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COPS AND ROBBERS IS EXPTIME-COMPLETE

WILLIAM B. KINNERSLEY

Abstract. We investigate the computational complexity of deciding whether k cops can
capture a robber on a graph G. Goldstein and Reingold ([8], 1995) conjectured that the
problem is EXPTIME-complete when both G and k are part of the input; we prove this
conjecture.

1. Introduction

Cops and Robbers is a vertex-pursuit game that has received much recent attention. The
game has two players, a set of k cops and a single robber. The cops and robber occupy
vertices of a graph G; more than one entity may occupy a single vertex. The game has
perfect information, meaning that at all times, both players have full knowledge of the graph
and of all moves played thus far, and this knowledge determines the players’ strategies; in
particular, both players know the positions of the cops and the robber. At the beginning of
the game, the players freely choose vertices to occupy, with the cops choosing first and the
robber last. The game proceeds in rounds, each consisting of a cop turn followed by a robber
turn. In each round, each cop may remain on her current vertex or move to an adjacent
vertex, after which the robber likewise chooses to remain in place or move to an adjacent
vertex. The cops win if any cop ever occupies the same vertex as the robber; we call this
capturing the robber. Conversely, the robber wins by evading capture forever.

Placing one cop on each vertex of G ensures an immediate win for the cops. We are thus
justified in defining the cop number of G, denoted c(G), to be the minimum number of cops
needed to capture a robber on G (regardless of how the robber plays). Determination of the
cop number is the central problem in the study of Cops and Robbers. Quilliot [15], along
with Nowakowski and Winkler [14], independently introduced the game and characterized
graphs with cop number 1. Aigner and Fromme [1] initiated the study of graphs having
larger cop numbers. For more background on Cops and Robbers, we direct the reader to [4].

In this paper, we investigate the computational complexity of deciding whether a graph
has cop number at most k; this is a natural question, as the game of Cops and Robbers has
applications in the field of Artificial Intelligence (see for example [11, 13]). More precisely,
we study the associated decision problem

C&R: Given a graph G and positive integer k, is c(G) ≤ k?

C&R clearly belongs to EXPTIME (the class of decision problems solvable in exponential
time), since the number of possible game states is bounded above by nk+1, where n = |V (G)|.
(This observation also implies that the problem is solvable in polynomial time when k is fixed
in advance, rather than being considered part of the input; see also [2, 3, 5, 9].) Goldstein
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and Reingold [8] showed that the generalization of C&R in which G may be directed is
EXPTIME-complete. They also proved EXPTIME-completeness when the initial positions
of the cops and robber are given as part of the input. More recently, Fomin, Golovach, and
Pra lat [7] showed that the problem is PSPACE-complete under various restrictions on the
duration of the game.

Goldstein and Reingold were unable to establish any hardness results regarding the original
game, in which G is undirected and the players may choose their initial positions. They did,
however, pose the following conjecture:

Conjecture 1.1 (Goldstein and Reingold, 1995). C&R is EXPTIME-complete.

Since its introduction, this conjecture has been one of the foremost open questions in the
game of Cops and Robbers. It has proved quite resistant to attack; it was not until 2010
that the problem was even known to be NP-hard [6]! More recently, Mamino [12] proved
PSPACE-hardness through reduction to a new variant, “Cops and Robbers with protection”,
which in turn reduces to the original game.

In this paper, we prove Conjecture 1.1. Our approach is akin to Mamino’s in that we
introduce a new variant of the game that further hampers the cops. We first show that this
new variant reduces to Mamino’s “Cops and Robbers with protection”, which in turn reduces
to C&R. We then prove EXPTIME-completeness of our new variant through reduction from
a known EXPTIME-complete problem.

The paper is structured as follows. In Section 2, we introduce the game of “Lazy Cops
and Robbers” and show that it reduces to C&R; this new game serves as an intermediate
step in our overall reduction. Section 3 contains the proof of Conjecture 1.1. Since the
final reduction is rather complicated, we present and explain the construction in Section 3.1,
relegating the proof of correctness to Section 3.2.

Throughout the paper we consider only finite, undirected graphs. We denote the vertex
set and edge set of a graph G by V (G) and E(G), respectively. We use N(v) for the
neighbourhood of a vertex v; to emphasize the graph G under consideration, we sometimes
write NG(v). We use L(G) to denote the line graph of G, that is, the graph having one
vertex for each edge of G, with two vertices adjacent when the corresponding edges in G
share a common endpoint. We write [n] as shorthand for {1, 2, . . . , n}. For more notation
and background in graph theory, we direct the reader to [17].

2. Preliminaries

In this section, we introduce the game of “Lazy Cops and Robbers” and show that its
decision problem reduces to C&R. Thus in Section 3 we may work with this new game
instead of the original, which greatly simplifies the arguments.

As an intermediate step, we make use of the game of “Cops and Robbers with protection”
introduced by Mamino [12]. This variant differs from ordinary Cops and Robbers in two
ways. First, each edge of G is designated (in advance, as part of the input) either protected
or unprotected. Second, the cops win in the variant only if a cop comes to occupy the same
vertex as the robber by traveling along an unprotected edge. (The cops may still travel across
protected edges, but cannot capture across them.) In particular, the robber may move to a
vertex containing a cop without immediately losing the game; in fact, he may even choose
to start the game on the same vertex as a cop. We denote the decision problem associated
with this game by C&Rp.
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We adopt the convention that all input graphs for C&Rp are reflexive (that is, every
vertex has a loop). We may do this without loss of generality, since a vertex without a
loop is functionally equivalent to a vertex with a protected loop. We refer to a vertex
with a protected loop as a protected vertex and to a vertex with an unprotected loop as an
unprotected vertex. Note that if the robber moves to an unprotected vertex on which a cop
is already present, then that cop may capture the robber on her next turn by traversing the
loop at that vertex.

Mamino showed that it suffices to consider C&Rp in place of C&R. More precisely, he
proved the following:

Lemma 2.1 ([12], Lemma 3.1). C&Rp is LOGSPACE-reducible to C&R.

