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Carnot engine [tln11]

Second law: Heat flows spontaneously from high to low temperatures.

Thermal contact: Temperature differences disappear without producing work.

Heat engine: Part of the heat flowing from high to low temperatures is
converted into work via a cyclic process.

Carnot engine: All wasteful heat flows are eliminated (reversible processes).

The four steps of a Carnot process:

• 1 → 2: Isothermal absorption of heat: ∆Q12 > 0 at ΘH .

• 2 → 3: Adiabatic cooling: ΘH → ΘL with ∆Q23 = 0 and ∆W23 < 0.

• 3 → 4: Isothermal expulsion of heat: ∆Q34 < 0 at ΘL.

• 4 → 1: Adiabatic heating: ΘL → ΘH with ∆Q41 = 0 and ∆W41 > 0.

Total heat input: ∆Qin = ∆Q12.

Use first law: ∆U = ∆Q12 + ∆W12 + ∆W23 + ∆Q34 + ∆W34 + ∆W41 = 0.

Net work output: ∆Wout ≡ −∆W12−∆W23−∆W34−∆W41 = ∆Q12−|∆Q34|

Efficiency: η ≡ ∆Wout

∆Qin

= 1− |∆Q34|
∆Q12

.
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Maximum efficiency [tln12]

Is it possible to construct a heat engine A which is more efficient than the
Carnot engine C?

Use engine A to drive engine C in the reverse i.e. as a refrigerator.

ΘL

ΘH

∆Q
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Heat transfers: ∆QA > 0, ∆Q12 < 0, ∆Q34 > 0.

Work performance: ∆W = ∆W
(A)
out = ∆W

(C)
in > 0.

Efficiencies: ηA =
∆W

∆QA

, ηC =
∆W

|∆Q12|

Since engine C operates reversibly, ηC is the same in the forward and reverse
directions. Note: ηC is not an efficiency in the reverse mode.

ηA > ηC would imply ∆QA < |∆Q12|.

The two engines combined would then cause heat to flow from low to high
temperature without work input, which is a violation of the second law.

Conclusions:

• Engine A cannot be more efficient than engine C.

• All Carnot engines operating between ΘH and ΘL must have the same
efficiency.



Absolute temperature [tln13]

Reservoir temperatures: ΘH , ΘM , ΘL.

Efficiency: η = 1− |∆QL|
∆QH

= 1− f(ΘL, ΘH).

Likewise:
∆Q̄M

∆Q̄H

= f(ΘM , ΘH),
|∆Q̄L|
∆Q̄M

= f(ΘL, ΘM).
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Second law implies: If ∆Q̄L = ∆QL then ∆Q̄H = ∆QH .

⇒ |∆Q̄L|
∆Q̄M

∆Q̄M

∆Q̄H

=
|∆QL|
∆QH

⇒ f(ΘL, ΘM)f(ΘM , ΘH) = f(ΘL, ΘH)

Functional form: f(ΘL, ΘH) =
g(ΘL)

g(ΘH)
≡ TL

TH

⇒ η = 1− TL

TH

.

Definition of absolute temperature:
TL

TH

=
|∆QL|
∆QH

.

Kelvin scale is fixed by triple point of water: Ttrp = 273.16K.

Note: η = 1 implies TL = 0. However, the third law states δQ = TdS = 0 at
T = 0. Hence, all reversible processes at T = 0 are adiabatic. Heat cannot
be absorbed reversibly at T = 0.



[tex1] Entropy change caused by expanding ideal gas

Consider the amount n = 1mol of a classical ideal gas in a box of volume V1 with heat-conducting
walls. The gas is described by the equation of state pV = nRT and the internal energy U = CV T
with CV = const. Now we let the gas expand to the volume V2 = 2V1 via two different processes:
(a) by quasi-static isothermal expansion;
(b) by leakage through a hole in one wall.
Calculate the change in entropy ∆SG of the gas and ∆SE of the environment during each process.
Express the results in SI units.

