data.

Keywords dynamical systems · invariant measures ·
characteristic distance · smooth orthogonal decompo-

sition · parameter tracking

1 Introduction

Classifying and identifying nonlinear dynamical systems

are some of basic tasks in nonlinear time-series analy-

sis [1,9,14]. Most generic approach is to rely on some

feature metric that is invariant under the evolution of

the dynamics. Conventional methods often character-

ize a dynamical system using long-time invariant quan-

tities such as Lyapunov exponents or fractal dimen-

sions [13,12,16,10]. Fractal dimensions provide bounds

on the number of active degrees-of-freedom and reflect

the complexity of the system. Lyapunov exponents char-
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acterize the average exponential divergence rates of in-

finitesimally close trajectories on the attractor, and are

used to infer if the underlying system is integrable or

chaotic.

Application of these metrics in vibrations-based struc-

tural health monitoring has been studied extensively [18,

19,11]. However, reliable estimation of Lyapunov expo-

nents from the observed time series is difficult in the

presence of noise, complicated by the fact that they

are not exactly defined for noisy data [20]. Literature

survey of techniques developed for the computation of

Lyapunov exponents is extensive [2]. Most of the meth-

ods monitor the evolution of system dynamics for thou-

sands of time steps. Therefore, large experimental data

requirements and extensive computation time impose

limits on their practical applications. To deal with these

problems, Clement and Laurens proposed the Jacobian

Feature Vector [7] which is based on Lyapunov expo-

nent’s algorithm but has faster computation. Other in-

teresting feature extracted from measured data has been

studied by Todd et al. [17], where local attractor vari-

ance ratio is described as a change in geometric prop-

erties of an attractor.

All these quantities describe the long-time behavior

of a dynamical system. Although they are able to de-

tect sudden changes in a system, they are ill-suited for

continuous tracking of slowly changing parameters re-

sponsible for nonstationarity in a dynamical systems. In

previous work [3,4], a concept of phase space warping

(PSW) was proposed to characterize changes in slow

parameter drifts in the fast-time flow. A one-to-one re-

lationship between PSW-based tracking vectors and ac-

tual slow-time variables causing these changes has been

demonstrated. However, this procedure requires consid-

erable computational time and resources for estimation.
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In many practical application like in MEMS-based

sensors (e.g., in atomic force microscopy), observed data

is accumulated at such high rates that it is impractical

to record the raw time series or do complicated online

analysis. Hence, it is more practical to do simple, easy

to calculate feature extraction locally on the sensor and

only output feature time series at much lower sampling

rates. However, local processing has limited storage and

computational resources, and it requires fairly simple

and easy to estimate features (most use mean, variance,

or resonant frequency estimations). These simple fea-

tures do not capture important nonlinear behaviors and

have limited application scope. To address this problem,

a new class of simple nonlinear features that are fast to

calculate and do not require large data are presented

here. These metrics are applicable in situations where

fast online computation is needed.

In the next section, new metrics called characteris-

tic distance and position are introduced. The existence,

uniqueness and invariance properties are demonstrated

using Birkhoff Ergodic Theorem [21]. These metrics can

be seen as nonlinear statistical quantities characterizing

a deterministic dynamical system. Then a new method

to track slowly varying parameters using characteristic

distances is presented and is verified by both synthetic

and experimental data. This is followed by the discus-

sion of results and conclusions.

2 A New Class of Nonlinear Metrics

Lyapunov exponents and fractal dimensions are rooted

in Ergodic theory [21] which is originally developed to

identify and classify invariant measures under the time

evolution. In the following, one of the important theo-

rems in Ergodic theory, Birkhoff Ergodic Theorem, is

restated for completeness. Then a new class of charac-

teristics of nonlinear dynamics based on this theorem

is proposed.

