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Immune responses to some monoclonal antibodies (mAbs) and biologic proteins interfere
with their efficacy due to the development of anti-drug antibodies (ADA). In the case of
mAbs, most ADA target ‘foreign’ sequences present in the complementarity determining
regions (CDRs). Humanization of the mAb sequence is one approach that has been used to
render biologics less foreign to the human immune system. However, fully human mAbs can
also drive immunogenicity. De-immunization (removing epitopes) has been used to reduce
biologic protein immunogenicity. Here, we discuss a third approach to reducing the
immunogenicity of biologics: introduction of Treg epitopes that stimulate Treg function and
induce tolerance to the biologic protein. Supplementing humanization (replacing xeno-
sequences with human) and de-immunization (reducing T effector epitopes) with tolerization
(introducing Treg epitopes) where feasible, as a means of improving biologics ‘quality by
design’, may lead to the development of ever more clinically effective, but less immunogenic,
biologics.

KEYWORDS: alemtuzumab • biologic • biosimilar • bio-better • Campath� • immunogenicity • mAb • monoclonal

• quality by design • tolerance • tregitope

Fierce competition for market share among
biologics manufacturers of monoclonal anti-
bodies (mAbs) has contributed to the emer-
gence of a range of technologies to improve
performance in the clinic. Advances in pro-
tein engineering technologies, chemistry,
manufacturing and control (CMC) consider-
ations, and the development of completely
new antibodies for established targets, such as
humanized or fully human antibodies, may
offer advantages in specificity, efficacy and
cost. However, these advances only partially
address the problem of immunogenicity,
which has become a differentiating factor for
biologics in clinical use.

Patients treated with mAbs and some bio-
logic proteins occasionally develop neutraliz-
ing antibodies to the therapy, which reduce
or eliminate the efficacy of the treatment.
While numerous factors (such as aggrega-
tion, dose, route and target) can contribute
to the immunogenicity of biologics, one of
the key contributors to immunogenicity is

T-cell epitope content. Ensuring that the pri-
mary sequence of the protein biologic is iden-
tical to ‘self’ and thus non-immunogenic
should, in theory, reduce the potential for an
immune response. The unexpected develop-
ment of immune responses to fully human
antibodies and proteins, when they are admin-
istered as drugs, has become one of the great-
est puzzles of the protein therapeutics
revolution.

Because immunogenicity can have dramatic
effects on product safety and efficacy, regula-
tory agencies have drafted risk-based guidelines
for immunogenicity screening that describe
categories of protein biologics that would
be subject to special scrutiny by the US
FDA [101]. In February 2013, the FDA took a
step further; posting a ‘Draft Guidance for
Industry’ entitled ‘Immunogenicity Assessment
for Therapeutic Protein Products’ [102]. Specifi-
cally, the guidance indicated that modifications
to the protein backbone may be strategically
introduced to remove stimulatory T-cell
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epitopes (T effector (Teff) epitopes) for reducing immunogenic-
ity, but cautioned against the inadvertent removal of regulatory
T-cell epitopes (also known as Tregitopes).

As is evident from the FDA document, a number of
approaches to de-risking protein therapeutics are currently
in use by biologics developers. Protein engineering methods
for reducing the immunogenicity of mAbs include
‘humanization,’ which is accomplished by grafting fully
human antibody sequences into regions of the antibody while
retaining the complementarity determining regions (CDRs),
and ‘de-immunization’ which involves removing T-cell epito-
pes where possible. De-immunization has also been
applied to other protein biologics such as replacement
enzymes or blood factors. The immunogenicity of biologic
products has been somewhat reduced by de-immunization in
some pre-clinical models [1] and products that are in
clinical use [2] but other methods for reducing anti-drug anti-
body (ADA) responses currently prevail. These include co-
administration of cytotoxic drugs (such as pre-treatment
with methotrexate in children receiving recombinant human
acid alpha-glucosidase for Pompe disease [3]) and pre-
treatment with tolerizing doses of the biologic (such as
FVIII) with or without other immune modulators, such as
IVIG [4,5].