V(a) 1 V(b) 1

Solution:



[tex3] Carnot cycle of the classical ideal gas

Consider the four steps of a Carnot engine with the operating material in the form of a classical
ideal gas [pV = nRT , U = CV T with CV = const].
(a) Determine the heat transfer, ∆Q, the work performance, ∆W , and the change in internal
energy, ∆U , for each of the four steps:

1→ 2 isothermal expansion: T = TH = const, V2 > V1.
2→ 3 adiabatic expansion: S = const, V3 > V2.
3→ 4 isothermal compression: T = TL = const, V4 < V3.
4→ 1 adiabatic compression: S = const, V1 < V4.

(b) Sketch the Carnot cycle in the (V, p)-plane and in the (U, S)-plane.
(c) Show that the efficiency is ηC = 1− TL/TH .

Solution:



[tex4] Carnot cycle of an ideal paramagnet

Consider the four steps of a Carnot engine with the operating material in the form of an ideal
paramagnet. The equation of state is Curie’s law, M = DH/T , where H is the magnetic field, T
the absolute temperature, and D a constant. The internal energy is a monotonically increasing
function, U(T ), of temperature.
(a) Determine the heat transfer, ∆Q, the work performance, ∆W , and the change in internal
energy, ∆U , for each of the four steps:

1→ 2 isothermal demagnetization: T = TH = const, M2 < M1.
2→ 3 adiabatic demagnetization: S = const, M3 < M2.
3→ 4 isothermal magnetization: T = TL = const, M4 > M3.
4→ 1 adiabatic magnetization: S = const, M1 > M4.

(b) Sketch the Carnot cycle in the (M,H)-plane and in the (U, S)-plane.
(c) Show that the efficiency is ηC = 1− TL/TH .

Solution:



Reversible processes in fluid system [tln15]

Isothermal process: T = const. δQ 6= 0 in general.

Isochoric process: V = const. δQ = CV dT, dU = CV dT .

Isobaric process: p = const. δQ = CpdT .

Isentropic (adiabatic) process: S = const. δQ = 0.

Internal energy: dU = δQ + δW = TdS − pdV .

• V = const. ⇒ δW = 0 ⇒ dU = δQ (no work performed).

• S = const. ⇒ δQ = 0 ⇒ dU = δW (no heat transferred).

Classical ideal gas:

Equation of state: pV = nRT .

Internal energy: U = CV T, CV = αnR = const.

Isotherm: T = const. ⇒ pV = const.

Adiabate: S = const. ⇒ pV γ = const., γ = 1 + 1/α

• monatomic gas: α = 3
2
, γ = 5

3
.

• diatomic gas: α = 5
2
, γ = 7

5
.

• polyatomic gas: α = 3, γ = 4
3
.
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[tex7] Adiabates of the classical ideal gas

The classical ideal gas is specified by the thermodynamic equation of state pV = nRT and by the
internal energy (caloric equation of state) U = CV T with CV = αnR = const [α = 3

2 (monatomic),
α = 5

2 (diatomic), α = 3 (polyatomic)]. A reversible process with S = const is called isentropic
or adiabatic and is characterized by the curve pV γ = const. No heat is exchanged in an adiabatic
process: dU = δW , δQ = 0. Find γ as a function of α.

Solution:



[tex25] Roads from 1 to 2: isothermal, isentropic, isochoric, isobaric

The amount n = 1mol of an ideal gas undergoes three different quasistatic processes (see Figure)
from the initial state (p1, V1, T1) to the final state (p2, V2, T2):
(i) 1 → A → 2; (ii) 1 → B → 2; (iii) 1 → C → 2.
Find the work ∆W done on the system and the heat ∆Q added to the system in each process.
Express all results in terms of (T1, V1, T2, V2).
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Solution:



