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Smooth Local Subspace Projection for Nonlinear Noise Reduction

David Chelidze1, a)

Department of Mechanical, Industrial & Systems Engineering

University of Rhode Island, Kingston, RI 02881

(Dated: 30 May 2013 – Original; 10 December 2013 – Revision.)

Many nonlinear or chaotic time series exhibit an innate broad spectrum, which makes

noise reduction difficult. Local projective noise reduction is one of the most effec-

tive tools. It is based on proper orthogonal decomposition (POD), and works for

both map-like and continuously sampled time series. However, POD only looks at

geometrical or topological properties of data and does not take into account the tem-

poral characteristics of time series. Here we present a new smooth projective noise

reduction method. It uses smooth orthogonal decomposition (SOD) of bundles of

reconstructed short-time trajectory strands to identify smooth local subspaces. Re-

stricting trajectories to these subspaces imposes temporal smoothness on the filtered

time series. It is shown that SOD-based noise reduction significantly outperforms the

POD-based method for continuously sampled noisy time series.

Keywords: nonlinear noise reduction, smooth orthogonal decomposition, projective

noise reduction
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Noise reduction in nonlinear or chaotic time series is problematic due to the

inherent broad spectrum of the deterministic component in a signal. Projective

noise reduction based on proper orthogonal decomposition has been shown to

be effective for low noise levels. Here, we study a generalization of the local

projective noise reduction method based on smooth orthogonal decomposition,

which accounts for both topological and temporal characteristics of the time

series. Through the analysis of synthetic chaotic time series contaminated by

various levels of noise, we show that our method significantly outperforms the

original and works even for low signal-to-noise ratios. Thus, it provides an

effective tool for noise reduction in continuously sampled chaotic time series.

I. INTRODUCTION

Many natural and engineered systems generate nonlinear deterministic time series that are

contaminated by random measurement/dynamical noise. Chaotic time series have inherently

broad spectra and are not amenable to conventional spectral noise filtering. Two main

methods for filtering noisy chaotic time series1–3 are: (1) model based filtering4, and (2)

projective noise reduction2. While model based reduction has some merit for systems with

known analytical models4, projective noise reduction provides a superior alternative2 for

experimental data. There are other methods like adaptive filtering or the wavelet shrinkage5

method that can work in certain cases but require an opportune selection of parameters or

some a priori knowledge of the system or the noise mechanisms6.

In this paper, we describe a new method for nonlinear noise reduction that is based on

a smooth local subspace identification7,8 in the reconstructed phase space9,10. In contrast

to identifying the tangent subspace of an attractor using proper orthogonal decomposition

(POD) of a collection of nearest neighbor points (i.e., as in local projective noise reduction

scheme), we identify a smooth subspace that locally embeds the attractor using smooth

orthogonal decomposition (SOD) of bundle of nearest neighbor trajectory strands. This

new method accounts for not only geometrical information in the data, but its temporal
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characteristics too. As we demonstrate later, this dramatically increases the ability to filter

low signal-to-noise-ratio (SNR) time series.

In the following section ideas behind nonlinear noise reduction are discussed, followed

by the description of the SOD-based algorithm. Models generating test time series are

introduced next, along with the methods used in the algorithm evaluation, which is followed

by the description of results and discussion.

II. SMOOTH PROJECTIVE NOISE REDUCTION

Both POD-based local projective noise reduction2, and SOD-based smooth projective

noise reduction work in the reconstructed phase space9 of the system generating the noisy

time series. The basic idea is that, at any point on the attractor, noise leaks out into higher

dimensions than the dimension of the attractor’s tangent space at that point. Thus, by

embedding data into the higher d-dimensional space and then projecting it down to the

tangent subspace of k-dimensions reduces the noise in the data. The differences between

the methods are in the way this tangent space is identified.

For both noise reduction methods, the noisy time series {xi}ni=1 is embedded into a

d-dimensional global phase space using delay coordinate embedding generating the vector-

valued trajectory {yi}n−(d−1)τ
i=1 :

yi =
[
xi, xi+τ , . . . xi+(d−1)τ

]T
, (1)

where τ is the delay time, which is usually determined using the first minimum of the average

mutual information18 for the time series, by some other nonlinear correlation statistic17, or

by visual inspection.