To prove Lemma 2.1, Mamino provides an construction that, given an instance (G, k) of
C&Rp, produces an instance (G′, k) of C&R that is “equivalent” in the sense that the cops
have a winning strategy for the C&Rp game on G if and only if they also have a winning
strategy for the C&R game on G′. Loosely, the graph G′ is produced by making many copies
of each vertex of G, then adding to G′ all edges that correspond to unprotected edges in
G, along with some (but not all) edges corresponding to protected edges. This latter class
of edges must be chosen very carefully; the intent is to provide the mobility offered by the
protected edges of G, without introducing any “new” winning strategies for the cops. To
accomplish this, Mamino adds edges corresponding to some preselected graph H on which
the robber can always evade the cops; thus the robber can always navigate these new edges
in such a way that cops traveling along such edges cannot capture him.

We aim to show that the decision problem for Lazy Cops and Robbers reduces to C&Rp.
In fact we use a more general variant, Lazy Cops and Robbers with protection, whose decision
problem we denote by LC&Rp. The rules of LC&Rp are the same as in C&Rp, except that
on each turn, at most one cop may move to a new vertex. (The cops may collectively decide
who moves.) This change makes LC&Rp substantially easier to work with than C&Rp.
Thus we would like to focus on LC&Rp instead of C&Rp; our next result shows that we
can do just that.

Throughout the paper, we say that a cop defends a vertex v when she occupies an adjacent
vertex u such that uv is unprotected; that is, she could capture a robber at v on her next
turn. We say that the robber can safely move to an adjacent vertex v when he may move
there without immediately being captured, that is, when v is undefended. When a robber
has only one move that prevents capture on the next turn, we say that he must make that
move; likewise, when a move would result in immediate capture, we say that he must not
make it. Similarly, we say that the cops must not make any move that clearly does not
benefit them, and must make a move when no others provide any benefit. (We make this
notion more precise where it is used.)

Theorem 2.2. LC&Rp reduces to C&Rp in polynomial time.

Proof. Given an instance (G, k) of LC&Rp, we produce a graph G′ such that k cops can
capture a robber on G in the LC&Rp game if and only if k cops can capture a robber on G′

in the C&Rp game. We may assume k ≥ 2, since otherwise the reduction is trivial (simply
take G′ = G).

All vertices and edges of G′ are unprotected except where otherwise specified. We begin
with three disjoint subgraphs: GC , GR, and LR. The graph GR is isomorphic to G, and
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LR is isomorphic to L(G). To form GC , we begin with G and subdivide each edge once; we
refer to the original vertices of G as branch vertices and the vertices arising from subdivision
as subdivision vertices. (We adopt the convention that when a loop is subdivided, the
subdivision vertex becomes a leaf adjacent to the relevant branch vertex; that is, we avoid
producing a double-edge.) Next we replace each branch vertex v with a copy of Kk, each
vertex of which we make adjacent to all neighbours of v; we refer to the copy of Kk as the
branch clique for v. All vertices and edges within GC , GR, and LR are unprotected.

For a vertex v and edge e in G, we denote the branch clique for v by λC(v), the subdivision
vertex corresponding to e by λ′C(e), the vertex in GR corresponding to v by λR(v), and the
vertex of LR corresponding to e by λ′R(e). We index the vertices in each branch clique from
1 to k arbitrarily; we refer to those vertices with index 1 as 1-vertices, those with index 2
as 2-vertices, and so on. For reasons that will become clear later, we additionally consider
subdivision vertices to be 1-vertices.

We now add edges joining the subgraphs. For each edge uv in G (including loops), we add
edges from λ′R(uv) to both λR(u) and λR(v). Additionally, we add edges from every vertex
in λC(u) to λR(v) and from every vertex in λC(v) to λR(u); these edges are protected if and
only if uv is protected in G. We also add edges joining all subdivision vertices to all vertices
in GR, as well as edges joining all 1-vertices in branch cliques to all vertices of LR.

Next we add a gadget to help simulate the constraint that only one cop may move at a time
and, additionally, to enforce the desired initial positions. We add new vertices r1, r2, . . . , rk,
all protected. We also add all edges of the form rirj, all protected. Next, for each i ∈ [k], we
add (unprotected) edges joining ri to all i-vertices in GC . Finally, we add protected edges
joining each ri to all vertices in GR and LR. We refer to {r1, r2, . . . , rk} as the reset clique.
As we show later, should the cops “misbehave”, the robber can use the reset clique to return
the game to a “proper” configuration. Likewise, should the robber misbehave, the cops can
use the reset clique to capture him.

For technical reasons, we add one final vertex ω and edges from ω to all vertices in GC ,
GR, and LR. Figure 1 shows an example of the construction for k = 2. The original graph G
appears on the left, and the new graph G′ appears on the right. In the figure, black vertices
are unprotected, white vertices are protected, solid edges are unprotected, and dashed edges
are protected.

We claim that k cops can capture a robber on G in the LC&Rp game on G if and only if
k cops can capture a robber on G′ in the C&Rp game. Before presenting specific cop and
robber strategies, we make some useful observations about the game on G′. Throughout, we
refer to vertices in GC as cop vertices and to those in GR and LR as robber vertices. Let a
basic configuration be any configuration of the game on G′ in which the robber occupies a
robber vertex and all cops occupy cop vertices, with exactly one cop on an i-vertex for all
i ∈ [k].

Claim 1: If there is a cop on an i-vertex for all i ∈ [k], it is the cops’ turn, and the robber
occupies a cop vertex, then the cops can capture the robber.

Suppose the robber occupies some cop vertex v, and let v be a j-vertex. To capture the
robber, the cop currently on a j-vertex remains in place, while some other cop moves to ω.
On the robber’s subsequent turn, he may only reach cop vertices, robber vertices, ω, and
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v1 v2 v3e1 e2

G

G′

(Not pictured: edges from subdivision vertices to GR,

edges from branch clique 1-vertices to LR)

r1 r2

GCλC(v1)

λ′
C(e1)

GRλR(v1)

LRλ′
R(e1)

ω

Figure 1. The construction in Theorem 2.2 (for k = 2).

rj. However, the cop on a j-vertex defends rj, while the cop on ω defends ω itself, all cop
vertices, and all robber vertices.