[tex13] Room heater: Electric radiator versus heat pump

A room is to be kept at temperature TH = 294K, (21◦C). The outdoor temperature is TL. Heat,
which leaks through the windows and doors at the rate Q̄leak = γ∆T , must be replaced by a
room heater at the same rate. The electric radiator converts electric power W̄el into heat with
100% efficiency. The electric heat pump uses the amount W̄sup of electric power to drive a Carnot
cycle in the reverse, which extracts heat Q̄L at temperature TL from the exterior and converts it
(reversibly) into heat Q̄H = Q̄L + W̄hp at temperature TH . In the relation W̄hp = (1 − λ)W̄sup, λ
represents the energy loss in the gears of the heat pump. Quantitites with overbars denote energy
transfers per time unit.
(a) Find W̄el as a function of γ, TH , TL, and W̄sup as a function of γ, λ, TH , TL.
(b) Plot W̄el/γ and W̄sup/γ versus tL ≡ TL − 273K (measured in ◦C) for fixed TH = 294K and
λ = 0.8 (20% efficiency).
(c) Determine the range of TL where the heat pump is more economical than the radiator.

Solution:



[tex12] Mayer’s relation for the heat capacities of the classical ideal gas

The amount n = 1mol of a classical ideal gas [pV = nRT , U = CV T with CV = const] is initially
confined to a volume V1 at pressure p1. In step 1 → 2 of Mayer’s cycle, the gas undergoes free
expansion to volume V2 while it is thermally isolated (δQ = 0, δW = 0) The pressure decreases
from p1 to p2 during this step. In step 2 → 3 the gas is quasi-statically compressed back to volume
V1, while the pressure is maintained at p2. With the temperature decreasing during this step, heat
is expelled. In step 3 → 1 the gas is heated up quasi-statically at constant volume V1 until the
pressure returns to p1. Use the first law to derive Mayer’s relation, Cp − CV = R, between the
heat capacities of the classical ideal gas.
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Solution:



[tex26] Positive and negative heat capacities

The p − V diagram shows an isotherm and an adiabate for the classical ideal gas. Show that a
quasistatic process of the type 1 → 2 is characterized by a positive heat capacity and a process of
the type 3 → 4 by a negative heat capacity.
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4

adiabate

isotherm

Solution:



[tex9] Work extracted from finite heat reservoir in infinite environment

A (finite) heat reservoir with heat capacity C = const is initially at temperature TH and the (infi-
nite) environment at the lower temperature T0. Now the reservoir is connected to the environment
by a heat engine, which absorbs an infinitesimal amount of heat δQ per cycle, converts part of
it into work δW , and dumps the rest into the environment. During each cycle the temperature
of the reservoir decreases infinitesimally: δQ = −CdT . Determine the maximum amount of work
∆W that can be extracted from the reservoir before its temperature has dropped to that of the
environment. The fraction of the excess internal energy Uex = C(TH − T0) that can be converted
into work is characterized by the quantity ∆W/Uex. Plot this quantity versus the reduced tem-
perature (TH −T0)/T0 for T0 < TH < 3T0. Set TH/T0 = 1 + ε with ε� 1 and find the dependence
of ∆W/Uex on ε to leading order.

Solution:



[tex10] Work extracted from finite heat reservoir in finite environment

A (finite) heat reservoir with heat capacity CH = const is initially at temperature TH and the
(finite) environment with heat capacity CL at the lower temperature TL.
(a) When heat is allowed to flow from the reservoir to the environment, both will end up at the
temperature Tf = (CHTH + CLTL)/(CH + CL) (arithmetic mean). Verify this and determine the
total amount of heat ∆Q that has been transferred.
(b) When the reservoir is connected to the environment by a Carnot engine which absorbs an
infinitesimal amount of heat δQ per cycle, converts part of it into work δW , and dumps the rest
into the environment, the final common temperature of the reservoir and the environment will be
Tf = T

CH/(CH+CL)
H T

CL/(CH+CL)
L (geometric mean). Verify this and determine the total amout of

work ∆W that has been extracted from the system. The fraction of the excess internal energy
Uex = CH(TH − TL) that can be converted into work is characterized by the quantity ∆W/Uex.
Plot this quantity versus the reduced temperature (TH−TL)/TL for CH = CL and TL < TH < 3TL.
Discuss the properties of this function in the limit TH → TL.

