
University of Rhode Island
DigitalCommons@URI

Mathematics Faculty Publications Mathematics

2013

An Augmented LSQR Method
James Baglama
University of Rhode Island, jbaglama@uri.edu

L. Reichel

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/math_facpubs

The University of Rhode Island Faculty have made this article openly available.
Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy
Articles, as set forth in our Terms of Use.

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@URI. It has been accepted for inclusion in
Mathematics Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons@etal.uri.edu.

Citation/Publisher Attribution
Baglama, J., Reichel, L., & Richmond, D. Numer Algor (2013). 64:263. doi: 10.1007/s11075-012-9665-8
Available at: http://dx.doi.org/10.1007/s11075-012-9665-8

http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/math_facpubs?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/math?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/math_facpubs?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/math_facpubs/oa_policy_terms.html
http://dx.doi.org/10.1007/s11075-012-9665-8
mailto:digitalcommons@etal.uri.edu

Authors
James Baglama, L. Reichel, and D. Richmond

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/math_facpubs/1

https://digitalcommons.uri.edu/math_facpubs/1?utm_source=digitalcommons.uri.edu%2Fmath_facpubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

AN AUGMENTED LSQR METHOD

J. BAGLAMA∗, L. REICHEL† , AND D. RICHMOND‡

Abstract. The LSQR iterative method for solving least-squares problems may require many
iterations to determine an approximate solution with desired accuracy. This often depends on the
fact that singular vector components of the solution associated with small singular values of the
matrix require many iterations to be determined. Augmentation of Krylov subspaces with harmonic
Ritz vectors often makes it possible to determine the singular vectors associated with small singular
values with fewer iterations than without augmentation. This paper describes how Krylov subspaces
generated by the LSQR iterative method can be conveniently augmented with harmonic Ritz vectors.
Computed examples illustrate the competitiveness of the augmented LSQR method proposed.

Key words. Partial singular value decomposition, iterative method, large-scale computation,
least-squares approximation, LSQR, precondition, Krylov subspace, augmentation

AMS subject classifications. 65F15, 15A18

1. Introduction. We consider the solution of least-squares (LS) problems

(1.1) min
x∈Rn
‖Ax− b‖,

where A ∈ R`×n is a large sparse matrix with ` ≥ n and b ∈ R`. Throughout,
‖ · ‖ denotes the Euclidean vector norm or the associated induced matrix norm. The
matrix A is assumed to be too large to be factored. We therefore seek to solve (1.1) by
an iterative method. Unless stated otherwise, A is assumed to have full column rank.
Problem (1.1) then has a unique solution, which we denote by x+. The associated
residual vector r+ = b−Ax+ vanishes if and only if b lies in the range of A, denoted
by R(A).

Many iterative methods have been proposed for the solution of (1.1); see, e.g.,
[5, 8, 10, 11, 12, 26, 27] and references therein. A popular method is LSQR by Paige
and Saunders [26]. This method does not require the matrix A to be stored; instead
each iteration requires that one matrix-vector product with A and one matrix-vector
product with AT be evaluated. A mathematically, but not numerically, equivalent
method is CGLS proposed by Björck; see, e.g., [5] for a discussion of CGLS.

LSQR [26] is based on Golub-Kahan (GK) bidiagonalization of A. Let x0 be
an initial approximate solution of (1.1) and define r0 = b − Ax0. Generically, m �
min{`, n} steps of GK bidiagonalization determine orthonormal bases {q1, q2, . . . , qm}
and {p1, p2, . . . , pm} for the Krylov subspaces

(1.2)
Km(AAT, q1) = span{q1, AATq1, (AAT)2q1, . . . , (AAT)m−1q1}
Km(ATA, p1) = span{p1, A

TAp1, (ATA)2p1, . . . , (ATA)m−1p1}

respectively, with initial vectors q1 = r0/‖r0‖ and p1 = ATq1/‖ATq1‖. LSQR com-
putes an approximate solution xm of (1.1) by minimizing ‖Ax − b‖ over the set

0Version October 30, 2012
∗Department of Mathematics, University of Rhode Island, Kingston, RI 02881. E-mail:

jbaglama@math.uri.edu. Home page: http://www.math.uri.edu/∼jbaglama
†Department of Mathematical Sciences, Kent State University, Kent, OH 44242. E-mail:

reichel@math.kent.edu. Home page: http://www.math.kent.edu/∼reichel
‡Department of Mathematics, University of Rhode Island, Kingston, RI 02881. E-mail:

dan@math.uri.edu. Home page: http://www.math.uri.edu/∼dan

1

x0 +Km(ATA, p1). The associated residual vector rm = b−Axm lies in Km(AAT, q1);
see [26] or section 4 for details.

GK bidiagonalization, and therefore also LSQR, will in exact arithmetic termi-
nate before m steps have been carried out if the Krylov subspace Km(ATA, p1) is of
dimension less than m. LSQR delivers, in this situation, the solution of (1.1). How-
ever, early termination is rare and it is common for LSQR to require many iterations
before an approximation of the solution x+ of (1.1) of desired accuracy has been de-
termined. The rate of convergence of LSQR depends on the condition number of A
and on the distribution of the singular values of the matrix; convergence may be slow
when A has a large condition number; see [5] or section 2 for details.

The rate of convergence of LSQR can be improved by using a preconditioner.
Instead of solving (1.1), one may solve the right-preconditioned LS problem

(1.3) min
y∈Rn
‖AMy − b‖.

The preconditioner M ∈ Rn×n should be nonsingular and such that i) the condition
number of AM is smaller than the condition number of A, or AM has improved
clustering of its singular values, and ii) matrix-vector products with the matrices M
and MT can be evaluated fairly quickly; see, e.g., [4, 5, 6, 11, 16, 28] and references
therein for several approaches to constructing preconditioners. Many such precondi-
tioners are constructed prior to solution of the LS problem, and their determination
may require significant computational effort and storage. Preconditioners affect the
Krylov subspaces in which approximate solutions are determined. We describe an-
other approach for modifying Krylov subspaces in which approximate solutions are
computed. Specifically, we determine approximations of singular vectors of A asso-
ciated with the smallest singular values and augment the Krylov subspaces (1.2) by
these vectors. This augmentation is carried out while improved approximate solutions
of (1.1) are computed, and changes the Krylov subspaces to improve convergence. Our
method can be used in conjunction with a preconditioner.

The idea of augmenting a Krylov subspace with vectors to improve convergence
was first discussed by Morgan [21], who considered the solution of linear systems of
equations with a square nonsingular matrix by GMRES. Morgan proposed to augment
the Krylov subspaces used by GMRES with harmonic Ritz vectors associated with the
Ritz values of smallest magnitude to increase the rate of convergence. Subsequently,
Morgan showed in [22, 23] that the residual vectors associated with the harmonic Ritz
vectors are multiples of the residual vector at every restart of the (standard) GMRES
method and that, therefore, the augmented Krylov subspace is a Krylov subspace
generated by a different starting vector. This result suggested that the augmenting
vectors should be chosen to be harmonic Ritz vectors.

The initial iterations of our augmentation method for LSQR is analogous to Mor-
gan’s augmented method for GMRES [23] in that we augment the Krylov subspaces
(1.2) with harmonic Ritz vectors for AAT and associated vectors for ATA. During
the initial iterations with LSQR, we compute both improved approximations of the
solution of (1.1) and improved approximations to harmonic Ritz vectors. When the
latter approximations are deemed accurate enough, we stop updating these vectors
and carry out LSQR iterations using augmented Krylov subspaces until a solution
of (1.1) with desired accuracy has been found; the solution subspaces are augmented
with fixed harmonic Ritz vectors.

Section 2 discusses convergence of LSQR when the Krylov subspaces (1.2) are
augmented with singular vectors of A associated with the smallest singular values.

2

These singular vectors generally are not explicitly known. We therefore describe
in section 3 how approximations of these vectors can be computed by a restarted
GK bidiagonalization method, which is augmented by harmonic Ritz vectors of AAT

associated with the smallest harmonic Ritz values and with related vectors for ATA.
The method is related to a scheme described in [1], but differs in certain design aspects
to fit better with the restarted LSQR method described in section 4. In section 5 we
show that all residual vectors of the harmonic Ritz vectors are multiples of the residual
vector of the restarted LSQR method. This result is important for the design of our
augmented LSQR method. It implies that the augmented Krylov subspaces also
are Krylov subspaces. Moreover, section 5 describes our augmented LSQR method.
Application of this algorithm to LS problems (1.1) with a rank-deficient matrix A
is discussed in section 6. A few numerical examples are presented in section 7 and
concluding remarks can be found in section 8.

We would like to emphasize that the proposed iterative method is not a restarted
LSQR method. Restarting may lead to stagnation; see [10, Section 7.3.1] for re-
marks on restarting the related LSMR method. Our method consists of two stages: i)
the augmenting stage, which uses restarted LSQR to approximate the singular vectors
associated with the smallest singular values of A and simultaneously improve an avail-
able approximation of the solution of (1.1), and ii) the LSQR stage, in which LSQR
is applied using the augmented Krylov subspaces with fixed harmonic Ritz vectors to
solve the LS problem (1.3).

2. Convergence of LSQR using augmented Krylov subspaces. Let ui
and vi denote the left and right singular vectors of A associated with the singular
value σi. Define Un = [u1, u2, . . . , un] ∈ R`×n and Vn = [v1, v2, . . . , vn] ∈ Rn×n with
orthonormal columns, as well as Σn = diag[σ1, σ2, . . . , σn] ∈ Rn×n. Then

(2.1) AVn = UnΣn and ATUn = VnΣn

are singular value decompositions (SVDs) of A and AT, respectively. We assume the
singular values to be ordered from the smallest to the largest one, i.e.,

0 < σ1 ≤ σ2 ≤ . . . ≤ σn.