The selection of the global embedding dimension d, and the dimension of the tangent

subspace k are important steps in both noise reduction schemes. For a noise-free time

series, a method of false nearest neighbors11,12 is usually used to estimate the minimum

necessary embedding dimension D. However, the efficacy of this method is degraded by the

presence of noise13. Alternatively, the embedding theorem provides9 a measure of minimum

sufficient embedding dimension which should be greater than twice the fractal dimension14

of the attractor. The most commonly used estimate of the fractal dimension is a correlation
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dimension15, which is also not very robust with respect to noise. However, for moderate

noise levels, one can still get rough approximation to the correlation dimension16, which

could serve as the upper bound on the projection dimension. In practical applications, the

use of methods that are robust with respect to noise (e.g., the minimum description length

principle13 or continuity statistic17) are more appropriate. In this paper, however, we use

synthetic time series which are artificially contaminated with additive noise. Therefore, the

size of global embedding dimension is taken to be a slightly greater than the minimum

required embedding dimension estimated using the clean time series and the false nearest

neighbors method.

A. Local Projection Subspace

In the local projective noise algorithm19, for each point yi in the reconstructed d-

dimensional phase space, r temporarily uncorrelated nearest neighbor points {yji}rj=1 are

determined. The POD is applied to this cloud of nearest neighbor points, and the optimal

k-dimensional projection of the cloud is obtained providing the needed filtered ȳi (which is

also adjusted to account for the shift in the projection due to the trajectory curvature at

yi
3). The filtered time series {x̄i}ni=1 is obtained by averaging the appropriate coordinates

in the adjusted vector-valued time series {ȳi}n−(d−1)τ
i=1 .

In contrast, smooth projective noise reduction works with short strands of the recon-

structed phase space trajectory. These strands are composed of (2l + 1) time-consecutive

reconstructed phase space points, where l is a small natural number. Namely, each recon-

structed point yk has an associated strand sk = [yk−l, . . . ,yk+l], and an associated bundle of

r nearest neighbor strands {sjk}rj=1, including the original. This bundle is formed by finding

(r − 1) nearest neighbor points {yjk}
r−1
j=1 for yk and the corresponding strands. SOD is ap-

plied to each of these strands in the bundle and the corresponding k-dimensional smoothest

approximations to the strands {s̃jk}rj=1 are obtained. The filtered ȳk point is determined by

the weighted average of points {ỹjk}rj=1 in the smoothed strands of the bundle. Finally, the

filtered time series {x̄i}ni=1 are obtained just as in the local projective noise reduction. The

procedure can be applied repeatedly for further smoothing or filtering. For completeness,

4



the details of SOD and smooth subspace approximation are given in the following sections.

B. Smooth Orthogonal Decomposition

The objective of POD is to obtain the best low-dimensional approximate description

of high-dimensional data in a least squares sense20–22. In contrast, SOD is aimed at ob-

taining the smoothest low-dimensional approximations of high-dimensional dynamical pro-

cesses7,23,24. While POD only focuses on the spatial characteristics of the data, SOD con-

siders both its temporal and spatial characteristics.

Consider a case where a field, y, is defined for some d state variables {xi}di=1 (e.g., a

system of d ordinary differential equations, d sensor measurements from some system, etc.).

Assume that this field is sampled at exactly n instants of time (e.g., n sets of simultaneous

measurements at d locations). We arrange this data into a n×d matrix Y, such that element

Yij is the sample taken at the ith time instant from the jth state variable. We also assume

that each column of Y has zero mean (or, alternatively, we subtract the mean value from

each column). We are looking for a linear coordinate transformation of this matrix Y:

Q = YΨ , (2)

where the columns of Q ∈ Rn×d are new smooth orthogonal coordinates (SOCs) and smooth

projective modes (SPMs) are given by the columns of Ψ ∈ Rd×d. In this transformation, Q

should contain time coordinates sorted by their roughness.

The SOD is accomplished by the following generalized eigenvalue problem:36

Σψi = λi Σ̇ψi , (3)

where Σ = 1
n
YTY ∈ Rd×d and Σ̇ = 1

n
ẎT Ẏ ∈ Rd×d are auto-covariance matrices for d states

and their time derivatives, respectively. Eigenvalues λi are called smooth orthogonal values

(SOVs), and ψi ∈ Rd are individual SPMs (i = 1, . . . , d). The time derivative of the matrix

Y is either known analytically or can be derived numerically Ẏ = DY, where D is some

finite difference differential operator.
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C. Smooth Subspace Identification and Data Projection