Solution:



[tex2] Heating the air in a room

Calculate the amount of energy ∆Q that must be supplied to heat the air in a room from 0◦C
to 20◦C under three different circumstances. For each case, calculate also the change in internal
energy ∆U of the air in the room. Mass density of air at STP (0◦C and 1atm): ρ = 0.00129g/cm3.
Specific heats of air: cV = 0.169cal/gK, cp/cV ≡ γ = 1.41. Express all results in SI units.
(a) The room has rigid, insulating walls. The volume is 27m3. The initial pressure is 1atm.
(b) The room has insulating walls. One wall is mobile. The process takes place at constant pressure
(1atm). The initial volume is 27m3.
(c) The room has rigid, insulating walls. The volume is 27m3. One wall has a small hole through
which air leaks out slowly. The process takes place at constant pressure (1atm).

Solution:



Gasoline engine (Otto cycle) [tln65]

p p

V V
2 1VVV1V2

2

5

3

4
1’

1 5

2

3

4

1

Four-stroke Otto cycle (left)

1-2: compression stroke

2-3-4: power stroke (spark plug ignites at 2)

4-1’-5: exhaust stroke (exhaust valve opens at 4)

5-1: intake stroke (intake valve opens at 5)

Idealized Otto cycle (right)

1-2: adiabatic compression of air-fuel mixture (S = const)

2-3: explosion of air-fuel mixture (V = const)

3-4: adiabatic expansion of exhaust gas (S = const)

4-1: isochoric release of exhaust gas (V = const).

1-5-1: intake stroke (thermodynamically ignored)

Parameter: K
.
= V1/V2 (compression ratio).

The compression ratio K must not be chosen too large to prevent the air-fuel
mixture from igniting spontaneously, i.e. prematurely.



[tex8] Idealized Otto cycle

Consider the four steps of the idealized Otto cycle for a classical ideal gas [pV = nRT , U = CV T
with CV = αnR].
(a) Determine the heat transfer, ∆Q, the work performance, ∆W , and the change in internal
energy, ∆U , for each of the four steps:

1 → 2 adiabatic compression of air-fuel mixture: S = const.
2 → 3 explosion of air-fuel mixture: V = const.
3 → 4 adiabatic expansion of exhaust gas: S = const.
4 → 1 isochoric release of exhaust gas: V = const.

(c) Calculate the efficiency η and express it as a function of the compression ratio K ≡ V1/V2.
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Solution:

1



Diesel engine [tln66]
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Four-stroke Diesel cycle (left)

1-2: compression stroke (fuel injected and spontaneously ignited at 2)

2-3-4: power stroke (Diesel fuel burns more slowly than gasoline)

4-1’-5: exhaust stroke (exhaust valve opens at 4)

5-1: intake stroke (intake valve opens at 5)

Idealized Diesel cycle (right)

1-2: adiabatic compression of air (S = const)

2-3: isobaric expansion as fuel explodes (p = const)

3-4: adiabatic expansion of exhaust gas (S = const)

4-1: isochoric release of exhaust gas (V = const).

1-5-1: intake stroke (thermodynamically ignored)

Parameter: K
.
= V1/V2 (compression ratio), L

.
= V3/V2



[tex16] Idealized Diesel cycle

Consider the four steps of the Diesel cycle for a classical ideal gas [pV = nRT , U = CV T with
CV = αnR].
(a) Determine the heat transfer, ∆Q, the work performance, ∆W , and the change in internal
energy, ∆U , for each of the four steps:

1 → 2 adiabatic compression of air: S = const.
2 → 3 isobaric expansion during explosion: p = const.
3 → 4 adiabatic expansion after explosion: S = const.
4 → 1 isochoric release of exhaust gas: V = const.

Calculate the efficiency η and express it as a function of the two parameters K ≡ V1/V2 and
L ≡ V3/V2.

V

4

1

S = const
32

S = const

p

Solution:

1



Escher-Wyss gas turbine [tln75]

A gas flows in a closed system from the boiler via the turbine to the radiator
and then via the compressor back into the boiler. As the beam of hot gas
hits the blades of the turbine during the power stroke it expands with little
heat transfer. The compression of the cooled gas is also roughly adiabatic.
The gas is heated up inside the boiler and cooled down inside the radiator
at different but roughly constant pressures.

p
1

p
2

4 1

V

23

p

Idealized process (Joule cycle)

1-2: Adiabatic expansion of the hot gas after ejection from the boiler as it
drives the turbine (S = const).