Claim 2: If it is the robber’s turn, the robber occupies a robber vertex, and the game is
not in a basic configuration, then the robber can safely move to the reset clique.

For some j, no cop occupies a j-vertex. Hence rj is undefended, so the robber can safely
move there.

Claim 3: If the robber stands in the reset clique and it is the robber’s turn, then the robber
can force the game to (eventually) return to a basic configuration in which it is the cops’
turn and the robber occupies any robber vertex he chooses.

If some vertex in the reset clique is undefended, then the robber can move (or remain)
there, repeating until the cops defend all vertices in the reset clique. This requires a cop on
an i-vertex for all i ∈ [k], so at this point the robber may produce a basic configuration by
moving to any robber vertex.

Claim 4: At the beginning of the game, either the cops or the robber may force the game to
(eventually) reach a basic configuration in which it is the cops’ turn and the robber occupies
any robber vertex he chooses.
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The cops need simply place one cop on an i-vertex for each i ∈ [k]. This defends all
vertices in the reset clique, along with ω. By Claim 1 the robber must not start on a cop
vertex, so he must start in either GR or LR, resulting in a basic configuration.

If the cops do not start in such a configuration, then some vertex in the reset clique is
undefended, and the robber can safely start there. From there, he can force the game into a
basic configuration by Claim 3.

Claim 5: From a basic configuration, the cops and robber must not move to ω.

By Claim 3, if the robber ever safely reaches the reset clique, then he can force the game
into a basic configuration; this does not help the cops, since by Claim 4) they could have
started the game in this configuration to begin with. Hence the cops must not make any
moves that allow the robber safe access to the reset clique. With a cop on ω the game is
no longer in a basic configuration, and by Claim 2 the robber can move to the reset clique.
Should the robber move to ω from a basic configuration, any cop can capture him.

By Claim 4, either player can initially force the game into a basic configuration. By Claims
1, 2, 3, and 5, along with the observation that in a basic configuration the cops defend all
vertices of the reset clique, it follows that the game must remain in a basic configuration
until some cop can capture the robber (and thus end the game) on her next move. We are
now ready to present the cop and robber strategies.

Suppose k cops can win the LC&Rp game on G; we show how k cops can win the C&Rp
game on G′. In addition to the C&Rp game on G′, the cops “imagine” an instance of the
LC&Rp game on G and play both games simultaneously, using a winning strategy for the
LC&Rp game to guide their play in the C&Rp game.

Label the cops in the LC&Rp game C1, C2, . . . , Ck, and label those in the C&Rp game
C ′1, C

′
2, . . . , C

′
k. For each i ∈ [k], let vi denote the starting vertex of cop Ci in the LC&Rp

game; in the C&Rp game, cop C ′i begins on the i-vertex in λC(vi). As argued in Claim
4, the robber must begin on a robber vertex. Since cop C ′1 defends all vertices in LR, the
robber must begin on λR(v) for some v ∈ V (G). The cops now pretend that the robber in
the LC&Rp game started on v.

While playing the games, the cops maintain the following invariant: if the cops in the
LC&Rp game occupy w1, w2, . . . , wk and the robber occupies wR, then in the C&Rp remains
in a basic configuration, with one cop occupying a vertex of each λC(wi) and the robber
occupying λR(wR). We show how the cops can maintain this invariant while mimicking, in
the C&Rp game, their winning strategy for the LC&Rp game.

Suppose the cop strategy in the LC&Rp game calls for cop C to move from vertex w
to vertex x. In the C&Rp game, this requires two steps. By the invariant, some cop C ′

currently sits on some j-vertex w′ in λC(w). The cop C ′ moves to the subdivision vertex
corresponding to edge wx; if j 6= 1, then additionally the cop currently sitting on a 1-vertex
moves to the j-vertex in her branch clique. The cops now defend all of GR. By Claims 1
and 5, the robber must move to LR; say he moves from vertex λR(y) in GR to λ′R(yz) in LR.
Cop C ′ now moves to the 1-vertex in λC(x), which defends all vertices in LR and forces the
robber to move either to λR(y) or λR(z). The cops interpret these actions as moves in the
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LC&Rp game: the cops move a cop from w to x, while the robber either remains on y or
moves to z, as appropriate. (Note that we may have w = x, y = z, or both.) In either case,
the invariant is maintained.

Eventually the LC&Rp game reaches a configuration in which the cops can capture the
robber, say by moving a cop from w to x. By the invariant, some cop C sits in λC(w), while
the robber occupies λR(x). Now C moves to λR(x); since wx is necessarily unprotected in
G, all edges from λC(w) to λR(x) are unprotected in G′, hence the cops win.

Suppose now that the robber can win the LC&Rp game on G; we show how he can win
the C&Rp game on G′. As above, the robber imagines an instance of the LC&Rp game on
G, plays both games simultaneously, and uses a winning strategy for the LC&Rp game to
win the C&Rp game. By Claim 4, we may suppose without loss of generality that the game
begins in a basic configuration. There are two possibilities: either the cop on a 1-vertex
starts in a branch clique, or she occupies subdivision vertex. We first suppose the former,
and afterward explain how the robber may deal with the latter.

Label the cops C1, C2, . . . , Ck. Suppose cop Ci occupies vertex wi, where wi ∈ λC(vi).
The robber proceeds as if the cops in the LC&Rp game began on v1, v2, . . . , vk. Let v be
his starting position in that game; in the C&Rp game, he starts on λR(v). As before we
maintain the invariant that if the cops in the LC&Rp game occupy w1, w2, . . . , wk and the
robber occupies wR, then one cop in the C&Rp game occupies a vertex of each λC(wi), and
the robber occupies λR(wR). As a consequence of the invariant and the construction on G′,
if the robber is not currently threatened in the LC&Rp game, then also he is not threatened
in the C&Rp game.