Equation (3) can be solved using a generalized singular value decomposition of the matrix

pair Y and Ẏ:

Y = UCΦT , Ẏ = VSΦT , CTC + STS = I , (4)

where smooth orthogonal modes (SOMs) are given by the columns of Φ ∈ Rd×d, SOCs are

given by the columns of Q = UC ∈ Rn×d and SOVs are given by the term-by-term division

of diag(CTC) and diag(STS). The resulting SPMs are the columns of the inverse of the

transpose of SOMs: Ψ−1 = ΦT ∈ Rd×d. In this paper, we will assume that the SOVs

are arranged in descending order (λ1 ≥ λ2 ≥ · · · ≥ λd). The magnitude of the SOVs

quadratically correlates with the smoothness of the SOCs7. Please note that if the identity

matrix is substituted for Σ̇ in Eq. (3), it reduces to the POD eigenvalue problem that can

be solved by the singular value decomposition of the matrix Y.

The smoothest k-dimensional approximation to Y (k < d) can be obtained by retaining

only k columns of interest in the matrices U and Φ, and reducing C to the corresponding

k× k minor. In effect, we are looking for a projection of Y onto a k-dimensional smoothest

subspace. The embedding of this k-dimensional projection into d-dimensional space (Ȳ) is

constructed using the corresponding reduced matrices: Ū ∈ Rn×k, C̄ ∈ Rk×k, and Φ̄ ∈ Rd×k,

as follows

Ȳ = ŪC̄Φ̄
T
. (5)

D. Data Padding to Mitigate the Edge Effects

SOD-based noise reduction is working on (2l+ 1)-long trajectory strands. Therefore, for

the first and last l points in the matrix Y, we will not have full-length strands for calculations.

In addition, the delay coordinate embedding procedure reconstructs the original n-long time

series into Y which has only [n−(d−1)τ ]-long columns. Therefore, the first and last (d−1)τ

points in {xi}ni=1 will not have all d components represented in Y, while other points will

have their counterparts in each column of Y. To deal with these truncations, which cause

unwanted edge effects in noise reduction, we pad both ends of Y by [l + (d − 1)τ ]-long
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FIG. 1. Schematic illustration of smooth projective noise reduction algorithm

trajectory segments. These trajectory segments are identified by finding the nearest neighbor

points to the starting and the end points inside Y itself (e.g., ys and ye, respectively). Then,

the corresponding trajectory segments are extracted from Y: Ys = [ys−l−(d−1)τ , . . . ,ys−1]
T

and Ye = [ye+1, . . . ,ye+l+(d−1)τ ]
T , and are used to form a padded matrix Ŷ = [Ys; Y; Ye].

Now, the procedure can be applied to all points in Ŷ starting at l + 1 and ending at n + l

points.

III. SMOOTH NOISE REDUCTION ALGORITHM

Smooth noise reduction algorithm is schematically illustrated in Fig. 1. While we usually

work with data in column form, in this figure—for illustrative purpose—we arranged arrays

in row form. The particular details are explained as follows:

1. Delay Coordinate Embedding

(a) Estimate the appropriate delay time τ and the minimum necessary embedding
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dimension D for the time series {xi}ni=1.

(b) Determine the local (i.e., projection), k ≤ D, and the global (i.e., embedding),

d ≥ D, dimensions for trajectory strands.

(c) Embed the time series {xi}ni=1 using global embedding parameters (τ , d) into the

reconstructed phase space trajectory Y ∈ R(n−(d−1)τ)×d.

(d) Partition the embedded points in Y into a kd-tree for fast searching.

2. Padding and Filtering:

(a) Pad the end points of Y to have appropriate strands for the edge points, which

results in Ŷ ∈ R[n+2l+2(d−1)τ ]×d.

(b) For each point {ŷi}n+li=l+1 construct a (2l+1)-long trajectory strand s1i = [ŷi−l; . . . ; ŷi+l] ∈

R(2l+1)×d.

(c) For the same points ŷi, look up (r − 1) nearest neighbor points that are tem-

porarily uncorrelated, and the corresponding nearest neighbor strands {sji}rj=2.

(d) Apply SOD to each of the r strands in this bundle, and obtain the corresponding

k-dimensional smooth approximations to all d-dimensional strands in the bundle

{s̃j}rj=1.

(e) Approximate the base strand by taking the weighted average of all these smoothed

strands s̄i = 〈s̃ji 〉j, using weighting that diminishes contribution with the increase

in the distance from the base strand.