2-3: Isobaric contraction as the gas flows through the radiator and cools
down further in the process (p = const).

3-4: Adiabatic compression of the cooled gas for injection into the boiler
(S = const).

4-1: Isobaric expansion of the gas as it heats up inside the boiler (p = const).

Notes:

• The pressure inside the boiler is regulated by the rates of gas injection
and ejection and the rate of heat transfer from the energy source to the
gas.

• The injection and ejection rates are the same in mass units but the
ejection rate is larger than the injection rate in volume units. This
accounts for the expansion of the gas inside the boiler as described in
step 4-1.



[tex108] Joule cycle

Consider the four steps of the Joule cycle for the classical ideal gas [pV = NkBT,CV = αNkB , γ
.=

Cp/CV = (α+ 1)/α]. It represents an idealized version of the Escher-Wyss gas turbine.
(a) Calculate the work performance, ∆W , the heat transfer, ∆Q, and the change in internal energy,
∆U , for each step.

1→ 2 adiabatic expansion: S = const.
2→ 3 isobaric contraction: p = const.
3→ 4 adiabatic compression: S = const.
4→ 1 isobaric expansion: p = const.

(b) Calculate the efficiency η and express it as a function of the pressure ratio p2/p1.
(c) Sketch the Joule cycle in the (U, S)-plane.
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Solution:

1



Stirling engine [tln76]

The Stirling engine is an external combustion engine. It isolates the working
fluid from the heat source. Combustion is better controlled than in internal
combustion engines.
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Piston P expands gas at high temperature TH and compresses gas at low
temperature TL.

Displacer D moves gas between regions of high temperature TH and low
temperature TL through the regenerator.

Regenerator R acts as a heat exchanger. It stores heat when hot gas flows
from left to right and releases heat when colder gas flows from right to left.

Idealized Stirling cycle

1-2: Isothermal compression at temperature TL.
Displacer stationary at left. Piston moving left.

2-3: Isochoric heating up at volume V2.
Piston stationary at left. Displacer moving right.

3-4: Isothermal expansion at temperature TH .
Displacer and piston moving right.

4-1: Isochoric cooling down at volume V1.
Piston stationary at right. Displacer moving left.

Note: Some of the heat is recycled in the regenerator. This amount should
not be counted in the expression η = ∆Wout/∆Qin of the efficiency.



[tex131] Idealized Stirling cycle

Consider the four steps of the idealized Stirling cycle for the classical ideal gas [pV = NkBT,CV =
αNkB , γ

.= Cp/CV = (α+ 1)/α].
(a) Calculate the work performance, ∆W , the heat transfer, ∆Q, and the change in internal energy,
∆U , for each step.

1→ 2 isothermal compression: T = TL,
2→ 3 isochoric heating up: V = V2,
3→ 4 isothermal expansion: T = TH ,
4→ 1 isochoric cooling down: V = V1.

(b) Calculate the efficiency η and express it as a function of TH and TL.
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Solution:



[tex106] Ideal-gas engine with two-step cycle I

Consider the two-step cycle for a classical ideal gas [pV = NkBT,CV = αNkB , γ
.= Cp/CV =

(α + 1)/α] as shown. The first step (A) is an adiabatic compression and the second step (B) an
expansion along a straight line segment in the (V, p)-plane.
(a) Show that the difference in internal energy ∆U .= U1 − U2 is determined by the expression

∆U
p1V1

= α

[
1−

(
V1

V2

)γ−1
]
.

(b) Show that the heat transfer δQ between system and environment during a volume increase
from V to V + δV along the straight line segment is given by the expression

δQ

p1V1
=
[
(1 + α)(1 + σ)− (1 + 2α)σ

V

V1

]
dV

V1
, σ =

1− (V1/V2)γ

V2/V1 − 1
.