2.1 Birkhoff Ergodic Theorem

Consider the time evolution of a dynamical system,

measured in discrete time units, given by a transforma-

tion T : X → X, so that if x ∈ X ⊂ Rn is the current

state then T (x) is the state of the system after one time

unit. If the system is at the steady state, by the invari-

ant property T (X) ⊆ X then T is a measure preserving

transformation. For example, let X be the phase space

of a mechanical system. Then every point of X repre-

sents the values of position and momentum variables. A

measurement of the system (e.g., velocity, acceleration)

can be defined by a function f : X → R. To measure a

quantity of the system, one usually takes n successive

measurements f(x), f (T (x)) , . . . , f (T n(x)) and looks

at their average. The question is if the average exists

and is invariant when n → ∞. Ergodic theory is origi-

nally developed to answer this question.

Birkhoff Ergodic Theorem for measure pre-

serving transformation [21]: Let (X,B, µ) be a finite

measure space. Let T : X → X be a measure preserving

transformation. For any f ∈ L1(X,B, µ) the following

limit

lim
n→∞

1

n

n−1∑
k=0

f
(
T k(x)

)
(1)

exists and is invariant.

Using this theorem, we can define useful invariant

metrics for a dynamical system’s attractor which are

fast, easy to calculate, robust to noise, and do not re-

quire large data or computational resources.

2.2 Characteristic Distance and Position

Let f : X → R be a measurable function, which is the

Euclidean distance between a point x ∈ X and some

fixed point y ∈ Rn,

f(x) = ‖x− y‖2 . (2)

Then a scalar characteristic distance D(y) can be de-

fined as a limit

D(y) = lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) . (3)

By the Birkhoff Ergodic Theorem, the characteristic

distance is an invariant measure on an attractor. It can

be seen as an average distance from an arbitrary fixed

point in the phase space to an attractor.

There is nothing particularly special about this char-

acteristic distance metric other than it is easy to define

and estimate. Other similar metrics can also be defined

and may be more appropriate in different applications.

For example, we will also define and use vector-valued

characteristic position as

P(y) = lim
n→∞

1

n

n−1∑
i=0

fp(T i(x)) , (4)

where again y ∈ Rn, and fp : X → Rn is defined as

fp(x) =
x− y

‖x− y‖2
. (5)
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3 Reconstructing Slowly Drifting Variables

We consider a coupled dynamical system where a slow-

time state variable causes drifts in the parameters of a

fast-time subsystem:

ẋ = f(x,µ(φ), t), φ̇ = εg(φ, t), (6)

where x ∈ X ⊂ Rn is a fast-time dynamic variable,

φ ∈ P ⊂ Rm is a hidden slow-time dynamic variable,

which alters the parameter vector µ ∈ Rp. t ∈ T ⊂ R is

time, overdots denote time differentiation, 0 < ε� 1 is

a small rate constant defining the time scale separation.

This formulation is relevant to tracking and identifying

damage processes as discussed in [5]. It is assumed that

the variable φ changes slowly. Thus, φ is considered

as approximately constant for a fast-time data set col-

lected over an intermediate time interval.

A general solution to the fast subsystem of Eq. (6)

can be written as x = X(t,x0,φ), where x0 is the initial

condition. Hence, the continuous form of the character-

istic distance for a fixed point y can be expressed as

D(y) = lim
T→∞

1

T

∫ T

0

‖y −X(t,x0,φ)‖2 dt . (7)

This limit is approximated by the integral

D(y) ≈ 1

Tn

∫ Tn

0

‖y −X(t,x0,φ)‖2 dt , (8)

where Tn is a large number. By the Mean Value Theo-

rem for integrals, there is a ti ∈ [0, Tn] such that

1

Tn

Tn∫
0

‖y −X(t,x0,φ)‖2 dt = ‖y −X(ti,x0,φ)‖2 . (9)

Therefore, an estimated value of D(y) is a direct func-

tion of φ.1 Because of bifurcations, the position of the

attractor may change dramatically, therefore the char-

acteristic distance D(y) is not expected to be a continu-

ous function of φ. However, the estimated characteristic

distances may still provide valuable information about

the parameter drifts in the system. In what follows,

D(y) for different points y will be used to reconstruct

slow state variable φ.