One of the earliest antibodies to be humanized is the
Campath� 1G antibody, which was originally a chimeric (rat-
human) mAb used to treat some B-cell leukemias. The anti-
body was humanized by grafting the anti-CD52 CDR regions
onto a human IgG framework [6]. This antibody (Campath
1H) remains immunogenic in the clinic despite the humaniza-
tion of its framework sequence. This is a well-known example
of the somewhat unpredictable results of CDR grafting to
humanize mAbs. Humanization was the favored approach to
immunogenicity problems until recently [7,8]. The availability of
several strains of mice expressing human antibody genes [9]

quite naturally led to the development of what are called ‘fully
human’ mAbs, which were believed to present a final solution
to the immunogenicity problem, when they were first
developed. Despite these advances, several well-known
‘humanized’ and fully human mAbs were subsequently shown
to be just as immunogenic as their counterparts, for reasons
that are partially explained by their residual differences from
human germline [10] and in part due to their T-cell epitope
content (regulatory and effector), as further described in
this review.

An alternative strategy currently under consideration could
be referred to as tolerization, which is the process of introduc-
ing tolerogenic sequences into the biologic that are known to
trigger expansion of Treg cells to promote a tolerogenic
immune response. In this review, we describe the contribution
of T-cell epitopes to the immunogenicity of biologics, address
some of the methods that biologics developers have used to
identify these T-cell epitopes and use the Campath 1H and 1G
to illustrate the effects of humanization, de-immunization and
tolerization on biologic proteins, as a special case study.

Natural immune system mechanisms for controlling
immunogenicity
T-cell epitopes: contributors to immunogenicity

In studies designed to assist biologics developers with immuno-
genicity risk mitigation, the group headed by De Groot et al.
has primarily focused on the role of T-cell epitopes in the pri-
mary amino acid sequence of biologics as drivers, or modula-
tors, of immunogenicity. In the course of searching for Teff
epitopes in biologic sequences, regulatory T-cell epitopes (Tre-
gitopes) that are present in some mAbs were identified, and
they proposed that these Tregitopes might modulate immune
responses to immunoglobulins (FIGURE 1 & [11]). A retrospective
review of the T- cell epitope (and Tregitope) content of mAb
therapeutics published in 2009 revealed a close correlation
between the presence of many highly conserved, highly promis-
cuous HLA class II Tregitopes and the absence of HLA-
binding Teff epitopes, with lack of immunogenicity in pub-
lished clinical studies [12]. These retrospective observations have
been further validated by the group, through extensive prospec-
tive experience with mAb screening using an integrated on-line
suite of immunoinformatics tools (the Interactive Screening
and Protein Reengineering Interface (ISPRI) system) with com-
mercial partners. Through these efforts, and in conjunction
with validation by other groups [13,14], the contributions of
T-cell epitopes (including Treg epitopes) to the immunogenic-
ity of biologics has become apparent to biologics developers,
many of whom have integrated immunogenicity screening
using immunoinformatics tools that search for T-cell epitopes
into their pre-clinical strategy.

Tolerance to T-cell epitopes in biologic proteins

During immune system development, T cells that have high
affinity receptors for autologous sequences are either deleted or
anergized. Thus, immune responses to mAbs and non-mAb
biologics are primarily directed to sequences that are foreign
(non-human) or different from autologous proteins to which
humans would normally be tolerant. In the case of mAbs, an
immune response is driven by mouse- or rat-derived CDRs,
although immune responses can also develop to fully or full
humanized sequences in the CDR [15] as these re-ordered autol-
ogous sequences were likely not present during immune
system development.

In the case of biologic proteins that are not antibodies, the
problem of immunogenicity is more complex, as both residual
tolerance (to epitope sequences present in the remaining, non-
deleted gene sequence) and immune response to novel, foreign
epitopes (not present during immunological development) play
a role in the immune response. It may be the balance between
these two opposing forces (further modulated by HLA-restric-
tion), together with additional factors, that are integrated to
trigger, or modulate, an immune response.