While this ordering is nonstandard, it simplifies the notation in the sequel. The
condition number of A is given by κ(A) = σn/σ1.

The residual rm = b − Axm associated with the mth iterate, xm, determined by
LSQR with initial approximate solution x0 satisfies

(2.2) ‖rm − r+‖ ≤ 2

(
σn − σ1

σn + σ1

)m
‖r0 − r+‖ = 2

(
κ(A)− 1
κ(A) + 1

)m
‖r0 − r+‖,

where x+ denotes the solution of (1.1) and r+ is the corresponding residual; see [5].
Furthermore, if b ∈ R(A), then

‖rm‖ ≤ 2

(
σn − σ1

σn + σ1

)m
‖r0‖.

For well-conditioned LS problems, LSQR converges quickly. However, ill-conditioned
problems may require a prohibitively large number of iterations. The use of a precon-
ditioner M with κ(AM)� κ(A) may alleviate this difficulty.

3

We first describe how augmentation of the Krylov subspaces (1.2) by singular
vectors of A associated with the smallest singular values reduces the bound (2.2) and
therefore can be expected to speed up convergence. Thus, consider the augmented
Krylov subspaces

(2.3)
Km(AAT, u1, . . . , uk, q1) = span{u1, . . . , uk, q1, AA

Tq1, . . . , (AAT)m−k−1q1}

Km(ATA, v1, . . . , vk, p1) = span{v1, . . . , vk, p1, A
TAp1, . . . , (ATA)m−k−1p1}

obtained by augmenting the Krylov subspace Km−k(AAT, q1) by the left singular
vectors u1, . . . , uk associated with the k smallest singular values, and by augmenting
Km−k(ATA, p1) by the corresponding right singular vectors v1, . . . , vk. At iteration
m, the augmented method determines an approximate solution in a subspace of at
most dimension m. The following result shows that the upper bound for the residual
error (2.2) may be reduced considerably by augmentation.

Theorem 2.1. Let A ∈ R`×n have the SVD (2.1) and let xm minimize ‖Ax− b‖
over the augmented and shifted Krylov subspace x0 + Km(ATA, v1, . . . , vk, p1). Then
with rm = b−Axm,

‖rm − r+‖ ≤ 2

(
σn − σk+1

σn + σk+1

)m−k
‖r0 − r+‖.

Proof. Let xm be any vector from x0 + Km(ATA, v1, . . . , vk, p1) and define rm =
b−Axm. Then

(2.4) xm = x0 +
k∑
i=1

τivi + φ(ATA)ATr0,

where φ is a polynomial of degree at most m − k − 1 and τi ∈ R. Let PR(A) and
PN (AT) denote the orthogonal projectors onto the range of A and the null space of
AT , respectively. Split the vector b according to

b = PR(A)b+ PN (AT)b =
n∑
i=1

ωiui + PN (AT)b,

where the ui are the left singular vectors of A; cf. (2.1). Then

(2.5) ATr0 = ATb−ATAx0 =
n∑
i=1

ωiA
Tui −ATAx0 =

n∑
i=1

ω̃ivi

since {v1, . . . , vn} is an orthonormal basis for Rn. Using (2.4) and (2.5) we obtain

(2.6) AT rm = ψ(ATA)AT r0 −
k∑
i=1

τiσ
2
i vi =

n∑
i=1

ω̃iψ(σ2
i)vi −

k∑
i=1

τiσ
2
i vi,

where ψ(x) = 1− xφ(x). Let γi = −τiσ2
i + ω̃iψ(σ2

i). Then

AT rm =
k∑
i=1

γivi +
n∑

i=k+1

ω̃iψ(σ2
i)vi.

4

We may now choose τi = ω̃iψ(σ2
i)

σ2
i

to define xm in (2.4). This yields γi = 0 and,
therefore,

(2.7) AT rm =
n∑

i=k+1

ω̃iψ(σ2
i)vi.

Now let ψ be the shifted Chebyshev polynomial of degree m−k−1 for the interval
[σ2
k+1, σ

2
n], scaled so that ψ(0) = 1, and take the (ATA)−1 norm of both sides of (2.7).

Using properties of the scaled and shifted Chebyshev polynomial, we obtain

‖ATrm‖(ATA)−1 ≤ 2

(
σn − σk+1

σn + σk+1

)m−k
‖ATr0‖(ATA)−1 .

The desired result follows from the observations that

(2.8) ‖ATrm‖(ATA)−1 = ‖rm − r+‖

and that the norm of the residual vector rm = b − Axm associated with the vector
xm in the statement of the theorem is at least as small as the norm obtained for our
choices of τ and ψ.

Morgan [21] discussed the use of augmented Krylov subspaces of the form
span{b, Ab, . . . , Am−1b, z1, . . . zk}, where z1, . . . , zk are eigenvectors of A, to increase
the rate of convergence of restarted GMRES, and showed a result analogous to The-
orem 2.1 for this situation.

0 100 200 300 400 500 600 700 800 900
10−10

10−8

10−6

10−4

10−2

100
illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR
LSQR (aug, k=20)

Student Version of MATLAB

0 100 200 300 400 500 600 700 800
10−10

10−8

10−6

10−4

10−2

100
illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSQR (reorth, aug, k=20)

Student Version of MATLAB

Fig. 2.1. Example 2.1: A comparison of augmented and standard LSQR.

Example 2.1. Let A ∈ R1850×721 be the matrix ILLC1850 and let b be the vector
ILLC1850 RHS1 from the LSQ set of the Matrix Market Collection [7, 9]. Figure 2.1
compares the augmented LSQR method using (2.3) with k = 20 and the standard
LSQR method, with x0 = 0 for both methods. Figure 2.1 displays the convergence of
the quotients ‖ATr‖/‖ATr0‖ as a function of the number of matrix-vector products
with A and AT . Here r0 = b is the residual associated with the initial iterate x0, and
r is the residual associated with the currently available iterate. The right graphs show

5

implementations of the methods with full reorthogonalization, while the left graphs
display the performance of the methods without reorthogonalization. In this case,
we see that reorthogonalization does not change the convergence behavior much, but
that augmentation as described in Theorem 2.1 may increase the rate of convergence
significantly.

The initial vector q1 for the Krylov subspace in the augmented Krylov subspace
Km(AAT, u1, . . . , u20, q1) is orthogonalized against the k = 20 left singular vectors
{u1, . . . , u20}. This makes the vector p1 = ATq1/‖ATq1‖ in the augmented Krylov sub-
space Km(ATA, v1, . . . , vk, p1) orthogonal to the right singular vectors {v1, . . . , v20}.
2

The singular vectors {u1, . . . , uk} and {v1, . . . , vk} associated with the k small-
est singular values of A are generally not explicitly known. We therefore seek to
determine approximations of these vectors while simultaneously computing improved
approximations of the solution of (1.1). This is achieved with a restarted LSQR
method. Typically augmenting vectors do not have to be accurate approximations of
the singular vectors of A to yield beneficial results. This is illustrated by the following
theorem as well as by numerical examples in section 7. The theorem is an analog of a
result by Morgan [21], concerned with augmenting a Krylov subspace by approximate
eigenvectors to increase the rate of convergence of restarted GMRES.

Theorem 2.2. Let A ∈ R`×n have the SVD (2.1) and let xm minimize ‖Ax− b‖
over the augmented and shifted Krylov subspace x0 +Km(ATA, y1, p1), where the unit-
length vector y1 ∈ Rn is an approximation of the right singular vector v1. Let ζ be the
angle between y1 and v1, and let ω̃1 be defined in (2.5) from Theorem 2.1. Then with
rm = b−Axm,

(2.9) ‖rm − r+‖ ≤ 2

(
σn − σ2

σn + σ2

)m−1

‖r0 − r+‖+
‖ATA‖
σ2

1

tan (ζ)|ω̃1|.

Proof. Similarly to (2.4) and (2.6) we have

(2.10)

xm = x0 + τ1y1 + φ(ATA)ATr0,

ATrm =
n∑
i=1

ω̃iψ(σ2
i)vi − τ1ATAy1,

where φ(x) is a polynomial of degree at most m − 2 and ψ(x) = 1 − xφ(x) is a
polynomial of degree at most m− 1. Let

(2.11) y1 = cos(ζ)v1 + sin(ζ)z,

where z ∈ span{v2, . . . , vn} is a unit-length vector. Using (2.11) and the SVD of A,
equation (2.10) becomes

ATrm =
n∑
i=1

ω̃iψ(σ2
i)vi − τ1σ2

1v1 cos(ζ)− τ1ATAz sin(ζ).

With τ1 = ω̃1ψ(σ2
1)

σ2
1 cos(ζ)

, we obtain

(2.12) ATrm =
n∑
i=2

ω̃iψ(σ2
i)vi −

ω̃1ψ(σ2
1)ATAz tan(ζ)
σ2

1

.

6

Let ψ be the shifted Chebyshev polynomial for the interval [σ2
2 , σ

2
n], scaled so that

ψ(0) = 1, and take the (ATA)−1 norm of both sides of (2.12). Using properties of the
shifted and scaled Chebyshev polynomials, we get

‖ATrm‖(ATA)−1 ≤
(σn − σ2

σn + σ2

)m−1

‖ATr0‖(ATA)−1 +
‖ATA‖
σ2

1

tan(ζ)|ω̃1|.