3. Shifting and Averaging:

(a) Replace the points {ŷi}n+li=1+l at the center of each base strand by its approximation

ȳi determined above to form Ȳ ∈ R[n+(d−1)τ ]×d.

(b) Average each d smooth adjustment to each point in the time series to estimate

the filtered point:

x̄i =
1

d

d∑
k=1

Ȳ(k, i+ (k − 1)τ) .

4. Repeat the first three steps until data is smoothed out, or some preset criterion is met.
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IV. EVALUATING THE ALGORITHM

In this section we evaluate the performance of the algorithm by testing it on a time series

generated by Lorenz model29 and a double-well Duffing oscillator28. The Lorenz model used

to generate chaotic time series is:

ẋ = −8

3
x+ yz , ẏ = −10 (y − z) , and ż = −xy + 28y − z . (6)

The chaotic signal used in the evaluation is obtained using the following initial conditions

(x0, y0, z0) = (20, 5,−5), and the total of 60,000 points were recorded using 0.01 sampling

time period. The double-well Duffing equation used is:

ẍ+ 0.25 ẋ− x+ x3 = 0.3 cos t . (7)

The steady state chaotic response of this system was sampled thirty times per forcing period

and a total of 60,000 points were recorded to test the noise reduction algorithms.

In addition, a 60,000 point, normally distributed, random signal was generated, and was

mixed with the chaotic signals in 1/20, 1/10, 1/5, 2/5, and 4/5 standard deviation ratios,

which respectively corresponds to 5, 10, 20, 40, and 80 % noise in the signal or SNRs of

26.02, 20, 13.98, 7.96, and 1.94 dB. This results in total of five noisy time series for each of

the models. The POD-based projective and SOD-based smooth noise reduction procedures

were applied to all noise signals using total of ten iterations.

To evaluate the performance of the algorithms, we used several metrics that include

improvements in SNRs and power spectrum, estimates of the correlation sum and short-time

trajectory divergence rates (used for estimating the correlation dimension and short-time

largest Lyapunov exponent, respectively30). In addition, phase portraits were examined to

gain qualitative appreciation of noise reduction effects.

The largest Lyapunov exponent λ1
31 characterizes the exponential growth of the distance

between two points on the attractor that are very close initially. If this small initial distance

between points is δ0 and the distance at a later discrete time n is denoted as δn, then

δn ∼ δ0 exp (λ1t) as δ0 → 0. Here we used a modified algorithm by Wolf et al.32,33, where

for a set of reconstructed points yi on their fiducial trajectory, we look up the r temporarily
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uncorrelated nearest neighbor points and track their average divergence from the fiducial

trajectory.

The correlation dimension characterizes the cumulative distribution of distances on the

attractor15,34,35, and indicates the lower bound on the minimum number of variables needed

to uniquely describe the dynamics on the attractor. Here, we used the modified algorithm

described in15, where the correlation sum is estimated for the different length scales ε as:

C(ε) =
2

(N − s)(N − s− 1)

N∑
i=1

N∑
j=i+s+1

Θ (ε− ‖yi − yj‖) ∼ εD2 , (8)

where Θ is a Heavyside step function, N is the total number of points, s is the interval

needed to remove temporal correlations, and D2 is the correlation dimension.

V. RESULTS

A. Lorenz Model Based Time Series

Using average mutual information estimated from the clean Lorenz time series, a delay

time of 12 sampling time periods is determined. The false nearest neighbors algorithm (see

Fig. 2) indicates that the attractor is embedded in D = 4 dimensions for teh noise-free time

series. Even for the noisy time series the trends show clear qualitative change around four

or five dimensions. Therefore, six is used for global embedding dimension (d = 6), and

k = 3 is used as local projection dimension. The reconstructed phase portraits for the clean

Lorenz signal and the added random noise are shown in Fig. 3 (a) and (b), respectively.

The corresponding power spectral densities for the clean and the noise-added signals are

shown in Fig. 3 (c). The phase portraits of POD- and SOD-filtered signals with 5% noise

are shown in Fig. 3 (d) and (e), respectively. Fig. 3 (f) shows the corresponding power

spectral densities. In all these and the following figures, 64 nearest neighbor points are used

for POD-based algorithm, and bundles of 9 eleven-point-long trajectory strands are used for

SOD-based algorithm. The filtered data shown is for 10 successive applications of the noise

reduction algorithms. The decrease in the noise floor after filtering is considerably more

dramatic for the SOD algorithm when compared to the POD.
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FIG. 3. Reconstructed phase portrait from Lorenz signal (a); random noise phase portrait (b);

power spectrum of clean and noisy signals (c); POD-filtered phase portrait of 5% noise added

data (d); SOD-filtered phase portrait of 5% noise added data (e); and the corresponding power

spectrums (f).