It is assumed that scalar time series measured from

a fast-time subsystem are recorded into m consecutive

data sets. Each of the ith data set (i = 1, . . . ,m) is

recorded over the intermediate time interval over which

the variations in the slow variable are assumed negligi-

ble φ ≈ φi = 〈φ〉i, where 〈φ〉i is the average value of

1 The same derivation can also be repeated for the char-
acteristic position metric to show that P(y) is also a direct
function of φ.

φ within the ith data set. However, φi itself changes

gradually from one data set to another.

The characteristic distances are calculated for each

data set and are assembled together in a feature vector

Yi = [D(φi,y1);D(φi,y2); . . . ;D(φi,yn)] , (10)

where {yi}ni=1 are randomly chosen fixed points in the

phase space. These feature vectors describe the gradual

evolution of slow state variable φ and are concatenated

in time sequence into tracking matrix Y ∈ Rm×n in

time sequence. This matrix Y embeds the changes in

the parameters of the fast-time subsystem.

Previously, smooth orthogonal decomposition SOD [4,

6] has been used for identifying smooth trends in mul-

tivariate time series. Here, we also use SOD to extract

deterministic slow trends from Y. SOD analysis is per-

formed using generalized singular value decomposition

of matrix Y and its time derivative DY, where D is

a discrete differential operator. These matrices are de-

composed as:

Y = UCXT and DY = VSXT , (11)

where U and V are unitary matrices, C and S are diag-

onal matrices, and X is a square matrix. The smooth or-

thogonal coordinates (SOCs) are given by the columns

of UC, smooth projective modes (SPMs) are provided

by columns of X−T , and smooth orthogonal values (SOVs)

are σ = diag(CTC)./diag(STS) (‘./’ indicates term by

term division). The greater the magnitude of the SOV

the smoother in time is its corresponding SOC. Since

the slow-time state variable is a product of a smooth

deterministic process, we hypothesis that this variable

is embedded in the smoothest SOCs.

4 Numerical Validation

In the following, the time series derived from a Rössler

and a Duffing equations are used to validate our slow

variable tracking algorithm. In the simulations, a slow-

time variable is introduced by slowly varying a param-

eter in the equations.

Rössler Equation is given by

ẋ = −y − z ,
ẏ = x+ ay , (12)

ż = b+ z(x− c) .

In our simulations, b is fixed at 0.6, c is fixed at 6.0,

and a is varied sinusoidally from 0.1 to 0.4. Here, a

is considered a slow-time variable. For each particular

value of a, 100, 000 steady state trajectory points are

generated with time step ts = 0.06. The bifurcation
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Fig. 1: Bifurcation diagram for Rössler equation
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Fig. 2: The characteristic distances versus a for three

randomly chosen fixed points in the phase space

diagram is shown in Fig. 1. Filled-in regions of the plot

indicate chaotic regions.

Then characteristic distances from 50 arbitrarily cho-

sen fixed points are estimated. Fig. 2 shows the plot of

characteristic distance as a function of the bifurcation

parameter a. Finally, the 786 × 50 tracking matrix Y

is assembled. The tracking results after applying SOD

to this matrix are shown in Fig. 3. Fig. 3(a) shows the

first SOV is much larger than the rest, which is consis-

tent with the fact that there is only one slowly varying

parameter in the system. The SOC corresponding to

the largest SOV is depicted in Fig. 3(c). To indicate

the strength of the linear relationship between the real

slow state variable, as shown in Fig. 3(b), and the first

SOC, the correlation coefficient r is calculated. r ≈ 1

shows that there is a strong linear relationship between

the two variables as seen in Fig. 3(d).

Duffing Equation In the previous example, the real

phase space of Rössler equation is used to calculate the

characteristic distances. In this example, only a time

series x from a two-well Duffing equation is considered:

ẍ+ γẋ+ αx+ βx3 = f cosωt (13)

where the system’s parameters and forcing frequency

are fixed to γ = .25, α = −1, β = 1, and ω = 1. f is used
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Fig. 3: First ten SOVs (a), parameter a versus time

(b), dominant SOC1 corresponding to the largest SOV

(c), plot of SOC1 versus parameter a (red dots) with

least square linear fit (black line) (d). The correlation

coefficient between a and SOC1 is r = 0.9999.