The theorem now follows from (2.8).
We remark that the right-hand side of (2.9) shows that if the smallest singular

value σ1 is very close to zero or to σ2, then y1 has to be a fairly accurate approximation
of the singular vector v1 in order to be effective.

3. A restarted augmented GK bidiagonalization method. This section
describes a restarted GK bidiagonalization method for approximating the singular
triplets {σi, ui, vi}ki=1 associated with the k smallest singular values of A. We refer to
these singular triplets as the k smallest singular triplets. Let the matrices Uk ∈ R`×k
and Vk ∈ Rn×k consist of the first k columns of the matrices Un and Vn in the SVD
(2.1) of A, and introduce Σk = diag[σ1, . . . , σk] ∈ Rk×k. Then, analogously to (2.1),
we have the partial SVDs

AVk = UkΣk and ATUk = VkΣk.

There are numerous methods available for computing approximations of the sin-
gular triplets {σi, ui, vi}ki=1; see, e.g., [1, 2, 3, 12, 14, 15, 17, 18, 19] and references
therein. We are interested in using a method that is related to LSQR, so that while
computing these approximations, we also can determine improved approximate solu-
tions of (1.1). Therefore, we will use a restarted augmented harmonic GK bidiago-
nalization method to determine approximations of the desired singular triplets. We
show in section 4 why this approach is attractive.

The restarted augmented harmonic GK bidiagonalization method of this paper
is closely related to the method presented in [1]; it differs in that here we use a lower
bidiagonal matrix. This makes it easier to connect our method to LSQR. The following
algorithm describes the computations required for partial GK bidiagonalization. We
comment on the algorithm below.

Algorithm 3.1. A partial GK bidiagonalization algorithm

Input: A ∈ R`×n or functions for evaluating products with A and AT,
q1 ∈ R` : initial vector,
m : number of bidiagonalization steps.

Output: Pm = [p1, . . . , pm] ∈ Rn×m : matrix with orthonormal columns,
Qm+1 = [q1, . . . , qm+1] ∈ R`×(m+1) : matrix with orthonormal columns,
Bm+1,m ∈ R(m+1)×m : lower bidiagonal matrix (3.2),
pm+1 ∈ Rn : residual vector,
αm+1 ∈ R.

1. Compute β1 := ‖q1‖; q1 := q1/β1; Q1 := q1
2. Compute p1 := AT q1; α1 := ‖p1‖; p1 := p1/α1; P1 := p1

3. For j = 1 : m
4. Compute qj+1 := Apj − qjαj

7

5. Reorthogonalize: qj+1 := qj+1 −Q(1:j)(QT(1:j)qj+1)
6. Compute βj+1 := ‖qj+1‖; qj+1 := qj+1/βj+1; Qj+1 := [Qj , qj+1]
7. Compute pj+1 := AT qj+1 − pjβj+1

8. Reorthogonalize: pj+1 := pj+1 − P(1:j)(PT(1:j)pj+1)
9. Compute αj+1 := ‖pj+1‖; pj+1 := pj+1/αj+1

10. if j < m
11. Pj+1 := [Pj , pj+1]

12. End
13. End

To avoid loss of orthogonality due to finite precision arithmetic, we reorthogonalize
in lines 5 and 8 of the algorithm; see section 5 for a few remarks on reorthogonalization
in the context of GK bidiagonalization.

A matrix interpretation of the computations of Algorithm 3.1 shows that the
algorithm determines the decompositions

(3.1)
APm = Qm+1Bm+1,m,

ATQm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1,

where the matrices Pm = [p1, . . . , pm] ∈ Rn×m and Qm+1 = [q1, . . . , qm+1] ∈ R`×(m+1)

have orthonormal columns, the residual vector pm+1 ∈ Rn satisfies PTmpm+1 = 0, and
em+1 is the (m+ 1)st axis vector of appropriate dimension. The matrix

(3.2) Bm+1,m =

α1 0
β2 α2

β3 α3

.
αm

0 βm+1

∈ R(m+1)×m

is lower bidiagonal. We refer to (3.1) as a partial GK bidiagonalization of A. The
number of bidiagonalization steps m � min{`, n} is assumed to be small enough so
that the partial bidiagonalization (3.1) with the stated properties exists. We assume
in the following that Algorithm 3.1 does not terminate early, i.e., that all αj > 0 and
βj > 0 for 1 ≤ j ≤ m+ 1. Early termination will be commented on in section 5.

The decompositions (3.1) are closely related to partial Lanczos tridiagonalization
of ATA and AAT. For instance, multiplying the first equation in (3.1) by AT yields
the partial Lanczos tridiagonalization of ATA,

(3.3) ATAPm = PmB
T
m+1,mBm+1,m + (αm+1βm+1)pm+1e

T
m.

Analogously, multiplying the second equation in (3.1) by A gives

AATQm+1 = Qm+1Bm+1,mB
T
m+1,m + αm+1Apm+1e

T
m+1,

and then equating the first m columns yields the partial Lanczos tridiagonalization
of AAT,

(3.4) AATQm = QmBmB
T
m + αmβm+1qm+1e

T
m,

8

where Bm is the leading m×m principal submatrix of Bm+1,m, Qm ∈ R`×m consists
of the first m columns of the matrix Qm+1, and qm+1 is the last column of Qm+1.

The LSQR method is started or restarted with Krylov subspaces of the form (1.2).
We therefore consider the decomposition (3.4) for determining harmonic Ritz vectors.
The harmonic Ritz values θ̂j of AAT determined by (3.4) are the eigenvalues θ̂j of the
generalized eigenvalue problem

(3.5) ((BmBTm) + α2
mβ

2
m+1(BmBTm)−1eme

T
m)g̃j = θ̂j g̃j , 1 ≤ j ≤ m,

where g̃j ∈ Rm\{0} is an eigenvector; see, e.g., [20, 25] for properties of and discussions
on harmonic Ritz values.

The eigenpairs {θ̂j , g̃j}mj=1 of (3.5) can be computed without forming the matrix
BmB

T
m. Instead, determine the SVD of Bm+1,m, which satisfies

(3.6)
Bm+1,mṼm =

[
Ũm+1,m ũm+1

] [Σ̃m
0

]
,

BTm+1,m

[
Ũm+1,m ũm+1

]
= Ṽm

[
Σ̃m 0

]
,

where the matrices Ṽm = [ṽ1, ṽ2, . . . , ṽm] ∈ Rm×m and Ũm+1,m = [ũ1, ũ2, . . . , ũm] ∈
R(m+1)×m have orthonormal columns, ũm+1 ∈ Rm+1 is a unit-length vector such that
ũTm+1Ũm+1,m = 0, and Σ̃m = diag[σ̃1, σ̃2, . . . , σ̃m] ∈ Rm×m. We order the m singular
values according to

0 < σ̃1 ≤ σ̃2 ≤ . . . ≤ σ̃m.

The vector ũm+1 lies in N (BTm+1,m) and we will refer to it as the null space vector of
BTm+1,m.

Consider the (m+ 1)× (m+ 1) symmetric tridiagonal matrix

Bm+1,mB
T
m+1,m =

 BmB
T
m

αmβm+1em

αmβm+1e
T
m β2

m+1

 .
The m nonvanishing eigenvalues of this matrix are harmonic Ritz values, i.e., they
are the eigenvalues of (3.5). We have θ̂j = σ̃2

j ; see [25]. The harmonic Ritz vectors of
AAT can be computed by using the matrix

S =
[
Im αmβm+1(BmBTm)−1em
0 1

]
=
[
Im βm+1B

−T
m em

0 1

]
and noticing that

SBm+1,mB
T
m+1,mS

−1 =

 BmB
T
m + α2

mβ
2
m+1(BmBTm)−1eme

T
m 0

...
αmβm+1e

T
m 0

 .
Thus, the first m rows of SŨm+1,m are the eigenvectors in (3.5), i.e.,

[g̃1, g̃2, . . . , g̃m] =
[
Im βm+1B

−T
m em

]
Ũm+1,m.

9

It follows that a harmonic Ritz vector of AAT associated with the harmonic Ritz
value θ̂j is given by

(3.7) ûj := Qmg̃j .

Morgan [22] pointed out that the residual vectors associated with different har-
monic Ritz pairs {θ̂j , ûj} are parallel in the context of the Arnoldi process and GM-
RES. We show this result for the problem at hand, because this property is central
for our augmentation method. Using (3.4), (3.5), and (3.7), we obtain

AAT ûj − θ̂j ûj = AATQmg̃j − θ̂jQmg̃j

= (QmBmBTm + αmβm+1qm+1e
T
m+1)g̃j − θ̂jQmg̃j

= Qm(BmBTm − θ̂jIm)g̃j + αmβm+1qm+1e
T
mg̃j

= Qm(−(αmβm+1)2(BmBTm)−1eme
T
m)g̃j + αmβm+1qm+1e

T
mg̃j

= (αmβm+1e
T
mg̃j)Qm+1

[
−αmβm+1(BmBTm)−1em

1

]

= (αmβm+1e
T
mg̃j)Qm+1

[
−βm+1B

−T
m em

1

]
.

This shows that all the residuals for the harmonic Ritz pairs for AAT are multiples of
the same vector.

Define the residual vector for the harmonic Ritz pairs,

(3.8) rharm
m = Qm+1

[
−βm+1B

−T
m em

1

]
and assume that we are interested in the k smallest singular triplets. Our augmenta-
tion process can now be described by considering the starting matrix

(3.9)
h
û1, . . . , ûk, r

harm
m

i
= Qm+1

»ˆ
Im βm+1B

−T
m em

˜
Ũm+1,k −βm+1B

−T
m em

0 1

–
.