Suppose first that no cops occupy subdivision vertices. Maintaining a basic configuration
requires at most one cop on a subdivision vertex, so in each round at most one cop can leave
her branch clique. If no cops leave their cliques, then the robber remains still. Suppose
instead that cop C, currently on some vertex of λC(w), leaves her branch clique, while
all other cops remain in theirs. By Claim 2, C either captures the robber or moves to a
subdivision vertex corresponding to some edge wx. Since the robber is not threatened in the
LC&Rp game the former is impossible, so we may suppose the latter. The robber interprets
this move as C signaling her intent to move to x in the LC&Rp game. Let the robber’s
current vertex be λR(y). In the LC&Rp game, the robber sits on y; say his strategy tells
him that, should the cop on w move to x, the robber should respond by moving to z. In the
C&Rp game, the robber now moves “halfway” to λR(z) by moving to λ′R(yz). (As with the
cops’ strategy, we could have w = x, y = z, or both.) From here there are four possibilities
to consider.

(1) If C does not move on the next turn, then no other cops may leave their branch
cliques, the robber sits still, and the LC&Rp game remains unchanged.

(2) If C moves back to λC(w) and no other cop leaves her branch clique, then the robber
moves back to λR(y), and the LC&Rp game remains unchanged.

(3) If C moves to λC(x) and no other cop leaves her branch clique, then the robber
moves to λR(z) and advances the LC&Rp game by moving a cop from w to x and,
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in response, moving the robber from y to z.

(4) If C moves to λC(w) or λC(x) and some other cop C ′ leaves her branch clique,
then the robber treats these as two separate moves in the following sense. First, he
pretends that C moves while C ′ remains still, decides where to move in response,
and advances the LC&Rp game accordingly. After that, he pretends that C ′ makes
her move, and decides which vertex λ′R(e) of LR he would move to in response. The
robber then moves directly to λ′R(e); this is possible because yz and e must share an
endpoint in G, hence the vertices λ′R(yz) and λ′R(e) are adjacent in LR.

As argued above, the cops cannot deviate from this formula unless some cop can capture
the robber by moving to GR. However, by the invariant, the cops threaten to capture the
robber in the C&Rp game if and only if they threaten to capture the robber in the LC&Rp
game. Since the robber avoids capture indefinitely in the LC&Rp game, he thus avoids
capture indefinitely in the C&Rp game.

Finally, suppose one cop starts on the subdivision vertex corresponding to some edge wx.
The robber pretends that this cop had started on w and, subsequently, moved from λC(w)
to λ′C(wx). The robber chooses a starting position and first move based on this hypothetical
scenario, takes note of the vertex v at which he winds up, and starts directly on v in the
“real” C&Rp game.

It is clear that G′ may be constructed in polynomial time, which completes the proof. �

3. Proof of the main result

We are now ready to prove Conjecture 1.1. To do so, it suffices to reduce a known
EXPTIME-complete problem to LC&Rp; Conjecture 1.1 then follows by Lemma 2.1 and
Theorem 2.2. We use the problem known as the Alternating Boolean Formula game (or
ABF), shown to be EXPTIME-complete by Stockmeyer and Chandra [16]1. In ABF, players
A and B are given disjoint sets X and Y of variables, with prescribed initial values, along
with a boolean formula ϕ in conjunctive normal form. The players play alternately, each
changing the values of at most one of their variables. Player A wins if ϕ ever becomes true;
otherwise, B wins. The problem is to decide whether Player A has a winning strategy.

Our reduction from ABF to LC&Rp is somewhat technical. For this reason, we begin by
presenting the construction and attempting to explain the intuition behind the reduction.
Only after that do we provide the formal proof.

3.1. Construction. In reducing ABF to LC&Rp, we must convert an instance (X, Y, ϕ)
of ABF into an instance (G, `) of LC&Rp such that Player A can win the ABF game if and
only if ` cops can capture a robber on the graph G (with specified protected edges). The
main difficulty, of course, is constructing G. In this subsection we present the construction
in small pieces. Our aim is to provide intuition behind the construction, and as such we
make several unjustified assertions, postponing formal proof until Section 3.2.

1In fact, Stockmeyer and Chandra showed that ABF is complete for the complexity class ETIME, the
class of problems solvable in time 2O(n). However, it is well-known that every ETIME-complete problem is
also EXPTIME-complete; see for example [10], Theorem 1.1.
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In the construction below, to simplify the presentation, we incorporate a special vertex
h. All edges incident to h are protected. Thus, should the robber ever reach h, he may
stay there indefinitely, thereby winning the game. The concept of a “winning vertex” for
the robber appeared both in the work of Goldstein and Reingold [8] (where such vertices
were called “holes”) and in that of Mamino [12] (where they were called “safe havens”).
Such a contrivance presents a fundamental difficulty: what is to stop the robber from simply
starting the game at h? Goldstein and Reingold dealt with this issue by explicitly specifying
the players’ initial positions, thereby specializing the game. We adopt an approach more
similar to Mamino’s, wherein we later replace h with a gadget that allows the robber to
force the game back into a canonical “initial” configuration (as with the “reset clique” in the
proof of Theorem 2.2).

Every edge incident to h is assumed to be protected, including the loop at h. All other
edges in G are unprotected except where otherwise specified. In the figures below, black ver-
tices are unprotected, white vertices are protected, solid edges are unprotected, and dashed
edges are protected. A slashed circle denotes vertex h.

Let the given ABF instance have variables X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
and CNF formula ϕ. We aim to construct an “equivalent” instance of the LC&Rp game in
which the cops play the role of Player A, while the robber plays the role of Player B. We
encode the values of variables in both X and Y through the positions of cops in G. For
i ∈ [m], the graph G has vertices xTi and xFi ; we will ensure that at all times exactly one of
these vertices is occupied by a cop. A cop on xTi indicates that variable xi is currently true,
while a cop on xFi indicates that xi is currently false. Likewise, for each j ∈ [n], the graph
G has vertices yTj and yFj , which encode the truth value of yj. We refer to the vertices xTi ,

xFi , yTj , and yFj as variable vertices. We call the cops residing on these vertices variable cops,
and say that the cop encoding the value of some variable is assigned to that variable.