Fig. 4: Bifurcation diagram for Duffing oscillator

as a slowly drifting variable or a bifurcation parameter.

The bifurcation diagram is shown in the Fig. 4. We

consider the case when f is changed slowly and linearly

from 0.35 to 0.4. In this range of f , the response of the

system is in the chaotic region.

In the calculations, the first 50 cycles of data are

dropped, and 100,000 steady state points are recorded

for each forcing amplitude using a sampling time t =

π/36. The phase space is then reconstructed using a

time delay τ = 53 and embedding dimension d = 4 [14,

1]. Fig. 5 shows the characteristic distances to the re-

constructed phase space from three randomly chosen

points.
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Fig. 5: Characteristic distances from the three ran-

domly chosen points in the phase space of the Duffing

oscillator
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Fig. 6: First ten SOVs (a), parameter f versus time

(b), dominant SOC1 corresponding to the largest SOV

(c), plot of SOC1 versus parameter f (red dots) with

least square linear fit (black line) (d). The correlation

coefficient between f and SOC1 is r = 0.9991.

400 randomly chosen points in the phase space are

used to assemble 1001 × 400 tracking matrix Y. Then

the SOD-based tracking result is shown in Fig. 6. Again,

we obtain a linear relationship between the smoothest

SOC1 and the real slowly drifting variable f as seen in

Fig. 6(d). Please note that these tracking results are

still possible even when each component of matrix Y is

discontinuous as shown in Figs. 2 and 5.

5 Experimental Validation

Data generated from a modified version [8] of the well

known two-well magneto-elastic oscillator [15] is used to

validate this new approach to slow-parameter tracking.

Description of this experiment is given in Ref. [6]. The

basic schematic of the experiment is shown in Fig. 7. In

this experiment, a couple of electromagnets powered by

a computer-controlled power supply are used to cause

perturbations in the magnetic potential at the free end

Fig. 7: Schematic of the experimental apparatus
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Fig. 8: Three randomly chosen column of the tracking

matrix

of a vibrating cantilever beam. The vibration of the

beam is measured by two laser vibrometers (CH1, CH2)

mounted near the clamped end of the stiffened beam.

The position of the beam is calculated by the difference

between CH1 and CH2. The beam is excited by a 10 Hz

harmonic load, and its amplitude is set so the beam

undergoes nominally chaotic cross-well oscillations for

fully loaded (10 V) electromagnets. Vibration data is

low-pass filtered with 50 Hz cut off frequency and col-

lected at a 160 Hz sampling frequency.

The voltages supplied to the electromagnets (v1(t)

and v2(t)) are altered harmonically and independently

as shown in Fig. 9(b). These voltages play a role of slow

state variables in the system.

The experiment lasts about 12 hours and 6.6 mil-

lion data points are recorded [6]. The 5-dimensional

fast-time phase space is reconstructed using a delay

time of six time samples (ts = 1/160 s). The time se-

ries are split into 800 data records, and each record

contains 213 points. Here, the characteristic distances

are calculated from 300 fixed points randomly chosen

in the reconstructed phase space. Then the 800 × 300

tracking matrix Y is assembled. Three randomly cho-

sen columns of the tracking matrix are shown in Fig. 8.
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Fig. 9: Plot of ten largest SOVs (a); actual electromag-

net supply voltages v1 (—) & v2 (- -) versus time plot

(b); plot of the first (—) and second (- -) SOCs corre-

sponding to the two largest SOVs (c); plots of v1 + v2
(—), v1−v2 (- -), and the scaled first two SOCs (.) (d).

0 2 4 6 8 10
0

2

4

6

8

10
(a)

v
2

v 1

−0.1 −0.05 0 0.05 0.1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
(b)

SOC
1

S
O

C
2

Fig. 10: Phase portrait of the power supply terminal

voltages (a) and two smoothest SOCs (b)

The SOD-based tracking result is shown in Fig. 9(a)

and (c). The two largest SOVs are several orders-of-

magnitude larger than the rest, which is consistent with

two-dimensional slowly varying variable in the system.