The columns of the matrix in (3.9) are not orthogonal. We therefore compute its QR
decomposition

(3.10)
[[
Im βm+1B

−T
m em

]
Ũm+1,k −βm+1B

−T
m em

0 1

]
= Q̃R̃,

where Q̃ ∈ R(m+1)×(k+1) has orthonormal columns and R̃ ∈ R(k+1)×(k+1) is upper
triangular, and use

(3.11) Q̂k+1 = Qm+1Q̃

as starting matrix. Application of (3.1), (3.6), (3.8), and (3.10) yields

(3.12) AT Q̂k+1 = ATQm+1Q̃ =
[
PmṼkΣ̃k AT rharm

m

]
R̃−1,

10

where Ṽk = [ṽ1, . . . , ṽk] and Σ̃k = diag[σ̃1, σ̃2, . . . , σ̃k].
The relation

(3.13) AT rharm
m = αm+1pm+1

can be shown by using

(3.14) AT Q̂k+1 = (PmBTm+1,m + αm+1pm+1e
T
m+1)Q̃

and by equating the right-hand sides of (3.12) and (3.14) and applying (3.10). There-
fore, we have

AT Q̂k+1 =
[
PmṼk pm+1

]

σ̃1 0

σ̃2

. . .
σ̃k

0 αm+1

 R̃−1

= P̂k(Σ̃kR̃−1
k,k+1) +

αm+1

r̃k+1,k+1
pm+1e

T
k+1,

(3.15)

where

(3.16) P̂k = PmṼk,

the matrix R̃−1
k,k+1 is the leading k × (k + 1) submatrix of R̃−1, and r̃k+1,k+1 is the

(k + 1)st diagonal entry of R̃. It follows from the structure of the matrix on the
left-hand side of (3.10) that 1/r̃k+1,k+1 = q̃m+1,k+1, the (m+ 1, k+ 1)-element of the
matrix Q̃. It follows from P̂Tk pm+1 = 0 that

(3.17) P̂Tk A
T Q̂k+1 = Σ̃kR̃−1

k,k+1.

The decomposition (3.15) is important for the derivation of our iterative method; it
is analogous to the second decomposition in (3.1).

We now derive a decomposition for AP̂k that is analogous to the first decompo-
sition in (3.1). Using (3.1), (3.6), and (3.16), we obtain

(3.18) AP̂k = Qm+1Ũm+1,kΣ̃k.

This gives

BTm+1,m = BTm[Im βm+1B
−T
m em],

and from (3.6) it follows that

(3.19)
[
Im βm+1B

−T
m em

]
Ũm+1,k = B−Tm ṼkΣ̃k

and therefore

(3.20) Ũm+1,k =
[
B−Tm ṼkΣ̃k −βm+1B

−T
m em

0 1

] [
Ik

eTm+1Ũm+1,k

]
.

11

We obtain from (3.10), (3.19), and (3.20) that

(3.21) Ũm+1,k = Q̃Q̃T Ũm+1,k,

and inserting (3.21) into (3.18) yields

(3.22) AP̂k = Qm+1Q̃Q̃
T Ũm+1,kΣ̃k = Q̂k+1Q̃

T Ũm+1,kΣ̃k.

Now using (3.17) and (3.22), we get

(3.23) Q̂Tk+1AP̂k = Q̃T Ũm+1,kΣ̃k = (Σ̃kR̃−1
k,k+1)T .

Let

(3.24) B̂k+1,k = Q̃T Ũm+1,kΣ̃k,

(3.25) α̂k+1 = αm+1q̃m+1,k+1.

Then from (3.15) and (3.22)–(3.25), we obtain

(3.26)
AP̂k = Q̂k+1B̂k+1,k,

AT Q̂k+1 = P̂kB̂
T
k+1,k + α̂k+1p̂k+1e

T
k+1,

where p̂k+1 = pm+1 and B̂k+1,k ∈ R(k+1)×k is lower triangular. This is the desired
analogue of (3.1).

Starting with (3.26), computations with GK bidiagonalization can be continued
using Algorithm 3.1 with q̂k+1, the (k + 1)st column of Q̂k+1. Application of m − k
steps of GK bidiagonalization yields the new decompositions

(3.27)
AT [Q̂k+1 Q̂m−k] = [P̂k P̂m−k]B̂Tm+1,m + α̂m+1p̂m+1e

T
m+1,

A[P̂k P̂m−k] = [Q̂k+1 Q̂m−k]B̂m+1,m,

where the first column of P̂m−k is p̂k+1,

(3.28) B̂m+1,m =

B̂k+1,k 0α̂k+1

β̂k+2 α̂k+2

.
α̂m

0 β̂m+1

 ∈ R(m+1)×m,

and the matrices [Q̂k+1 Q̂m−k] ∈ R`×(m+1) and [P̂k P̂m−k] ∈ Rn×m have orthonormal
columns. We now proceed by computing the SVD of B̂m+1,m, harmonic Ritz vectors
of AAT, cf. (3.7), and then new decompositions analogous to (3.26) and (3.27). The
k smallest singular triplets

(3.29) {σ̃j , q̂j , p̂j}kj=1,

where q̂j , j = 1, . . . , k, are the first k columns of Q̂k+1 and the p̂j , j = 1, . . . , k, are
the first k columns of P̂k, furnish approximations of the k smallest singular triplets
{σj , uj , vj}kj=1 of A.

12

A singular triplet {σ̃j , q̂j , p̂j} defined by (3.29) is accepted as an approximate
singular triplet of A if√

‖Ap̂j − σ̃j q̂j‖2 + ‖AT q̂j − σ̃j p̂i‖2

=
√
σ̃2
j ‖ũj − q̃j‖2 + ‖BTm+1,mq̃j − σ̃j ṽj‖2 + |αm+1eTm+1q̃j |2

≤ δharm‖A‖,

(3.30)

where q̃j is the jth column of Q̃ from (3.10), ũj and ṽj are the jth columns of Ũm+1,m

and Ṽm respectively in the SVD (3.6) of B̂m,m+1, and δharm > 0 is a user-specified
tolerance. In (3.30) ‖A‖ can be approximated by σ̃m, the largest singular value
of B̂m+1,m. Typically, several matrices B̂m+1,m are generated during the iterations
and therefore an acceptable approximation of ‖A‖ can be obtained from the largest
singular value of all the matrices B̂m+1,m generated.

We remark that accurate computation of the vector B−Tm em, used in (3.10), might
be difficult when Bm has a large condition number. This computation can be avoided
by noticing that the vector

(3.31)
[
−βm+1B

−T
m em

1

]
is in the null space of [Im βm+1B

−T
m em] ∈ Rm×(m+1), and

BTm+1,m = BTm
[
Im βm+1B

−T
m em

]
.

Therefore, the vector (3.31) is a multiple of the null space vector ũm+1 of BTm+1,m,
cf. (3.6). We have

(3.32)
[
−βm+1B

−T
m em

1

]
= (1/ũm+1,m+1)ũm+1,

where ũm+1,m+1 is the last element of the vector ũm+1. It follows that any multiple
of the matrix

(3.33)

[
[ũm+1,m+1Im − ũm+1,1:m] Ũm+1,k ũm+1

0

]
can be used in place of the left-hand side of (3.10). Here ũm+1,1:m denotes the vector
consisting of the first m elements of ũm+1.

The restarted GK bidiagonalization method described above will be combined
with the restarted LSQR method reviewed in the following section.

4. A restarted LSQR method. We describe a restarted LSQR method for
solving the LS problem (1.1). The method will be used in conjunction with the
restarted GK bidiagonalization method for computing harmonic Ritz vectors pre-
sented in the previous section. The description of our restarted LSQR method paral-
lels as much as possible that of the standard LSQR method [26].

Application of k steps of Algorithm 3.1 with starting vector q1 ∈ R` yields the
decompositions

(4.1)
APk = Qk+1Bk+1,k,

ATQk+1 = PkB
T
k+1,k + αk+1pk+1e

T
k+1.

13

Let rk = b − Axk for some vector xk ∈ Rn such that rk = Qk+1fk+1 for some
fk+1 ∈ Rk+1; if k = 0, then we let r0 = q1f1 where f1 = ‖r0‖.

Extend the k step decompositions (4.1) by carrying out m − k additional GK
bidiagonalization steps to obtain m step decompositions (3.1). Let xm = xk + Pmym
and notice that

rm = b−Axm = b−A(xk + Pmym)

= rk −APmym

= rk −Qm+1Bm+1,mym

= Qm+1

([
fk+1

0

]
−Bm+1,mym

)
.

It follows that

(4.2) min
xm∈xk+Km(ATA,p1)

‖b−Axm‖ = min
y∈Rm

∥∥∥∥ [fk+1

0

]
−Bm+1,my

∥∥∥∥.
We solve (4.2) with the aid of the QR decomposition

(4.3) Bm+1,m = Q̃
(B)
m+1R̃

(B)
m+1,m,

where Q̃(B)
m+1 ∈ R(m+1)×(m+1) is orthogonal and R̃

(B)
m+1,m ∈ R(m+1)×m is upper trian-

gular. Substituting (4.3) into (4.2) yields the equivalent minimization problem

(4.4) min
y∈Rm

∥∥∥∥(Q̃(B)
m+1)T

[
fk+1

0

]
− R̃(B)

m+1,my

∥∥∥∥.
Since the last row of R̃(B)

m+1,m vanishes, the LS solution ym of (4.4) satisfies the first
m rows exactly. The residual norm for (4.4) is given by

φ̄m+1 = eTm+1(Q̃(B)
m+1)T

[
fk+1

0

]
.