Monoclonal antibody immunogenicity

Following the US FDA approval of the first mAbs, administra-
tion to immune-competent patients was found to elicit ADA
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that compromised their clinical poten-
tial [16–19]. In hindsight, the immunoge-
nicity was mainly associated with their
non-human (murine- or rat-origin)
sequences to which patients were sensi-
tized during the required repeated dos-
ing regimens. Initially, constant domains
of antibody light and heavy chains were
replaced by human constant regions to
produce chimeric antibodies. This
approach met with mixed success due to
development of human anti-mouse anti-
bodies against the mouse-derived varia-
ble regions. While an improvement over
fully murine mAbs, chimeric antibodies
were shown to raise immune responses
that varied depending on their target,
indication and the patient populations
that were treated. For example, rituxi-
mab, a chimeric anti-CD20 antibody,
elicited no immune response from B-
cell chronic lymphocytic leukemia
patients [20,21], but was immunogenic in
27% of Sjögren’s syndrome and 65% of
systemic lupus erythomatosus
patients [22,23].

To further reduce immunogenicity,
mAb developers explored the grafting of
CDR regions into fully human antibody
frameworks (also known as humanization [24]) as a means to
prevent the development of immune responses to the mAbs.
These antibodies are fully human with the exception of mouse
CDR regions. Antibody engineering technology has since
advanced to develop completely human antibodies from
humanized mice (mice expressing human antibody genes) [9].
Nonetheless, both humanized and fully human antibodies,
remarkably, still may elicit immunogenic responses [12], leav-
ing the problem of immunogenicity yet to be
completely resolved.

Biologic protein (non-mAb) immunogenicity

Beyond mAbs, therapeutic products encompass diverse proteins
such as human cytokines, cellular growth factors, hormones,
clotting factors, enzymes and fusion proteins. Therapeutic pro-
teins are attractive drug products, as they are generally consid-
ered safe, specific and non-toxic. However, their efficacy can be
also dramatically compromised by the development of anti-
therapeutic protein responses [25,26]. Like antibodies to mAbs,
anti-therapeutic antibodies to biologic proteins (FVIII, erythro-
poietin) have the potential to neutralize their clinical effects
[27,28] and can be associated with serious adverse events if
cross-reaction occurs with endogenous protein antigens [29,30].

Biopharmaceuticals, such as fusion proteins, fall somewhere
between mAbs and non-antibody biologics, as they are gener-
ally homologous with endogenous protein sequences (and carry

Treg epitopes in the Fc region), yet they frequently incorporate
point mutations intended to improve quality attributes of the
final product such as stability, manufacturability or therapeutic
activity. Even such small changes may present the risk of intro-
ducing new epitopes never before encountered by the host. The
linkage between the Fc region and the fused protein may also
introduce new T-cell epitopes.

Enzyme replacement therapies

Anti-therapeutic protein responses are not unexpected when the
protein is foreign, either as the result of a different species of
origin or a recipient in whom the natural analog of the thera-
peutic protein is deleted or modified. Examples of ‘foreign’
proteins include blood factors and enzymes that are provided
to supplement or replace the same protein in patients who
have genetic deficiencies (as with FVIII deficiency in hemo-
philia A and in acid alpha-glucosidase (GAA)-deficiency in
Pompe disease). Immune responses to these products depend
on several factors which include: i) the degree to which the
endogenous protein has been deleted due to genetic mutations
and ii) the prevalence of the protein in circulation [31].