We refer to the negation of some variable, through the appropriate movement of the
corresponding cop, as a shift in that variable. Our construction must provide means for
the cops to force shifts in the xi and for the robber to force shifts in the yj. The former is
straightforward: for each i ∈ [m] we add an edge joining xTi and xFi , and the cops may shift
xi simply by moving the appropriate cop from one of these vertices to the other.

Empowering the robber to force a shift in some yj is less straightforward. We do this by
employing the gadget shown on the left in Figure 2, adding one copy of the gadget for each
yj. The vertices v and h are common to all gadgets, while all other vertices shown are unique
to each copy of the gadget; v is in some sense the robber’s “home base” throughout the game.
Although the gadget may look complicated, the underlying idea is simple: should the robber
(sitting on v) want to move a cop from, say, yTj to yFj , he does so by himself moving to aFj .
This initiates a sequence of moves during which the cop must repeatedly defend against the
robber’s threats to reach h, while the robber must repeatedly evade capture by the cops.
In this way both players’ moves are “forced”; ultimately the cop must reach yFj , while the
robber must return to v. (The cops subsequently have the opportunity to shift some xi,
should they so desire.) We refer to vertices of the form aTj , a

′T
j , a

F
j , and a′Fj as primary robber

vertices, and to bTj , b
′T
j , b

F
j , and b′Fj as secondary robber vertices. As previously mentioned,

we call yTj and yFj variable vertices; in addition, we call the y∗j intermediate vertices.
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v

aT
j

bTj

h

aF
j

bFj

h

a′Tj

b′Tj

h

a′Fj

b′Fj

h

y∗j

yT
j

yF
j

v

v

c1 c2 c3 c4

r1 r2 r3 r4

w4,1

s1

w4,2

s2

w4,3

s3

w4,4

s4

v

c1

c2

c3

c4

neighbours of h

c1
r1

c2
r2

c3
r3

c4
r4

t1

t2

t3

t4

{r2, r3, r4}

{r1, r3, r4}

{r1, r2, r4}

{r1, r2, r3}

1

Figure 2. Left: yj gadget. Right: reset gadget (with k = 4).

To restrict the variable cops to their assigned variable vertices, we add protected restric-
tion vertices uz for all variables z. We also add edges joining all restriction vertices to h
and to v; the edges incident to h are protected. Moreover, we add edges joining each uz
to the variable vertices corresponding to z. So long as all variable cops remain on their
assigned variable vertices, they defend all restriction vertices. However, should any variable
cop ever leave her assigned variable vertices, the corresponding restriction vertex becomes
undefended. If at this time the robber occupies v or some primary robber vertex, then he
can safely move to the undefended restriction vertex and subsequently to h.

The graph G must also provide a means for the cops to capture the robber, should ϕ
ever become true. To this end, we add one clause vertex uC for each clause C of ϕ and two
additional vertices u and s. Vertex u and all of the uC are adjacent to h, s, and v; all such
edges incident to h are protected. For each CNF clause C, the vertex uC is made adjacent,
in the usual way, to those variable vertices representing literals in C. That is, if C contains
the literal α, then we add edge uCα

T , and if C contains the literal α, then we add edge
uCα

F . Finally, we add edges from u to all robber vertices and restriction vertices, as well as
edges from all clause vertices to all primary robber vertices.

Suppose ϕ becomes true after Player B’s turn. In the Cops and Robbers game, the robber
sits on v and it is the cops’ turn. We will ensure that, throughout the bulk of the game, a
cop sits on s; to initiate the capture, this cop moves to u. This forces the robber to flee to
a clause vertex. Should some clause of ϕ be false, the robber can move to an undefended
clause vertex, and subsequently to h. However, should ϕ be true, the robber has nowhere to
run, and will be captured. If ϕ becomes true after Player A’s turn, then the process works
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as before, except that the robber starts from some primary robber vertex.

We next replace the special vertex h with a more complex gadget, as promised earlier. Let
k = m+n+ 2. In place of h we add unprotected vertices c1, c2, . . . , ck and protected vertices
r1, r2, . . . , rk; we refer to {r1, r2, . . . , rk} as the reset clique. We add unprotected edges ciri
for all i ∈ [k] and protected edges joining all pairs of vertices in the reset clique. Finally,
we replace each edge originally incident to h with k edges, incident to each of r1, r2, . . . , rk.
As all edges incident to h were protected, so too are the new edges that replace them. The
key idea is that if the robber safely enters the reset clique, then the cops can only force him
out by occupying c1, c2, . . . , ck. We next provide means for the robber to force the cops from
these vertices into particular “starter” vertices.

Toward this end, we add new vertices s1, s2, . . . , sk, t1, t2, . . . , tk, and wi,j for i, j ∈ [k]; of
these, all but the si are protected. For all i ∈ [k] we add edge cisi and protected edge risi.
We also add edges siti for all i ∈ [k] and protected edges tirj for all i, j ∈ [k] with i 6= j.
For all i, j ∈ [k] we add edge wi,jsj. We also add protected edges wi,jwi,j′ for all i, j, j′ ∈ [k],
as well as protected edges riwi,1 and wi,kv for all i ∈ [k], except that we replace r1w1,1 with
r1w1,2. Additionally, for i ∈ [k−1], we add edges from ci to all wj,i+1, except that we replace
c1w1,2 and c2w1,3 with c1w1,3 and c2w1,1, respectively. Finally, we add edges joining ck to all
clause vertices. We strongly urge the reader to refer to Figure 2.