This yields the residual vector for the LSQR method

rlsqr
m = b−Axm

= Qm+1

([
fk+1

0

]
−Bm+1,mym

)

= Qm+1Q̃
(B)
m+1

(
(Q̃(B)

m+1)T
[
fk+1

0

]
− R̃(B)

m+1,mym

)

= Qm+1φ̄m+1Q̃
(B)
m+1em+1.

(4.5)

The process can be restarted with the vectors xk = xm and rk = rlsqr
m , where we

again assume that rk is a linear combination of the columns of the matrix Qk+1 in
(4.1). Section 5 shows how this condition can be guaranteed.

There are several ways to compute the QR decomposition in (4.3). In the context
of the restarted GK bidiagonalization method of section 3, the first k + 1 rows and k

14

columns of B̂m+1,m in (3.28) is the matrix B̂k+1,k in (3.24), which is lower triangular
and typically not lower bidiagonal. We compute a QR decomposition of B̂k+1,k by an
arbitrary method and then switch to using Givens rotations when carrying out m− k
GK bidiagonalization steps to produce the bottom part of the matrix B̂m+1,m. This
approach allows our algorithm to incorporate all of the formulas, e.g., for computing
residual norms, of the standard LSQR algorithm [26] from step k + 1 and onwards.

The following algorithm describes our restarted LSQR method, where we assume
that the starting residual vector rk is in R(Qk+1). The algorithm uses the elegant
formulas of the LSQR method by Paige and Saunders [26] whenever possible to re-
duce the computational cost and storage requirements. We comment further on the
algorithm below.

Algorithm 4.1. A restarted LSQR method

Input: A ∈ R`×n or functions for evaluating products with A and AT ,
k-step GK bidiagonalization decomposition (4.1),
xk ∈ Rn : initial approximate solution of (1.1),
fk+1 ∈ Rk+1 : where rk = b−Axk = Qk+1fk+1, Qk+1 is given in (4.1),
m ≥ k + 2 : maximum number of iterations,
mreorth : maximum number of vectors for reorthogonalization

in steps 25 and 28,
δlsqr : tolerance for accepting an approximate solution to (1.1).

Output: Approximate solution xm to (1.1),
(optional) φ̄m+1, cm, and m-step GK bidiagonalization (3.1).

1. If k = 0
2. Compute q1 := r0/f1; Q1 := q1
3. Compute p1 := AT q1; α1 := ‖p1‖; p1 := p1/α1; P1 := p1

4. Set B1,0 := []
5. End
6. Compute qk+2 := Apk+1 − qk+1αk+1

7. Reorthogonalize: qk+2 := qk+2 −Q(1:k+1)(QT(1:k+1)qk+2)
8. Compute βk+2 := ‖qk+2‖; qk+2 := qk+2/βk+2; Qk+2 := [Qk+1, qk+2]
9. Compute pk+2 := AT qk+2 − pk+1βk+2

10. Reorthogonalize: pk+2 := pk+2 − P(1:k+1)(PT(1:k+1)pk+2)
11. Compute αk+2 := ‖pk+2‖; pk+2 := pk+2/αk+2; Pk+2 := [Pk+1, pk+2]
12. Compute QR decomposition Bk+2,k+1 = Q̃R̃ of

Bk+2,k+1 :=

[
Bk+1,k αk+1

0 βk+2

]
∈ R(k+2)×(k+1),

where Q̃ ∈ R(k+2)×(k+2) and R̃ ∈ R(k+2)×(k+1)

13. Compute f̃k+2 := Q̃T
[
fk+1

0

]
14. Compute ρ̄k+2 := αk+2(eTk+2Q̃ek+2)

15. Compute φ̄k+2 := eTk+2f̃k+2

16. Solve R̃k+1,k+1y = f̃1:k+1, where R̃k+1,k+1 ∈ R(k+1)×(k+1) is the
15

leading submatrix of R̃
17. Update solution vector xk+1 := xk + P(1:k+1)y
18. Compute ‖rk+1‖ := |φ̄k+2|
19. Compute ‖AT rk+1‖ := αk+2βk+2|eTk+1y|
20. Check convergence: if (4.6) is satisfied, then exit.

21. Compute θk+2 := eTk+1Q̃
T
[
Bk+2,k+1 0

αk+2

]
ek+2

22. Compute w := pk+2 − P(1:k+1)y(θk+2/fk+1,k+1)
23. For j = k + 2 : m

24. Compute qj+1 := Apj − qjαj
25. Reorthogonalize:

Compute i := max{1, j −mreorth + 1}
Compute qj+1 := qj+1 −Q(i:j)(QT(i:j)qj+1)

26. Compute βj+1 := ‖qj+1‖; qj+1 := qj+1/βj+1; Qj+1 := [Qj , qj+1];
27. Compute pj+1 := AT qj+1 − pjβj+1

28. Reorthogonalize:
Compute i := max{1, j −mreorth + 1}
Compute pj+1 := pj+1 − P(i:j)(PT(i:j)pj+1)

29. Compute αj+1 := ‖pj+1‖; pj+1 := pj+1/αj+1

30. if j < m
31. Pj+1 := [Pj , pj+1]

32. End
33. Compute ρj :=

√
β2
j+1 + ρ̄2

j ; cj := ρ̄j/ρj; sj := βj+1/ρj

34. Compute θj := sjαj+1

35. Compute ρ̄j+1 := −cjαj+1

36. Compute φj := cj φ̄j ; φ̄j+1 := sj φ̄j
37. Compute xj := xj−1 + (φj/ρj)w; w := pj+1 − (θj+1/ρj)w
38. Compute ‖rj‖ := |φ̄j+1|
39. Compute ‖AT rj‖ := |φ̄j+1ρ̄j+1|
40. Check convergence: if (4.6) is satisfied, then exit.

41. End

When k = 0 on input to Algorithm 4.1 and no reorthogonalization and accumula-
tion of the matrices Bm+1,m, Pm, and Qm+1 is carried out, m steps of the algorithm
are equivalent to m steps of the LSQR method of Paige and Saunders [26]. In partic-
ular, Algorithm 4.1 can be used as a restarted or nonrestarted LSQR method.

The stopping criteria outlined in [10, 26] can be used in the convergence tests
(lines 20 and 40) of Algorithm 4.1. This is recommend for public domain implemen-
tations of the algorithm. For ease of comparison with other methods, we terminate
the computations in the examples reported in section 7 when in lines 20 or 40 the
inequality

(4.6) ‖AT rj‖ ≤ δlsqr‖AT r0‖

holds, where δlsqr > 0 is a user-specified tolerance.
The formula for ‖rk+1‖ in line 18 follows from (4.5), and the expression for

‖AT rk+1‖ in line 19 is taken from Jia [13]. The formulas for ‖rj‖ and ‖AT rj‖ in
lines 35 and 36, respectively, are obtained from [26]. If αj+1 = 0 or βj+1 = 0 for some
j, then ‖AT rj‖ = 0; see [24] and more recently [13, Theorem 2].

16

We reorthogonalize in lines 25 and 28 of Algorithm 4.1 to avoid loss of orthogonal-
ity due to finite precision arithmetic. Reorthogonalization requires the accumulation
of the matrices Q(i:j) in line 25 and P(i:j) in line 28. Both these matrices have a fixed
maximum number of columns, denoted by mreorth. Several reorthogonalization strate-
gies are discussed in [1, 18, 29]. When ` � n, reorthogonalization of the columns of
P(i:j) only, reduces the computational effort required to compute the decompositions
(3.1) considerably, compared with reorthogonalization of the columns of both the ma-
trices P(i:j) and Q(i:j). We refer to reorthogonalization of the columns of P(i:j) only
as one-sided reorthogonalization. Algorithm 4.1 can easily be modified to implement
one-sided reorthogonalization; see [1, 29] for discussions on this reorthogonalization
approach.

We are interested in combining Algorithm 4.1 with the augmented harmonic GK
bidiagonalization method of section 3. In this context, we assume that m� min{`, n}
and apply one-sided reorthogonalization as described in [1] and applied in the MAT-
LAB code irlba accompanying [2]. When, instead, Algorithm 4.1 is used as a non-
restarted LSQR algorithm, either no reorthogonalization is carried out or only the
last generated mreorth columns of P(i:j) are reorthogonalized. The latter reorthogo-
nalization approach also is implemented by Fong and Saunders [10] in their MATLAB
code lsmr. Reorthogonalization in lines 7 and 10 of Algorithm 4.1 is always carried
out when k > 0. Moreover, when k > 0 we use a k-step GK bidiagonalization (4.1) as
input. To be able to apply the formulas of the LSQR algorithm [26], we carry out the
(k + 1)st step of GK bidiagonalization separately, i.e., we perform the computations
of lines 6–11 of Algorithm 4.1, and subsequently determine the quantities ρ̄k+2 in line
14, φ̄k+2 in line 15, θk+2 in line 21, and w in line 22 by formulas analogous to [26,
equations (4.6)–(4.12)].

Line 12 of Algorithm 4.1 computes the QR decomposition of the matrix Bk+2,k+1.
This can be done with MATLAB’s internal qr function. The input restriction m ≥
k+ 2 ensures that the For-loop (lines 23–38) is executed at least once. Typically, k is
quite small; in the computed examples of section 7, we let k ≤ 20.

5. An augmented LSQR algorithm. In order to be able to conveniently com-
bine the restarted LSQR method of Section 4 with the restarted augmented GK bidi-
agonalization method of section 3, the residual vector from restarted LSQR, rlsqr

m in
(4.5), should be in the range of the matrix Q̂k+1 defined in (3.11). We now show that
the residual vector rharm

m of the harmonic Ritz vectors, defined by (3.8), and rlsqr
m are

parallel. It then follows from (3.8)–(3.11) that rlsqr
m ∈ R(Q̂k+1).