Take, for example, the lyosomal storage disorder Pompe dis-
ease that is caused by a genetic defect in the GAA enzyme.
Children affected by Pompe disease have protein expression
defects ranging from complete lack of GAA protein expression,
categorized as cross-reactive immunologic material (CRIM)-

Antibody or
protein

therapeutic

Epitope
processing and

presentation Regulatory
T cell

Engagement of
corresponding

T cells

Effector
T cell

APC

Figure 1. Processing and presentation of T-cell epitopes derived from monoclonal
antibodies or biologic proteins to regulatory and effector T cells. T-cell epitopes
present in an antibody or protein therapeutic will be processed and presented by APCs to
either regulatory or effector T cells. Regulatory T-cell epitopes (such as Tregitopes) may
serve to induce epitope-specific tolerance. It follows that Tregitopes could be combined
with another immunogenic epitope, such as those present in a therapeutic antibody or
protein, leading to epitope-specific tolerance induction.
APC: Antigen-presenting cell.
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negative, or partial GAA protein expression, categorized as
CRIM-positive. Treatment with fully human recombinant
GAA can trigger high titer ADAs, and a clear correlation
between the incidence of ADA and CRIM status in Pompe
patients has been demonstrated. Thus, the less GAA expressed,
the more severe the disease, the greater the dependence on the
replacement protein, but the greater the risk and severity of
ADA. Indeed, high ADA titers correlate with poor outcomes;
thus many CRIM-negative Pompe infants with a complete
GAA deficiency succumb quickly to disease [3,32,33].

Blood factors

De-immunization is one approach that has been used to
address the immunogenicity of blood factors such as FVIII and
other biologic proteins, however, modification of the primary
sequence may result in reduced efficacy, particularly if the pro-
tein is large and de-immunization must be carried out in mul-
tiple sites. Furthermore, the relative importance of T-cell
epitopes present in non-mAb proteins to tolerance induction
(due to natural Treg responses to these epitopes) is unknown;
therefore, de-immunization should be approached with caution.
In the context of FVIII and GAA, residual circulating protein
may contain T-cell epitopes to which subjects are tolerant or
that actively induce regulatory T cells. Due to variability in the
genetic mutations and in subject HLA, there may be no ‘one
size fits all’ approach to de-immunizing these replacement
proteins. Tolerization is an attractive alternative to de-
immunization especially as it would augment Treg responses,
suppressing ADA development. In the case of proteins that
have patents expiring, engineering Treg epitopes within their
framework is an additional strategy that could be used to
develop ‘bio-better’ biologics that are more effective and highly
competitive with biosimilars in the crowded biologics market.

Screening solutions for the immunogenicity problem
In vitro screening of biologics

Pre-clinical screening of biologic proteins for T-cell epitopes
can be performed in vitro and in silico, providing an opportu-
nity to improve the immunogenicity risk profile of a protein
therapeutic at its very foundation. Wullner et al. have used
T-cell assays to evaluate the immunogenicity of biologics [34].
Harding et al., using a time- and reagent-intensive overlapping
peptide approach, have also confirmed the contribution of
T-cell epitopes in the immunogenicity of biologics [15]. Screen-
ing overlapping peptides has generally been replaced by a
combination approach, outlined in the next section.

In silico screening followed by in vitro validation

Another approach to immunogenicity screening is to evaluate
T-cell epitope content in silico. The presence of T-cell epitopes
is easily discernable using epitope-mapping immunoinformatics
tools [12], many of which are available on the internet, although
none of these freely available tools are specifically adapted for
biologics. Several commercial companies currently offer com-
prehensive immunogenicity screening on a fee-for-service basis,

the immunogenicity of these products is then evaluated
in vitro, using peptides, or whole antigens. For example,
Barbosa et al. confirmed the role of T cells on the immune
response to Betaseron by linking ADA to HLA-DR type [35].
Of note, the in silico assessment of the same protein (using on-
line tools) did not, in the authors’ view, correlate with
observed immunogenicity in this instance; a separate reanaly-
sis of the overlapping peptides by EpiMatrix provided better
correlation [36]. Only a few comparisons between T-cell epit-
ope predictors used in the context of immunogenicity screen-
ing have been published [12,37]. More often, drug developers
have performed extensive (and expensive) in-house compari-
sons of services prior to selecting a single service.