Intuitively, this gadget allows either player to force a specific configuration of the game
in which the robber occupies v while the cops occupy s1, s2, . . . , sk. We want this special
configuration to be a starting point for our simulation of the ABF game. Thus for i ∈ [m],
we identify si with xTi if xi is initially true and with xFi otherwise. Similarly, for i ∈ [n] we
identify sm+i with yTi if yi is initially true and with yFi otherwise. Finally, we identify sk−1
with s and ck−1 with u.

For technical reasons, it will be useful to “forbid” the robber from entering the variable
and intermediate vertices. To facilitate this, we add an unprotected vertex c∗ and a protected
vertex r∗. We add edges joining c∗ to r∗ and to all variable and intermediate vertices. We
also add protected edges joining r∗ to every other vertex in the graph (aside from c∗). Clearly
the cops should prevent the robber from ever reaching r∗. Doing so requires having a cop
occupy c∗ at all times; this has the side-effect of ensuring that the variable and intermediate
vertices are always defended.

This completes the construction. As we argue in Section 3.2, the structure of G greatly
restricts the players’ options. Let the initial configuration be the configuration of the game
in which the cops occupy s1, s2, . . . , sk and c∗, the robber occupies v, and it is the cops’ turn;
note that the initial configuration corresponds to the starting configuration of the given ABF
instance, in the sense that the variable cops encode their assigned vertices’ given initial val-
ues. Let a basic configuration be one in which the robber occupies v, one cop occupies c∗,
one cop occupies sk, one cop occupies s, and for each variable z, the variable cop assigned
to z occupies zT if z is currently true in the ABF game and zF otherwise. The reset gadget
forces the game to quickly reach the initial configuration; our intuition, which we formalize
in Section 3.2, is that the game “should” regularly return to a basic configuration, provided
the players play “properly”.
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With the game in a basic configuration, if it is the cops’ turn, then the cops may force
a shift in some xi, which corresponds to Player A changing the value of xi in the ABF
game. Likewise, if it is the robber’s turn, then the robber may force a shift in some yj,
which corresponds to Player B changing the value of yj. Both players also have the option
of sitting still, which corresponds to a player changing no variables on his turn of the ABF
game. In any case the game returns to a basic configuration. The game continues in this
manner until the cop on s moves to u, which results either in the capture of the robber (if
ϕ is true) or the escape of the robber (if ϕ is false). Thus the cops have a winning strategy
on G if and only if Player A has a winning strategy in the ABF game. We remark that G
may clearly be constructed in polynomial time.

We conclude this subsection with a table summarizing important adjacencies in the con-
struction. (For the sake of brevity, we have omitted some vertices and edges appearing in
the reset gadget; refer to Figure 2.)

3.2. Reduction. We are now ready to prove that the LC&Rp game on G behaves as
claimed in Section 3.1. In particular, given an ABF instance with ` variables, we show that
Player A can win the ABF game if and only if `+ 3 cops can capture a robber on G. In the
argument below, we must carefully consider all possible moves by the cops and robber. As
in Section 2, we say that a player must not make a move if that move clearly provides no
benefit, and we assume neither player makes any such moves. The key to the reduction is
that very few potential moves remain.
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Vertices Unprot. edges to... Prot. edges to... Remark

h r∗, u symbolizes the reset clique

clause vertices protected

restriction vertices

v u, ck r∗

restriction vertices

clause vertices

[see also Figure 2]

u s, v r∗, h also known as ck−1
robber vertices

restriction vertices

s u r∗ also known as sk−1
clause vertices

xTi , x
F
i c∗, uxi

r∗ variable vertices

each other

appropriate clause vertices

yTj , y
F
j c∗, uyj r∗ variable vertices

appropriate clause vertices

[see also Figure 2]

y∗j c∗ r∗ intermediate vertices

[see also Figure 2]

aTj , a
F
j , a

′T
j , a

′F
j u r∗ primary robber vertices

clause vertices

[see also Figure 2]

bTj , b
F
j , b

′T
j , b

′F
j u r∗ secondary robber vertices

[see also Figure 2]

uz v, u r∗, h restriction vertices

corresponding variable vertices

uC s, v, ck r∗, h clause vertices

corresponding variable vertices protected

primary robber vertices

Table 1. Summary of the construction in Section 3.1.

Theorem 3.1. ABF reduces to LC&Rp in polynomial time.

Proof. Given an ABF instance (X, Y, ϕ), we construct the graph G as outlined in Section 3.1.
Denote the sizes of X and Y by m and n, respectively, and let k = m+ n+ 2. We play the
ABF game and the LC&Rp game (with k+ 1 cops) simultaneously, with each player using
a strategy for the ABF game to guide his or her play in the LC&Rp game. Before we give
explicit strategies for the players, we prove several claims about the flow of the game. Our
aim is to show that the players do not actually have much freedom in choosing their moves.
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Recall that we suppose ϕ is in conjunctive normal form; that is, ϕ = C1 ∧ C2 ∧ · · · ∧ C`,
where each Ci is the disjunction of literals. We assume ϕ is initially false, since otherwise
Player A trivially wins the ABF game.

Claim 1a: If the robber stands in the reset clique and it is his turn, then he can either
escape capture forever or force the game to reach an initial configuration.

We assume throughout that some cop always occupies c∗. If not, the robber can move
to r∗ and remain there until some cop moves to c∗, at which point the robber can move
anywhere in G; this clearly cannot benefit the cops.

The cops can defend the entire reset clique only by occupying vertices c1, c2, . . . , ck. Until
this happens, the robber can always move (or remain on) to some undefended vertex in the
clique.

Suppose now that the cops occupy c1, c2, . . . , ck, the robber occupies some r`, and it is the
robber’s turn. We suppose ` 6= 1; the other case is similar. The robber moves to w`,1. Only
s1 defends w`,1, so the robber cannot be captured unless some cop first moves to s1.

If some cop reaches s1 while the remaining cops still occupy c2, c3, . . . , ck, then the robber
moves to w`,2. Suppose instead that for some j ≥ 2, the cop on cj moves. The robber now
moves to t1. At this point the cops occupy all ci for i 6∈ {1, j}, and no cop occupies s1. If
some cop (other than the cop on c∗) moves to cj, then the robber returns to w`,1 and proceeds
as before. Otherwise, vertex rj remains undefended; the robber moves there, gaining access
to the reset clique, and the process begins anew.