Theorem 5.1. The residual vector of the harmonic Ritz vectors rharm
m , defined

by (3.8), and the residual vector of the restarted LSQR method rlsqr
m , given by (4.5),

are parallel provided that the lower bidiagonal matrix Bm+1,m (3.2) from GK bidiago-
nalization (3.1) is unreduced. Moreover, rharm

m and rlsqr
m are multiples of Qm+1ũm+1,

where ũm+1 ∈ N (BTm+1,m), cf. (3.6).

Proof. Consider the (m+ 1)-vector

(5.1) Q̃
(B)
m+1φ̄m+1em+1

17

of rlsqr
m and note that this vector is in N (BTm+1,m), i.e.,

BTm+1,mQ̃
(B)
m+1φ̄m+1em+1 = φ̄m+1(eTm+1(Q̃(B)

m+1)TBm+1,m)T

= φ̄m+1(eTm+1R̃
(B)
m+1,m)T

= 0.

(5.2)

It is easy to see that the (m+ 1)-vector

(5.3)
[
−βm+1B

−T
m em

1

]
in the definition (3.8) of rharm

m lies in N (BTm+1,m):

(5.4)
[
BTm βm+1em

] [−βm+1B
−T
m em

1

]
= 0.

The matrix Bm+1,m is unreduced by assumption. Therefore, it has rank m and so
does its transpose BTm+1,m. Equations (5.2) and (5.4) show that the vectors

Q̃
(B)
m+1φ̄m+1em+1 and

[
−βm+1B

−T
m em

1

]
are in N (BTm+1,m). It follows that they are multiples of each other and of the vector
ũm+1 defined in (3.6).

We can easily determine the scalar multiplier between rharm
m (3.8) and rlsqr

m (4.5)
by examining the For-loop (lines 23–38) in Algorithm 4.1. LSQR eliminates the
subdiagonal element of the lower bidiagonal matrix via Givens rotations, but does
not explicitly form the orthogonal matrix made up by the products of these rotations.
If this matrix were generated, then in the last iteration (lines 23–41) of Algorithm
4.1, we would obtain

(5.5) Q̃
(B)
m+1 :=

Im−1 0

0
[
cm sm
sm −cm

]Q̃(B)
m 0

0 1

 ,
where Q̃(B)

m ∈ Rm×m is the orthogonal matrix from the QR factorization of Bm,m−1.
It follows from (5.5) that the last element of the vector (5.1) is −cmφ̄m+1. Moreover,
the last element of the vector (5.3) is one. Therefore,

rlsqr
m = −cmφ̄m+1r

harm
m .

Using (3.32), we also have that

Q̃
(B)
m+1φ̄m+1em+1 = −cmφ̄m+1

[
−βm+1B

−T
m em

1

]

= (−cmφ̄m+1/ũm+1,m+1)ũm+1.

18

If Q̃ is the matrix with orthonormal columns in the QR decomposition of (3.33), then

rlsqr
m = Q̂k+1fk+1,

where fk+1 = (−cmφ̄m+1/ũm+1,m+1)Q̃T ũm+1.
We are now in a position to describe our augmented LSQR algorithm that com-

bines the methods of sections 3 and 4. We assume that augmentation is carried
out with vectors that approximate the singular vectors associated with the smallest
singular values.

Algorithm 5.2. An augmented LSQR method

Input: A ∈ R`×n or functions for evaluating products with A and AT ,
x0 ∈ Rn : initial approximate solution of (1.1),
r0 := b−Ax0 ∈ R` : initial residual vector,
k : number of augmenting vectors,
m ≥ k + 2 : maximum length GK bidiagonalization,
maxaug: maximum number of iteration for augmenting stage,
maxlsqr: maximum number of iteration for the non-restarted LSQR method,
δlsqr : tolerance for accepting an approximate solution to (1.1).
δharm : tolerance for accepting computed approximate singular triplet, cf. (3.30),

Output: Approximate solution x to (1.1).

1. Call Algorithm 4.1
Input: A, k := 0, x0, f1 := ‖r0‖, q1 := r0/f1, mreorth := m, m and δlsqr

Output: xm, φ̄m+1, cm, and an m-step GK bidiagonalization (3.1)
2. For i = 1 : maxaug

3. Compute the singular value decomposition (3.6) of Bm+1,m

4. Compute the augmenting vectors:
Compute the QR factorization of (3.33).
Determine the matrices Q̂k+1, P̂k, and B̂k+1,k by (3.11), (3.16) and (3.24),
respectively and α̂k+1 by (3.25) to get (3.26).

5. Check convergence: if all k desired singular triplets satisfy (3.30), then goto 9.
6. Call Algorithm 4.1

Input: A, xk := xm, fk+1 := (−cmφ̄m+1/ũm+1,m+1)Q̃T ũm+1, mreorth := m,
m, δlsqr, and a k-step GK bidiagonalization (3.26)

Output: xm, φ̄m+1, cm, and an m-step GK bidiagonalization (3.27)
7. Set

Bm+1 := B̂m+1,m

Qm+1 := [Q̂k+1 Q̂m−k]

Pm := [P̂k P̂m−k]
pm+1 := p̂m+1

αm+1 := α̂m+1

8. End
9. Call Algorithm 4.1

Input: A, xk := xm, fk+1 := (−cmφ̄m+1/ũm+1,m+1)Q̃T ũm+1, mreorth := m,
m := maxlsqr, δlsqr and a k-step GK bidiagonalization (3.26)

19

Output: xm

The above algorithm describes a simplification of the actual computations carried
out. For instance, the number of augmenting vectors used at each restart is typically
chosen to be larger than the number of desired singular triplets. This often yields
faster convergence without increasing the memory requirement; see [1, 2] for a discus-
sion. The number of vectors to be reorthogonalized, mreorth, is set to the maximum
number of columns of the computed GK bidiagonalization. This is to ensure that
accurate approximations of the singular vectors are computed.

In the nonrestarted LSQR stage of Algorithm 5.2, i.e., in line 9, the reorthogo-
nalization applied is that of the nonrestarted LSQR method described by Algorithm
4.1. We set mreorth = m. Letting 0 ≤ mreorth < m instead would reduce the com-
putational work for each iteration, but could require more iterations to satisfy the
convergence criterion and, therefore, may require more computational effort in total.
The choice mreorth > m increases the storage requirement and therefore is avoided.

6. Rank-deficient LS problems. A least-squares problem (1.1) is said to be
rank-deficient if A has linearly dependent columns. We are interested in determining
the unique solution, x+, of minimal Euclidean norm. This solution is orthogonal to
N (A) and therefore lies in R(AT); see, e.g., [5] for a discussion on rank-deficient LS
problems.

The standard LSQR algorithm [26] produces a sequence of iterates that lie in
R(AT) provided the initial iterate x0 does. To ensure the latter one may choose
x0 = 0. Note that the iterates determined in lines 17 and 34 of Algorithm 4.1 are
in R(AT) if the initial approximation xk of x+ used in Algorithm 4.1 is in R(AT).
In order to show that the approximate solutions determined by Algorithm 5.2 are
in R(AT) when this holds for the first iterate x0, it remains to establish that the
harmonic Ritz vectors used to augment the Krylov subspace in Algorithm 5.2 also
lie in R(AT). Observe that the restarted augmented harmonic method of section
3 does not determine approximations of eigenvectors associated with the eigenvalue
zero. The reason for this is that the harmonic Ritz values are the square of the
nonvanishing singular values of Bm+1,m (3.2). The singular values are nonvanishing,
since by assumption all αj and βj are nonzero. The situation when some αj or βj
vanish is discussed in section 4.

The iterations with the augmented Krylov subspaces of Algorithm 5.2 determine
approximate solutions xm of (1.1) in subspaces of the form

Km(ATA, p̂1, . . . , p̂k, p̂k+1) = span{p̂1, . . . , p̂k, p̂k+1, A
TAp̂k+1, . . . , (ATA)m−k−1p̂k+1},

where p̂1, . . . , p̂k are approximate right singular vectors of A associated with nonvan-
ishing singular values, and p̂k+1 = pm+1 is the residual vector of GK bidiagonalization
(3.1); see also Algorithm 3.1. Using (3.3) and (3.13), we have for j ≤ k,

p̂j =
1
σ̃2
j

(ATAp̂j − (βm+1e
T
mṽk)αm+1pm+1)

=
1
σ̃2
j

AT(Ap̂j − (βm+1e
T
mṽk)rharm

m).

It follows that Km(ATA, p̂1, . . . , p̂k, p̂k+1) ⊂ R(AT). Example 7.6 in section 7 illus-
trates the performance of Algorithm 5.2 when applied to a rank-deficient LS problem.

20

7. Numerical examples. We describe a few numerical experiments that illus-
trate the performance of Algorithm 5.2 as implemented by the MATLAB code alsqr1.
This code uses the following user-specified parameters:
adjust Additional vectors used together with k augmenting vectors to speed

up convergence; see [1] for comments on the inclusion of additional
vectors.

k Number of augmenting vectors.
maxitp Maximum number of iterations in the augmenting stage.
maxitl Maximum number of iterations with the nonrestarted LSQR method

when the augmented vectors are kept fixed.
m Maximum number of GK vectors.
reorth012 String deciding whether no, one, or two-sided reorthogonalization is

used in either stage.
mreorth Number of vectors to be reorthogonalized during the nonrestarted

LSQR stage, when the augmented vectors are kept fixed. If mreorth >
0, then one-sided reorthogonalization is applied to the “short” vectors.

tollsqr Tolerance δlsqr in (4.6) for accepting a computed approximate solution
as the solution of (1.1).

tolharm Tolerance δharm in (3.30) for accepting an approximate singular triplet
as a singular triplet of A and use it for augmentation.