Prospective evaluations of in silico screening

Several prospective studies have compared T-cell epitope map-
ping and immunogenicity screening side by side and found
immunogenicity screening using selected immunoinformatics
tools are validated by clinical outcomes for the biologic under
study. For example, Koren et al. demonstrated the correlation
between T-cell epitopes, HLA and immunogenicity in a double-
blinded study of the FPX biologic; immunoinformatics tools
were predictive and that immunogenicity was correlated with
HLA-haplotype [38]. FPX is a recombinant fusion protein consist-
ing of two identical, biologically active peptides linked to a
human Fc fragment. Following a single administration of FPX
in 76 healthy human subjects, 37% developed antibodies.
A memory T-cell response against the carboxy-terminus of the
peptide was observed in antibody-positive subjects, but not in
antibody-negative subjects. The projected promiscuity of the pre-
dicted T-cell epitope(s) was confirmed by representation of all
common HLA alleles in antibody-positive subjects. HLA-
haplotype DRB1*0701/1501 was predicted to be associated with
the highest T-cell and antibody response; subsequent detailed
in silico studies confirmed the link between HLA and immuno-
genicity [39]. Further development of this product was abandoned
due to clinical immunogenicity.

In a separate (also blinded) study, Tatarewicz et al. used Epi-
Matrix to screen GDNF, a protein therapeutic that was shown
to be immunogenic in clinical trials [40]. The protein contains
T-cell epitope clusters that rank as high as other well-known
immunogenic epitopes on the EpiMatrix immunogenicity scale
(FIGURE 2). Further clinical development of this product was can-
celled due to concern about immunogenicity that emerged in
clinical studies.

Having observed the demonstrated serious consequences of
immunogenicity and the published correlation with in silico
results, researchers at selected pharmaceutical companies began
to integrate in silico screening into the pre-clinical development
phase of products. Most recently, Jawa et al. published an addi-
tional report on the prospective correlation between the Epi-
Matrix scores and immunogenicity for three additional biologic
proteins that were predicted to be of low immunogenicity by
EpiMatrix and proven to be of low immunogenicity in clinical
trials [41].
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Additional validation of immunoge-
nicity predictions using selected immu-
noinformatics tools has been obtained
from retrospective studies. In 2009, De
Groot and Martin performed a detailed
in silico analysis of mAbs in clinical use
and described a strong correlation
between T-cell epitope content and clin-
ical immunogenicity (as published). The
correlation was higher when the immu-
nogenicity analysis was adjusted for
Treg epitope content (see below for a
discussion of Treg epitopes [12]). Immu-
noinformatics, when combined with
in vitro and in vivo methods, provides
an efficient alternative to conventional
epitope mapping using overlapping
peptides; reductions in time and effort
up to 700-fold have been shown [42–46].

Development of web-based service

centers for in silico immunogenicity

screening

The team of De Groot and Martin has
been using a full suite of T-cell epitope-
based immunogenicity prediction tools
since 2002. A self-serve secure-access
‘ISPRI’ website now enables users of these tools to screen bio-
logics on demand, loading hundreds of candidates when, and
as, needed. In 2008, subsequent to the discovery of Tregitopes
(see below), the team integrated identification of validated Treg
epitopes (Tregitopes) into the immunogenicity prediction,
sharply improving the accuracy of the in silico analysis [12]. Sev-
eral large biologics developers access this tool on a regular basis
for their pre-clinical products. More than 1500 sequences are
screened on average, per month, using this website for on-line
immunogenicity screening tools.

Beyond screening: what to do when a biologic is

immunogenic?

For products that are known to be immunogenic, de-immuni-
zation is an approach that has been used to reduce biologic
protein immunogenicity for several decades (e.g., staphylokinase
or SakSTAR [47]). De-immunization has been the focus of sev-
eral previous reports and reviews [1, 48–51]. Here, we outline an
emerging approach to reducing immunogenicity, by actively
tolerizing immune responses to biologics, such as mAbs and
protein therapeutics.