The SOCs corresponding to these two largest SOVs are

depicted in Fig. 9(c). The phase portraits of the ac-

tual power supply terminal voltages and two smoothest

SOCs are shown in Fig. 10.

The scaled SOCs are compared with v1 + v2 and

v1−v2 as shown in Fig. 9(d). The correlation coefficients

between v1 + v2, v1 − v2 and SOC1, SOC2 are 0.9951

and 0.9834, respectively. The result confirms that the

slow-time state variable is embedded (or reconstructed)

in the smoothest SOCs as indicated by topological sim-

ilarity of phase portraits in Fig. 10.
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Fig. 11: Characteristic distances of one fixed point.

0.1 0.15 0.2 0.25 0.3 0.35

−0.06

−0.04

−0.02

0

0.02

0.04

a

S
O

C
1

(a)

0.1 0.15 0.2 0.25 0.3 0.35

−0.06

−0.04

−0.02

0

0.02

0.04

a

S
O

C
1

(b)

0.1 0.15 0.2 0.25 0.3 0.35

−0.06

−0.04

−0.02

0

0.02

0.04

a

S
O

C
1

(c)

0.1 0.15 0.2 0.25 0.3 0.35
−0.08

−0.06

−0.04

−0.02

0

0.02

a

S
O

C
1

(d)

Fig. 12: Tracking results. (a) no noise; (b) 20% noise;

(c) 60% noise; (d) 100% noise.

6 Noise Effects

To illustrate the robustness of characteristic distances

to noise, normally distributed random noise was added

to Rössler’s attractor at 1/5, 3/5 and 5/5 RMS ampli-

tude ratios, which corresponds to 20%, 60% and 100%

noise in the signal. Fig. 11 shows that the character-

istic distances for a particular fixed point drift under

the presence of noise. However, the shape of the plot

of characteristic distance versus bifurcation parameter

a does not change noticeably. The tracking results of

slow state variable are shown in Fig. 12. Even for 100%

noise, our method still recovers the real slow state vari-

able.
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Fig. 13: (a). Tracking a parameter in Rössler equation;

(b). Phase portrait of two smoothest SOCs in the ex-

perimental data.

7 Discussion

The application of the SOD was warranted by the as-

sumption that feature vectors were in smooth func-

tional relationship with the slow-time state variables. In

our simulation examples, the systems exhibited compli-

cated bifurcations while one of the parameters was var-

ied slowly. Therefore, individually, the estimated char-

acteristic distances were not smooth function of the

drifting parameters. However, when we combined the

characteristic distances from different fixed points and

applied SOD to the tracking matrix, we recovered the

corresponding smooth deterministic trends, which can

be used for one-to-one tracking even in noisy environ-

ments.

We also studied the quality of tracking results ver-

sus the number of fixed points and their locations. In

numerical simulation, 50 fixed points were sufficient.

However, in the experiment, we need 300 feature vec-

tors to obtain robust results. To reduce the required

number of fixed points and complexity of the tracking

matrix, instead of using characteristic distances, we also

used characteristic positions as defined in Eq. (5). For

example, in the Rössler simulation, instead of using 50

fixed points, we used characteristic positions of only 20

points for tracking (see Fig. 13(a) for the tracking re-

sult). For experimental data, characteristic positions of

60 points are enough to obtain reliable result in com-

parison with characteristic distances of 300 points as

shown in Fig. 13(b).

8 Conclusion

Birkhoff Ergodic theorem for measure preserving trans-

formation was used to develop a new class of nonlinear

metrics for dynamical systems. In particular, a charac-

teristic distance metric was defined by the average dis-

tance from a fixed point in a phase space to all points on

the attractor, and the characteristic position was given

by the normalized average location of the attractor with

respect to a fixed point. These metrics were shown to be

sensitive to small parameter changes in a system, and

were used to track and identify these changes in con-

junction with smooth orthogonal decomposition. The

main advantage of these metrics was that they were

simple and easy to calculate, while also being robust

to noise. These properties make them suitable for on-

line, real-time applications. Numerical simulations, syn-

thetic data, and experiments were used to show how the

slowly evolving parameters can be continuously tracked

and identified using the considered metrics.
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