We compare alsqr to the MATLAB code lsqr2 for the standard LSQR method
by Paige and Saunders [26] and to the MATLAB code lsmr3 by Fong and Saunders
[10]. We remark that the performance of the methods in our comparisons depends on
the machine architecture, coding style, and stopping criteria. These may significantly
affect the performance, regardless of the theoretical properties of the methods. We
therefore do not report CPU times, but instead measure performance in terms of
the required number of matrix-vector product evaluations with the matrices A and
AT. We set all common parameters for different methods to the same values for each
example, and reorthogonalize only against the last m vectors in each method. We use
the initial approximate solution x0 = 0 for all methods and examples.

There are many preconditioned iterative methods available for the solution of
(1.1). It is difficult to make a fair comparison, because the construction of many
preconditioners is determined by several parameters, including drop tolerance and
available storage. Here we only note that our method is unique in that an approxi-
mate solution to the LS problem is computed already during the construction of the
augmented Krylov subspaces.

We present six numerical examples with matrices from the Matrix Market collec-
tion [7, 9]. The matrices A, their properties, as well as the definition of the vector
b, are described in Table 7.1. All matrices are of full column rank except for the
matrix of Example 7.6. In Table 7.1 “`” denotes the number of rows, “n” the number
of columns, and “nnz” the number of nonzero entries of the matrices. The column
labeled “Cond. #” shows the condition number estimate computed by the MATLAB
function condest when A is square. For the rectangular matrix ILLC1850, we deter-

1Code is available at http://www.math.uri.edu/∼jbaglama
2The lsqr MATLAB code is not the code that comes with MATLAB. The used code was adapted

to output the norm of the residual error in each iteration and to carry out reorthogonalization as
described in section 4.

3http://www.stanford.edu/group/SOL/software/lsmr.html. The code was adapted to output the
norm of the residual error in each iteration.

21

mined the condition number with the MATLAB function cond. The vectors b also
were chosen from the Matrix Market collection when available, otherwise we computed
the vector b with the MATLAB function b=rand(size(A,1),1). This yields a vector
b with uniformly distribution entries in the interval (0, 1). All computations were
carried out using MATLAB version 7.12.0.0635 R2011a on a Dell XPS workstation
with an Intel Core2 Quad processor and 4 GB of memory running under the Windows
Vista operating system. Machine precision is 2.2 · 10−16. One-sided reorthogonaliza-
tion is used in both stages for all examples except for Example 7.3 where two-sided
reorthogonalization is used in the augmenting stage and one-sided reorthogonalization
is used in the LSQR stage. The matrix A in Example 7.3 is very ill-conditioned, see
Table 7.1; hence two-sided reorthogonalization is required during the iteration pro-
cess to approximate singular vectors. See [1, 29] for remarks on requiring two-sided
reorthogonalization during the GK process for singular triplet approximation.

Table 7.1
Matrix Market collection of matrices A, properties, and vectors b used in the numerical exam-

ples. The rank-deficient matrix ILLC1850∗ was obtained from ILLC1850 by replacing the second
column by twice the first column of the latter.

Example Matrix ` n nnz Cond. # b
Example 7.1 ILLC1850 1850 712 8758 1.4 · 103 ILLC1850 RHS1
Example 7.2 E05R0000 236 236 5856 5.9 · 104 E05R0000 RHS1
Example 7.3 E20R0100 4241 4241 131566 2.2 · 1010 E20R0100 RHS1
Example 7.4 NOS5 468 468 2820 2.9 · 104 rand(468,1)
Example 7.5 CK656 656 656 3884 1.2 · 107 rand(656,1)
Example 7.6 ILLC1850∗ 1850 712 8645 − ILLC1850 RHS1

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (100,20)

Student Version of MATLAB

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

Fig. 7.1. Example 7.1: LSQR(reorth) and LSMR(reorth) denote that reorthogonalization was
applied to the last m vectors. ALSQR(100,20) denotes alsqr with parameters m = 100 and k = 20,
and ALSQR(140,20) shows the performance of alsqr with m = 140 and k = 20. alsqr switched
to nonrestarted LSQR at 2, 840 matrix-vector products in the left-hand side graph and at 2, 680
matrix-vector products for the right-hand side graph.

Example 7.1. This example uses the same matrix A and vector b as Example
2.1 of section 2. The vector b is not in R(A). The left-hand side graph of Figure

22

7.1 is determined with the code alsqr using the parameter values k = 20, adjust =
40, and m = 100. The right-hand side graph of Figure 7.1 is obtained with alsqr
using the parameters k = 20, adjust = 70, and m = 140. We used tolharm =
5·10−2 to determine when to accept approximate singular vectors. The iterations were
continued until the residual vectors r generated by alsqr for the first time satisfied
‖ATr‖/‖ATr0‖ ≤ 10−12. The graphs of Figure 7.1 show the quotient ‖ATr‖/‖ATr0‖
versus the number of matrix-vector products with A and AT for each iteration of
each method. The graphs marked lsqr(reorth) and lsmr(reorth) are for iteration
with reorthogonalization. All methods reorthogonalized the last 100 vectors for the
left-hand side graphs and the last 140 vectors for the right-hand side graphs of Figure
7.1. The alsqr algorithm exited the augmenting stage with all k = 20 approximate
singular vectors converged after 2, 840 matrix-vector product evaluations for the left-
hand side graph, and after 2, 680 matrix-vector product evaluations for the right-hand
side graph. Having computed these approximate singular vectors, alsqr continued
the iterations as a nonrestarted augmented LSQR method. The graphs show that
augmentation by approximate singular vectors led to faster convergence and that
alsqr converged before lsqr and lsmr. 2

0 500 1000 1500 2000 2500
10−10

10−8

10−6

10−4

10−2

100
e05r0000

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (90,15)

Student Version of MATLAB

0 500 1000 1500 2000 2500
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
e05r0000

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (90,15)

Student Version of MATLAB

Fig. 7.2. Example 7.2: LSQR(reorth) and LSMR(reorth) indicates that reorthogonalization of
the last m vectors was carried out. ALSQR(90,20) denotes alsqr with parameters m = 90 and
k = 15. alsqr switched to nonrestarted LSQR at 1, 230 matrix-vector product evaluations. The
left-hand side graph shows ‖ATr‖/‖ATr0‖ for each iteration and the right-hand side graph displays
‖r‖/‖r0‖ for each iteration.

Example 7.2. We let the matrixA and vector b be E05R0000 and E05R0000 RHS1,
respectively, from the DRIVCAV set of the Matrix Market collection. The intended
use of the linear systems in this collection is for testing iterative Krylov solvers, be-
cause it is difficult to find suitable preconditioners for the matrices. Since the linear
system of equations is consistent, we can show convergence of both the quotients
‖ATr‖/‖ATr0‖ and ‖r‖/‖r0‖, where as usual r denotes the generated residual vector
and r0 the initial residual vector. We use the parameters k = 15, adjust = 40, m = 90
for alsqr. The value tolharm = 3.5 · 10−3 was used when deciding when to accept
computed approximate singular vectors as converged. alsqr exited the augmening
stage with all k = 15 approximate singular vectors converged when the matrix-vector
product count was 1, 230. The iterations were continued with the fixed augmenting

23

vectors until a residual vector satisfied ‖ATr‖/‖ATr0‖ ≤ 10−9.
The left-hand side graph of Figure 7.2 displays ‖ATr‖/‖ATr0‖ versus the number

of matrix-vector products with the matrices A and AT for each iteration and for
each method in our comparison. The right-hand side graph is analogous; it displays
the quotients ‖r‖/‖r0‖ instead of ‖ATr‖/‖ATr0‖. This graph shows a fast steady
decrease of the residual norm when alsqr carries out LSQR iterations with the fixed
augmenting vectors. 2

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

10−10

10−8

10−6

10−4

10−2

100
e20r0100

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
e20r0100

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

Fig. 7.3. Example 7.3: LSQR(reorth) and LSMR(reorth) indicate that reorthogonalization of
the m last vectors was carried out. The method ALSQR(m,k) for m = 140 and k = 20 is compared
with LSQR and LSMR. alsqr switched to nonrestarted LSQR after 30, 280 matrix-vector product
evaluations. The left-hand side graph depicts ‖ATr‖/‖ATr0‖ for each iteration, while the right-hand
side graph shows ‖r‖/‖r0‖ for each iteration.

Example 7.3. Let the matrix A and vector b be E20R0100 and E20R0100 RHS1,
respectively, from the DRIVCAV set of the Matrix Market collection; see Example
7.2 for comments on this set of linear systems of equations. The code alsqr used the
parameter values k = 20, adjust = 90, and m = 140. The matrix has a large condition
number, 2.2 · 1010, which leads to large oscillations in the quotients ‖ATr‖/‖ATr0‖
and very slow convergence. We used the same stopping criterion as in Example 7.2.
Figure 7.3 is analogous to Figure 7.2.