De-immunization

The inability of a specific HLA molecule to present epitopes
from a given vaccine antigen is well known to be a cause of
vaccine failure; by extension, the deletion of T-cell epitopes has
been applied to reduce antibody responses to biologic proteins.
For example, Celis et al. reported that a significant number of

HBsAg-reactive T cells from various HBV-immune individuals
recognize a determinant localized near the amino terminus of
HBsAg, and individuals who cannot present the T-cell epitopes
in this region are unable to mount a protective humoral
response following vaccination [52]. Tumor cells [53] and patho-
gens [54,55] have also evolved to evade pro-inflammatory
immune responses by accumulating mutations that alter T-cell
epitope sequences. These mutations reduce the binding of their
constituent epitopes to host HLA [56], rendering the host cell
unable to alert T cells to the presence of the tumor or patho-
gen. The existence of viable ‘immune escape mutant’ viruses
demonstrates that proteins, and indeed whole organisms, can
tolerate certain immuno-modulatory mutations. Thus, it fol-
lows that deliberate removal of T-cell epitopes might also
reduce the immunogenicity of biologic products [50].

A number of biologic proteins have been de-immunized by
removing T-cell epitopes. One of the first attempts was the de-
immunization of ‘SakSTAR’ or staphylokinase [47]. Modifica-
tion or removal of the specific amino acids that contribute to
HLA binding led to a reduction in the potential of the drug
epitope to stimulate a T-cell response. Similarly, a number of
epitope-abrogation studies have been performed using FVIII.
Jones et al. identified a 15-mer sequence in human FVIII that
bound strongly to DRB1*0401, *1101 and *1501, moderately
to *0701, weakly to *0101, but not to *0301 and *1301 in
HLA class II binding assays. Modification of the sequence of
this epitope reduced its potential to bind to HLA. The modi-
fied peptide did not bind to any MHC class II molecule and
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was less immunogenic in vitro [57,58]. Epitope modification has
also been applied to other proteins in studies performed by
Hellendoorn et al., Tangri et al., Yeung et al. and others, using
a variety of approaches [59–61]. For example, alanine substitu-
tions to the MHC anchoring residues Y73, K74, R77,
E80 and D82 of staphylokinase, alone or in combination, were
shown to reduce or eliminate T-cell responses and clinical
immunogenicity [62].

De Groot and collaborators have used a computational algo-
rithm that iteratively searches for the optimal substitution for
any given amino acid so as to reduce the impact of de-
immunization on structure and function. This tool, OptiMa-
trix, used in concert with an established epitope mapping tool,
EpiMatrix, can be tuned to minimize the number of sequence
changes to one or two key amino acids per epitope, thus reduc-
ing the potential impact on protein structure and function, as
described by Moise et al. for FVIII [1]. Using OptiMatrix, we
have mapped and modified i) Botulinum neurotoxin type
A [51], ii) lysostaphin [DE GROOT AS, TERRY F, COUSENS L, MARTIN W, UNPUB-

LISHED DATA] and iii) a therapeutic mAb [DE GROOT AS, TERRY F, COUSENS L,

MARTIN W, UNPUBLISHED DATA]. De Groot and collaborators are cur-
rently working with Bailey-Kellogg and colleagues using a com-
bined approach (EpiSweep, or Epi-3D) in which an algorithm
is used to iteratively de-immunize epitope clusters while meas-
uring the impact of the modifications on the stability of the
protein structure. The set of modifications that are least likely
to perturb stability are then tested in vitro (in HLA binding
assays) and in vivo (immunization studies) [63].

Tolerization

Tolerization involves integration of previously identified Treg
epitopes into the biologic protein sequence. While the concept
of Tregitope-mediated tolerization is relatively novel, this
method has emerged from studies carried out by
Cousens et al., De Groot et al. and others, demonstrating that
these specific, highly conserved and promiscuous T-cell epito-
pes derived from conserved regions of human immunoglobulins
activate Treg cells, with the phenotypic properties of ‘natural’
Tregs [11] and suppress immune responses in vitro and in vivo
[14]. While these Tregitope sequences do not contain any partic-
ular sequence that is unique to Treg epitopes, cross-
conservation (at the T-cell receptor surface) with other highly
conserved T-cell epitopes in autologous proteins has been
described as a potential distinguishing feature [64]. The corre-
sponding murine epitopes are also effective in murine mod-
els [14]. In vivo studies in autoimmune disease models have
further validated the Tregitope discovery. Additional studies
have demonstrated that co-administration of antigens with Tre-
gitopes in vivo and in vitro leads to the induction of antigen-
specific tolerance [11,65] and suppression of both humoral [13]

and cellular immune responses [66,67] to co-administered
antigens.