The successive improvements in SNRs after each iteration of the algorithms are shown in

Fig. 4, and the corresponding numerical values are listed in Table I for the 5% and 20% noise

added signals. While the SNRs are monotonically increasing for the SOD algorithm after

each successive application, they peak and then gradually decrease for the POD algorithm.
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SOD-based (right) nonlinear noise reduction procedures

In addition, the rate of increase is considerably larger for the SOD algorithm compared to

the POD, especially during the initial applications. As seen from the Table I, the SOD-

based algorithm provides about 13 dB improvement in SNRs, while POD-based algorithm

manages only 7 ∼ 8 dB improvements.

The estimates of the correlation sum and short-time trajectory divergence for the noise-

reduced data and the original clean data are shown in Fig. 5. For the correlation sum, both

POD- and SOD-based algorithms show similar scaling regions and improve considerably on

the noisy data. For the short-time divergence both methods manage to recover some of the

scaling regions, but SOD does a better job at small scales, where POD algorithm yields large

local fluctuations in the estimates.

The qualitative comparison of the phase portraits for both noise reduction methods are

shown in Fig. 6. While POD does a decent job al low noise levels, it fails at higher noise

TABLE I. SNRs for the noisy time series from Lorenz model, and for noisy data filtered by POD-

and SOD-based algorithms

Signal Lorenz + 5% Noise Lorenz + 20% Noise

Algorithm None POD SOD None POD SOD

SNR (dB) 26.0206 33.8305 39.1658 13.9794 22.3897 27.4318

12



−1.5 −1 −0.5 0 0.5 1

−3

−2

−1

0

log10( )

lo
g 1

0(
C

(
))

−1.5 −1 −0.5 0 0.5 1

−3

−2

−1

0

log10( )

lo
g 1

0(
C

(
))

0 100 200 300 400
−2

−1

0

1

2

3

n (timesteps)

ln
δ n

0 100 200 300 400
−2

−1

0

1

2

3

n (timesteps)

ln
δ n

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Clean Data
Noisy Data
POD−filtered
SOD−filtered
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levels where no deterministic structure is recovered at 80% noise level. In contrast, SOD

provides smoother and cleaner phase portraits. Even at 80% noise level, the SOD algorithm

is able to recover large deterministic structures in the data. While SOD still misses small

scale features at 80% noise level, topological features are still similar to the original phase

portrait in Fig. 3(a).

B. Duffing Equation Based Time Series

Using the noise-free Duffing time series and the average mutual information, a delay time

of seven sampling time periods is determined. In addition, false nearest neighbors algorithm

indicates that the attractor is embedded in D = 4 dimensions for 0 % noise (see Fig. 7).

Six is used for global embedding dimension (d = 6), and k = 3 is used as local projection

dimension. The reconstructed phase portraits for the clean Duffing signal and the added
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random noise are shown in Fig. 8 (a) and (b), respectively. The corresponding power spectral

densities for the clean and noise-added signals are shown in Fig. 8 (c). The phase portraits

of POD- and SOD-filtered signals with 5% noise are shown in Fig. 8 (d) and (e), respectively.

Fig. 8 (f) shows the corresponding power spectral densities. In all these and the following

figures, 64 nearest neighbor points were used for POD-based algorithm, and bundles of nine

11-point-long trajectory strands were for SOD-based algorithm. The filtered data shown is

after 10 successive applications of the noise reduction algorithms. As before, the decrease

in the noise floor after filtering is considerably more dramatic for the SOD algorithm when

compared to the POD.

The successive improvements in SNRs after each iteration of the algorithms are shown in

Fig. 9, and the corresponding numerical values are listed in Table II for 5% and 20% noise

added signals. Here, SNRs for both methods are peaking at some point and then gradually

decrease. In addition, the rate of increase is considerably larger for the SOD compared to
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FIG. 8. Reconstructed phase portrait from Duffing signal (a); random noise phase portrait (b);

power spectrum of clean and noisy signals (c); POD-filtered phase portrait of 5% noise added

data (d); SOD-filtered phase portrait of 5% noise added data (e); and the corresponding power

spectrums (f).

the POD algorithm, especially during the initial iterations. SOD is usually able to increase

SNR by about 10 dB, while POD provides only about 4 dB increase on average.