We used the parameter value tolharm = 1.22 · 10−4 to decide when approxi-
mate singular vectors could be considered converged. The code alsqr exited the
augmenting stage with k = 20 converged approximate singular vectors when 30, 280
matrix-vector products with A and AT had been computed. Notice that the residual
curve in the right-hand side graph starts to decrease steadily long before the aug-
menting stage ends. This illustrates the positive effect of augmentation already while
the augmenting vectors are computed. 2

Example 7.4. The matrix A is NOS5 from the LANPRO set in the Matrix Market
collection. The matrices in this set stem from linear equations in structural engineer-
ing. This matrix set does not contain vectors b that can be used in (1.1). We therefore
let b be a random vector with uniformly distributed entries in the interval (0, 1). We
use the parameter values k = 20, adjust = 60, m = 120, and tolharm = 10−2 for
the code alsqr. The augmenting stage, which lasted until k = 20 approximate sin-
gular vectors had converged, required 4, 000 matrix-vector product evaluations with

24

0 1000 2000 3000 4000 5000 6000 7000
10−10

10−8

10−6

10−4

10−2

100
nos5

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (120,20)

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000 7000
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
nos5

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (120,20)

Student Version of MATLAB

Fig. 7.4. Example 7.4: LSQR(reorth) and LSMR(reorth) denote that reorthogonalization of
the last m vectors was performed. The method ALSQR(m,k) is for m = 120 and k = 20 compared
to LSQR and LSMR. alsqr switched to nonrestarted LSQR after 4, 000 matrix-vector product eval-
uations. The left-hand side graph shows ‖ATr‖/‖ATr0‖ for each iteration and the right-hand side
graph displays ‖r‖/‖r0‖ for each iteration.

A and AT. Iterations were then continued with the augmented LSQR method until
‖ATr‖/‖ATr0‖ ≤ 10−9. Figure 7.4 is analogous to Figure 7.3. The right-hand side
graph displays fast and steady decrease of ‖r‖/‖r0‖ of the nonrestarted LSQR method
with fixed augmented vectors. 2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−10

10−8

10−6

10−4

10−2

100
ck656

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−10

10−8

10−6

10−4

10−2

100
ck656

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

Fig. 7.5. Example 7.5: LSQR(reorth) and LSMR(reorth) denotes that reorthogonalization of
the last m vectors was carried out. ALSQR(140,20) indicates that alsqr is applied with m = 140
and k = 20. The code alsqr did not switch to nonrestarted LSQR before the convergence criterion
was satisfied. The left-hand side graph displays ‖ATr‖/‖ATr0‖ for each iteration, and the right-hand
side graph shows ‖r‖/‖r0‖ for each iteration.

Example 7.5. The matrix A is chosen to be CK656, which is the largest matrix
in the CHUCK set of the Matrix Market collection. This matrix has many clustered
and multiple eigenvalues. The matrices in this collection arise from linear systems of

25

equations in structural engineering. This collection does not contain right-hand side
vectors. Therefore, we let b be a vector with random entries as in Example 7.4. We
use the parameters k = 20, adjust = 80, m = 140, and tolharm = 10−4 for alsqr.
Iterations were terminated when ‖ATr‖/‖ATr0‖ ≤ 10−9. The left-hand side graph of
Figure 7.4 depicts ‖ATr‖/‖ATr0‖ versus the number of matrix-vector products with
A and AT. Figure 7.5 is analogous to Figure 7.4. In this example, alsqr did not exit
the augmenting stage before the stopping criterion was satisfied, i.e., the stopping
condition was satisfied before k = 20 approximate singular vectors had converged. 2

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
illc1850*

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (100,20)

Student Version of MATLAB

Fig. 7.6. Example 7.6: The matrix A in this example is rank-deficient and the right-hand size b
is not in the column space of A. Therefore, we show only the graph ‖ATr‖/‖ATr0‖ versus the number
of matrix-vector products with A and AT. The graphs LSQR(reorth) and LSMR(reorth) display
results obtained when reorthogonalization of the last m vectors was carried out. ALSQR(100,20)
denotes that alsqr is applied with the parameters m = 100 and k = 20. alsqr switched over to
nonrestarted LSQR after 3, 080 matrix-vector product evaluation.

Example 7.6. The matrix A used in this example is obtained from the matrix
ILLC1850 of Example 7.1 by letting the second column be twice the first column.
We refer to the rank-deficient matrix so obtained as ILLC1850∗. The vector b is
the same as in Example 7.1. The LS problem (1.1) is inconsistent. We chose the
parameters k = 20, adjust = 40, and m = 100 for alsqr, and used tolharm = 4 ·10−2

to decide when to accept approximate singular vectors as converged. All methods
reorthogonalized the 100 last vectors. The required k = 20 approximate singular
vectors had converge after 3, 080 matrix-vector product evaluations with A and AT.
At this point the code switched to run as an augmented nonrestarted LSQR method.
The iterations were terminated as soon as ‖ATr‖/‖ATr0‖ ≤ 10−11.

Figure 7.6 shows ‖ATr‖/‖ATr0‖ versus the number of matrix-vector product eval-
uations with A and AT. This example illustrates that alsqr can be competitive also
when applied to a rank-deficient LS problem. 2

8. Conclusion. We have described a new augmented LSQR method for large-
scale linear LS problems or linear systems of equations. During the initial iterations,
the method computes approximations of harmonic Ritz vectors that are used for
augmenting the solution subspaces. Simultaneously, the method computes improved
approximate solutions of the LS problem (1.1). Subsequently, the augmented vectors
are kept fixed and used to form nonstandard Krylov subspaces used by a nonrestarted

26

LSQR method. Numerical examples show the proposed method to be competitive.

Acknowledgment. We would like to thank the referees for carefully reading
the paper and for many comments that improved the presentation. Research in part
supported by NSF grant DMS-1115385.

REFERENCES

[1] J. Baglama and L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods,
SIAM J. Sci. Comput., 27 (2005), pp. 19–42.

[2] J. Baglama and L. Reichel, Restarted block Lanczos bidiagonalization methods, Numer. Algo-
rithms, 43 (2006), pp. 251–272.

[3] J. Baglama and L. Reichel, An implicitly restarted block Lanczos bidiagonalization method
using Leja shifts, submitted for publication.

[4] M. Benzi and M. Tuma, A robust preconditioner with low memory requirements for large sparse
least squares problems, SIAM J. Sci. Comput., 25 (2003), pp. 499–512.

[5] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[6] Å. Björck and J. Y. Yuan, Preconditioners for least squares problems by LU factorization,

Electron. Trans. Numer. Anal., 8 (1997), pp. 26–35.
[7] R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman, MatrixMarket, 1996. The

matrices are available at http://math.nist.gov/MatrixMarket/
[8] S.-C. Choi, Iterative Methods for Singular Linear Equations and Least Squares, Ph.D. thesis,

Institute for Computational and Mathematical Engineering, Stanford University, 2006.
[9] I. S. Duff, R. G. Grimes, and J. G. Lewis, User’s Guide for the Harwell-Boeing Sparse Ma-

trix Collection (Release I), Technical Report TR/PA/92/86, CERFACS, Toulouse, France,
1992. Matrices available at http://math.nist.bov/MatrixMarket/

[10] D. C.-L. Fong and M. A. Saunders, LSMR: An iterative algorithm for sparse least-squares
problems, SIAM J. Sci. Comput., 33 (2011), pp. 2950–2971.

[11] K. Hayami, J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J. Matrix
Anal. Appl., 31 (2010), pp. 2400–2430.

[12] M. E. Hochstenbach, Harmonic and refined extraction methods for the singular value problem,
with applications in least squares problems, BIT, 44 (2004), pp. 721–754.

[13] Z. Jia, Some properties of LSQR for large sparse linear least squares problems, J. Sys. Sci.
Complex., 23 (2010), pp. 815–821.

[14] Z. Jia and D. Niu, An implicitly restarted refined bidiagonalization Lanczos method for com-
puting a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), pp.
246–265.

[15] Z. Jia and D. Niu, A refined harmonic Lanczos bidiagonalization method and an implicitly
restarted algorithm for computing the smallest singular triplets of large matrices, SIAM J.
Sci. Comput., 32 (2010), pp. 714–744.

[16] S. Karimi, D. K. Salkuyeh, and F. Toutounian, A preconditioner for the LSQR algorithm, J.
Appl. Math. Informatics, 26 (2008), No. 1-2, pp. 213–222.

[17] E. Kokiopoulou, C. Bekas, and E. Gallopoulos, Computing smallest singular triplets with im-
plicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), pp. 39–61.

[18] R. M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Ph.D. thesis, Dept.
Computer Science, University of Aarhus, Aarhus, Denmark, 1998.

[19] R. M. Larsen, Combining implicit restarts and partial reorthogonalization in Lanczos bidiago-
nalization, http://soi.stanford.edu/∼rmunk/PROPACK/

[20] R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154-156
(1991), pp. 289–309.

[21] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix
Anal. Appl., 16 (1995), pp. 1154–1171.

[22] R. B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of
equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1112–1135.

[23] R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp. 20–37.
[24] C. C. Paige, Bidiagonalization of matrices and solution of linear equations, SIAM J. Numer.

Anal., 11 (1974), pp. 197–209.
[25] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approximate solutions and eigenvalue

bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–134.
[26] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse

least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.

27

[27] L. Reichel and Q. Ye, A generalized LSQR algorithm, Numer. Linear Algebra Appl., 15 (2008),
pp. 643–660.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[29] H. D. Simon and H. Zha, Low rank matrix approximation using the Lanczos bidiagonalization

process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257–2274.

28

	University of Rhode Island
	DigitalCommons@URI
	2013

	An Augmented LSQR Method
	James Baglama
	L. Reichel
	See next page for additional authors
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use
	Citation/Publisher Attribution
	Authors

	tmp.1382038388.pdf.BD9QA