(c) Show that along the straight-line segment the system absorbs heat if V1 < V < Vc and expells
heat if Vc < V < V2, where Vc/V1 = [(1 + α)(1 + σ)]/[(1 + 2α)σ].

p

p
1

p
2

V1 V2
V

A

B

Solution:



[tex107] Ideal-gas engine with two-step cycle II

Consider the two-step cycle for a classical ideal gas [pV = NkBT,CV = αNkB , γ
.= Cp/CV =

(α + 1)/α] as previously discussed in [tex106]. For the following we assume that the compression
ratio is V2/V1 = 2 and that the gas is monatomic (α = 3

2 ).
(a) Show that the net work output along the adiabate and along the straight line segment are
∆WA/p1V1 ' 0.55506 and ∆WB/p1V1 ' −0.65749.
(b) Show that the total heat absorbed during the cycle is ∆Qin/p1V1 ' 0.39564.
(c) Determine the efficiency η2 of the two-step cycle and compare it with the efficiency ηC of the
Carnot engine operating between the same two temperatures.

p

p
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p
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V1 V2
V

A

B

Solution:



[tex147] Circular heat engine I

Consider 1 mol of a classical ideal gas [pV = RT ] confined to a cylinder by a piston. The cylinder
is in thermal contact with a heat bath of adjustable temperature. As the piston moves back and
forth between volume V = V0(1− r) and V = V0(1 + r) quasistatically, the temperature of the gas
is being adjusted via thermal contact such that the cycle becomes circular in the (V, p)-plane and
proceeds in clockwise direction (φ from 0 to 2π).
(a) Calculate the net work output ∆Wout during one cycle.
(b) Set r = 0.5 and identify the segments along the circle where the temperature of the gas rises
and the segments where it falls.
(c) Repeat the previous part for r = 0.9. Note that there now are more segments.

1
r φ

p/p
0

V/V010
0

Solution:



[tex148] Circular heat engine II

Consider 1 mol of a monatomic classical ideal gas [pV = RT , U = 3
2RT ] confined to a cylinder by

a piston. The cylinder is in thermal contact with a heat bath of adjustable temperature. As the
piston moves back and forth between volume V = V0(1− r) and V = V0(1 + r) quasistatically, the
temperature of the gas is being adjusted via thermal contact such that the cycle becomes circular
in the (V, p)-plane and proceeds in clockwise direction (φ from 0 to 2π).
(a) Calculate the rate dW/dφ at which work is being performed, the rate dU/dφ at which the
internal energy changes, and the rate dQ/dφ at which heat is being transferred.
(b) Set r = 0.5 and identify the segments along the circle where each rate is positive or negative.
(c) Repeat the previous part for r = 0.9.
(d) Plot all three rates as functions of φ/π for r = 0.5 in one graph and then for r = 0.9 in a
second graph.

1
r φ

p/p
0

V/V010
0

Solution:



[tex149] Square heat engine

Consider 1 mol of a monatomic classical ideal gas [pV = RT , U = 3
2RT ] confined to a cylinder by

a piston. The cylinder is in thermal contact with a heat bath of adjustable temperature. The gas
undergoes a quasistatic, cyclic process 1 → 2 → 3 → 4 → 1 as shown. Use p1, V1, T1 as units for
pressure, volume, and temperature, respectively.
(a) Find p2, V2, T2, p3, V3, T3, and p4, V4, T4 in these units.
(b) Find the work performance, ∆W12,∆W23,∆W34,∆W41, the change in internal energy, ∆U12,
∆U23, ∆U34, ∆U41, and the heat transfer, ∆Q12,∆Q23,∆Q34,∆Q41, along the legs of the cycle.
Express these quantities in units of RT1.
(c) Find the net work ∆Wnet performed during the cycle. Find also the heat ∆Qin absorbed and
the heat ∆Qout expelled by the gas during the cycle.
(d) Find the efficiency ηS of this cycle in the role of heat engine.

2

0
0

1 3
V/V

1

p/p
1

1

3

1 4

3

Solution:
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