Hence we may assume that the robber occupies w`,2, that cops occupy s1, c2, c3, . . . , ck,
and that it is the cops’ turn. If the cop on s1 leaves, then the robber returns to w`,1 and
plays as in the preceding paragraph. If the cop on some cj moves for j ≥ 3, then the robber
moves to t2; at this point both r1 and rj are undefended and the cops cannot defend both
with their next move, so the robber can safely return to the reset clique. If the cop on c2
moves anywhere other than s2, then the robber moves to s2; from here, if the cop returns
to c2 then the robber returns to w`,2, and otherwise the robber can safely move to r2. If the
cops all remain in place, then so does the robber. None of the preceding cases benefit the
cops; the only remaining possibility is that the cop on c2 moves to s2, to which the robber
responds by moving to w`,3.

We now assume that the robber occupies w`,3, that cops occupy s1, s2, c3, . . . , ck, and that
it is the cops’ turn. If the cops make any move that leaves t3, r1, and r2 undefended, then
the robber moves to t3; the cops cannot defend both r1 and r2 with a single move, so no
matter how they respond, the robber regains access to the reset clique. If instead the cop
on s2 moves to c2, then the robber returns to w`,2 and plays as in the preceding paragraph.
Finally, if the cop on s1 moves to c1, then the robber moves to w`,1 and uses a strategy
symmetric to the one in the preceding paragraph. In particular, if the cop on s2 leaves, then
the robber returns to w`,1; if the cop on some cj moves for j ≥ 3, then the robber moves to
t2 and subsequently regains access to the reset clique; if the cop on c1 moves anywhere other
than s1, then the robber moves to s1 and, from there, either returns to w`,1 or moves to r1
as appropriate; if all cops remain in place, so does the robber; finally, if the cop on c1 moves
to s1, then the robber returns to w`,3. None of the preceding options benefit the cops, so we
may assume that the cop on c3 moves to s3. The robber responds by moving to w`,4.
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With the robber on w`,4 the arguments become simpler. If the cop on c4 moves to s4,
then the robber moves to w`,5; if the cops make any other move, then the robber moves to
t4 and subsequently to some undefended ri. Continuing in this way, the cops must “push”
the robber down through the w`,j to w`,k and from there to v, at which point we reach the
initial configuration.

Claim 1b: If the cops occupy vertices c1, c2, . . . , ck and c∗, and it is the cops’ turn, then the
cops can either capture the robber or force the game to reach the initial configuration.

The cops defend all vertices aside from w1,2, the w`,1 (for ` 6= 1), and the ti, so we may
assume the robber occupies one of these. If the robber occupies some ti, then the cop on
ci moves to si, which ensures the robber’s capture. Hence we suppose the robber occupies
either w1,2 or w`,1 for some ` 6= 1. The cases are similar; for convenience we consider only
the latter case.

At this point the cops occupy c1, c2, . . . , ck and c∗, the robber occupies w`,1, and it is the
cops’ turn. The cop on c1 moves to s1. The cops now defend r`, w`,1, s1, and t1, so the
robber must move to w`,2. The cop on c2 now moves to s2, which forces the robber to w`,3,
and so forth. Once the robber reaches w`,k, the cop on ck moves to sk; the robber must now
move to v, which produces the initial configuration.

Claim 2: If the game is in a basic configuration and it is the robber’s turn, then the robber
must either remain in place, move to some vertex aTj such that yj is currently false, or move

to some vertex aFj such that yj is currently true.

Vertex v is adjacent to the restriction vertices, the clause vertices, the intermediate vertices,
the primary robber vertices, u, ck, the wi,k, and r∗. In a basic configuration, the cop on c∗

defends r∗, the cop on sk defends ck and the wi,k, the cop on s defends the clause vertices
and u, and the variable cops defend the restriction vertices, the intermediate vertices, the
a′Tj , and the a′Fj . Moreover, the variable cop assigned to yj defends aTj when yj is true and

aFj when yj is false. Thus the only undefended vertices in N [v] are v itself, vertices aTj for

which yj is false, and vertices aFj for which yj is true.

Claim 3: If the game is in a basic configuration (on the robber’s turn), ϕ is currently false,
and the robber moves to some vertex aTj such that yj is currently false (or to some aFj such
that yj is currently true), then yj shifts, after which the game returns to a basic configuration
(on the cops’ turn).

It follows from Claims 1a and 1b that the cops must not allow the robber safe access to the
reset clique. If the robber reaches the reset clique then he can force the game into the initial
configuration, which clearly does not benefit the cops, as they already had an opportunity
to force the initial configuration (as in Claim 1b). Likewise, the cops must not allow the
robber access to vertex h (which in reality represents the reset clique).

By symmetry we assume that the robber moves to some aTj such that yj is currently false.

The cops must now defend bTj , lest the robber move there and next to h. Only four vertices

defend bTj , namely aTj , bTj , y∗j , and u. No cops are adjacent to aTj or bTj . The only cop adjacent
to u is the cop on s. Since ϕ is false, it contains some false clause C; should the cop on s
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move to u she would leave uC undefended, so the robber could move there and subsequently
to h. The cop on c∗ cannot move to y∗j , since this would leave r∗ undefended. The only

remaining option is for the cop on yFj to move to y∗j .

The robber cannot remain on aTj , nor can he move to bTj , yTj , y∗j , or v, lest the cop on y∗j
capture him. He also cannot move to u or to any of the clause vertices, lest the cop on s
would capture him. Thus he must move to a′Tj . As before, the cops must now defend b′Tj , and

as before, they must do so by moving the cop on y∗j to yTj . Now the robber cannot remain

on a′Tj , the cop on c∗ defends yTj and yFj , the cop on s defends u and the clause vertices, and

the cop on yTj defends b′Tj and aTj . Hence the robber must move to v. Thus yj has shifted,
the game has returned to a basic configuration, and it is the cops’ turn.