The estimates of the correlation sum and short-time trajectory divergence for the noisy,

noise reduced data, and the original clean data from Duffing oscillator are shown in Fig. 10.
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FIG. 9. Noisy Duffing time series SNRs versus number of application of POD-based (left) and

SOD-based (right) nonlinear noise reduction procedures

For the correlation sum, both POD- and SOD-based algorithms show similar scaling regions

and improve substantially on the noisy data, with SOD following the noise trend closer

than POD. For the short-time divergence rates both methods manage to recover some of

the scaling regions, but SOD does a better job at small scales, where POD algorithm causes

large local fluctuations in the estimates.

The qualitative comparison of the Duffing phase portraits for both noise reduction meth-

ods are shown in Fig. 11. For consistency all noise-reduced phase portraits are obtained

after 10 consecutive applications of the algorithms. While POD does a decent job at low

noise levels, it fails at high noise levels where no deterministic structure is recovered at 40%

or 80% noise levels. In contrast, SOD provides smoother and cleaner phase portraits at

every noise level. Even at 80% noise level, the SOD algorithm is able to recover some large

deterministic structures in the data, providing topologically similar phase portrait.

TABLE II. SNRs for the noisy time series from Duffing model, and for noisy data filtered by POD-

and SOD-based algorithms

Signal Duffing + 5% Noise Duffing + 20% Noise

Filtering None POD SOD None POD SOD

SNR (dB) 26.0206 30.7583 36.1687 13.9794 19.5963 24.5692
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VI. DISCUSSION

The new smooth nonlinear noise reduction (SOD-based) method was contrasted with the

local projective nonlinear noise reduction (POD-based) for continuously sampled time series.

Two sample chaotic time series were used in the analyses: one from double-well Duffing

oscillator and another from the Lorenz system. Both time series were contaminated by an

additive random noise signal to obtain five different SNR noisy time series for each model.

The performance of the noise reduction methods were tested by comparing the resulting (1)

power spectral densities, (2) SNRs, (3) correlation sum, (4) short-time trajectory divergence,

and (5) by visually inspecting reconstructed phase portraits.

The decrease in the noise floor observed in the power spectral density for the SOD-based

method was at least 20 dB larger then for the POD-based method, which itself improved on

the original signals noise floor at best by 10 dB. SNRs show similar trends, where SOD-based
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FIG. 11. Phase space reconstructions for noisy and noise-reduced Duffing time series after ten

iterations of the POD- and SOD-based algorithms

method manages to improve it by about 10 dB, while POD-based manages only 4 ∼ 5 dB

increase. In addition, SOD accomplishes this with considerably fewer applications of the

noise reduction scheme, while POD works more gradually and requires many more iterations

at higher noise levels.

Estimating nonlinear metrics used in calculations of correlation dimension and short-time

Lypunov exponent showed that both methods are adequate at low noise levels. However,

SOD performed better at small scales, where POD showed large local fluctuations. At

larger noise levels both methods perform similarly for the correlation sum, but SOD provides

larger scaling regions for short-time trajectory divergence rates. POD still suffers from large

variations at small length/time scales for larger noise levels.

The above quantitative metrics do not tell a whole story, however; we also need to look

at trajectories themselves. Visual inspection of the reconstructed phase portraits showed

superior results for SOD. POD trajectories had small local variations even at low noise

levels, and completely failed to recover any large dynamical structures at large noise levels.
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In contrast, SOD method provides very good phase portraits up to 20% noise levels, and

for larger noise levels the reconstructions still have clear topological consistency with the

original phase portrait. However, SOD also fails to capture finer phase space structures for

80% noise level.

In summary, the SOD-based noise reduction procedure provides considerable improve-

ment over the POD-based method for continuously sampled noisy time series. This was

demonstrated using temporal, spatial and spectral characteristics of noise reduced signals.

The nature of SOD itself is well suited for identifying smooth local subspaces for noise re-

duction. However, precisely this feature makes SOD-based method not suitable for direct

application to map-like noisy time series. Finally, the SOD-based algorithm is able to handle

noise at both large and small scales, while POD is only good for large scale structures in

the data.
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