Claim 4: If the robber occupies v or a primary robber vertex, all variable cops occupy their
assigned variable vertices, some cop occupies c∗, some cop occupies sk, some cop occupies s,
and ϕ is currently false, then the cop on s must not move.

Should the cop on s move anywhere other than u or rk−1 she would leave u undefended,
allowing the robber to move to u and from there to h. Now suppose the cop on s moves to
u or rk−1. Since ϕ is false, some clause C of ϕ is false. The vertex uC is defended only by s,
v, ck, the primary robber vertices, and those variable vertices corresponding to literals in C.
Since C is false, uC is not defended by any variable cop, nor is it defended by the cop on c∗,
the cop on sk, or the final cop (who occupies either u or rk−1). Thus the robber can safely
move to uC and subsequently to h.

Claim 5: If the game is in a basic configuration, it is the cops’ turn, and ϕ is currently
false, then either all cops remain in place, or the cops execute a shift in some xi.

As noted in Claim 3, the cops must not allow the robber safe access to the reset clique
(or to the symbolic vertex h). If the cop on c∗ moves anywhere, then the robber moves to r∗

and subsequently to some undefended vertex in the reset clique. If the cop C on sk moves
to tk or to some wi,k, then the robber moves to ck and, on his next turn, to rk (note that
the cops cannot defend rk before the robber reaches it). If instead C moves to ck or rk, then
the robber moves to w1,k; if C next returns to sk then the robber returns to v (an exchange
that does not benefit the cops), and otherwise the robber moves to tk and subsequently to
some undefended vertex of the reset clique. By Claim 4, the cop on s must not move. Only
the variable cops remain. The variable cops must not leave their assigned variable vertices;
this would leave some restriction vertex undefended, allowing the robber to move there and
next to h. Hence the only variable cops that may move are those assigned to the xi, and
their only option is to execute a shift.

Claim 6: If any shift makes ϕ true, then the cops can capture the robber.

By the preceding claims the game eventually reaches a basic configuration, after which
shifts are executed in sequence until ϕ becomes true. Moreover, a shift in some xi yields a
basic configuration in which it is the robber’s turn, while a shift in some yj yields a basic
configuration in which it is the cops’ turn.
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Suppose first that ϕ becomes true after a shift in some yj. From the resulting basic
configuration, the cop on s may move to u, threatening to capture the robber. The robber
clearly cannot remain on v. Vertex v is adjacent to u, ck, the restriction vertices, the clause
vertices, the intermediate vertices, the primary robber vertices, and the wi,k. The variable
cops defend the restriction vertices and intermediate vertices, the cop on sk defends ck and
the wi,k, and the cop on u defends the primary robber vertices and u itself. Thus the robber
must move to some clause vertex. However, each clause of ϕ has at least one true literal,
and hence each clause vertex is defended by at least one variable cop. No matter where the
robber moves, the cops can capture him on their next turn.

Now suppose ϕ becomes true after a shift in some xi. By Claim 3, the robber must either
stay on v or move to some aTj or aFj . Regardless of the robber’s choice, the cop on s may move
to u, threatening to capture the robber. As above, v and all its neighbours are defended;
additionally, the cop on u defends all secondary robber vertices, and the cop on c∗ defends
all variable vertices. No matter which vertex the robber currently sits on, he cannot escape
capture.

We are finally ready to give the players’ strategies. Suppose first that Player A has a
winning strategy for the ABF game; we show how k + 1 cops can capture the robber on
G. The cops initially occupy c1, c2, . . . , ck and c∗; from there, they force the game into the
initial configuration (which is also a basic configuration) as in Claim 1b.

From a basic configuration, on the cops’ turns, they play as follows. If ϕ is true, then the
cops capture the robber as in Claim 6. Otherwise, the cops consult Player A’s strategy in
the ABF game. If Player A changes the value of some xi, then the cops execute a shift on
xi. If instead Player A changes no variables, then the cops all remain in place. In either case
the LC&Rp game remains in a basic configuration, but it is now the robber’s turn.

From a basic configuration, on the robber’s turns, he has very few options. By Claims 2
and 3, the robber must either remain in place or initiate a shift on some yj. In the former
case, the cops act as if Player B changed no variables in the ABF game, while in the latter
case, they act as if he changed the value of yj. In either case, the LC&Rp game soon returns
to a basic configuration by Claim 3.

Play continues in this manner. Since the cops follow a winning strategy for Play A in the
ABF game, eventually some shift makes ϕ true. By Claim 6, the cops can then capture the
robber.

Now suppose Player B has a winning strategy for the ABF game; we show how the rob-
ber can perpetually evade k cops on G. Initially, if r∗ or any vertex of the reset clique is
undefended, then the robber starts there; otherwise the cops must occupy c1, c2, . . . , ck and
c∗, and the robber starts on w2,1. The robber forces the game into the initial configuration
as in Claim 1a and, as before, the cops and robber subsequently execute a series of shifts.
When the cops shift xi, the robber acts as if Player A changed the value of xi. From a
basic configuration on the robber’s turns, he consults Player B’s strategy in the ABF game.
If Player B changes the value of some yj, then the robber initiates a shift on yj, and the
game soon returns to a basic configuration by Claim 3. By Claims 2-5, the LC&Rp game
continues in this manner so long as ϕ is false; since Player B perpetually prevents ϕ from be-
coming true in the ABF game, the robber perpetually escapes capture in the LC&Rp game.
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As noted in Section 3.1, the LC&Rp instance can clearly be constructed in time polyno-
mial in the size of the ABF input. �

Thus ABF reduces to LC&Rp (Theorem 3.1), LC&Rp reduces to C&Rp (Theorem 2.2),
and C&Rp reduces to C&R ([12], Lemma 3.1). Consequently, since ABF is EXPTIME-
hard ([16]), so is C&R. As noted in the introduction, C&R clearly belongs to EXPTIME,
so Conjecture 1.1 follows.
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