The discovery of the ‘Tregitope’ Treg epitopes in immuno-
globulins (such as mAbs) is strengthened by published reports
that immunoglobulin therapy (‘IVIG’) induces expansion of

Tregs in vitro and in vivo [68–71], and IVIG experts generally
agree that Treg epitopes such as the Tregitopes may be contri-
buting to the tolerizing effects of IVIG [72]. The next step in
the process of adapting Tregitopes to biologic therapy will be
to actively introduce these epitopes into immunogenic biolog-
ics, thereby reducing potential immunogenicity; studies that
support the effectiveness of this approach have been carried out
by Cousens et al. [14,65,67] and are currently underway in the
laboratories of a number of other research groups (e.g., Min-
gozzi and High [73] and Scott and collaborators [74]). In the fol-
lowing three sections, we review the role of T-cell epitopes in
the immunogenicity problem faced by drug developers, discuss
the discovery of regulatory T-cell epitopes known as Tregitopes
and address their potential use as novel tolerizing agents for
biologic proteins.

The tolerization solution to the immunogenicity
problem
Natural tolerance

Immune responses to autologous proteins are controlled by a
range of mechanisms, which have the potential to be exploited
for the induction of tolerance to protein therapeutics. For
T cells, self/non-self discrimination initially occurs in the thy-
mus during T-cell maturation when medullary epithelial cells
present tissue-specific self-protein epitopes, in the context of
MHC, to immature T cells expressing antigen-recognition mol-
ecules (TCR). T cells whose receptors have a high affinity for
self-peptide–MHC complexes, or whose receptors fail to bind
at all, are deleted; T cells with low to moderate affinity escape
deletion and may be converted to T cells with effector potential
or ‘natural’ regulatory T cells [75].

Adaptive tolerance

Adaptive tolerance develops in the periphery where, in the
presence of IL-10 and TGF-b, mature T cells are converted to
the ‘adaptive’ Treg phenotype upon activation via their TCR.
The mechanism of adaptive Treg induction is not well known;
both bystander effects (via cytokines) and intracellular signal-
ing (by antigen-presenting cells) have been evoked. The role of
these ‘adaptive’ Treg cells may be to dampen effector immune
responses (following the primary, vigorous immune reaction,
as a means of controlling inflammation), or possibly to facili-
tate co-existence with some symbiotic bacteria and viruses.
CTLA-4 (a T-cell surface molecule) may be involved, since the
anti-CTLA-4 antibody ipilimumab (Yervoy) has been associ-
ated with adverse effects that parallel unregulated anti-self
responses that might be expected in the absence of Tregs [76].
Adaptive Treg induction is associated with sustained tolerance
(to grafts, to allergens and to autologous proteins) and prob-
ably requires the existence of Treg cells with the same antigen
specificity as the self-reactive T cells.

Relevance of Tregitopes to IgG-mediated tolerance

The identification of Tregitopes contained in human IgG
enables the integration of many independent observations of
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tolerance induction associated with mAb or mAb fragments,
including tolerance following immunization with antigen-
conjugated aDEC-205 [11,13,14]. Furthermore, murine
T regulatory epitopes (mTregitopes) may explain earlier
observations that Fc [77] and Fc-protein fusions [78] and
IVIG [79–81] stimulate a tolerizing immune response.

Tolerization

The discovery of Tregitopes and their close association with lack of
immunogenicity to certain mAbs naturally led to the concept of
actively integrating Tregitopes into biologics. Tolerization, as
described here, could be considered to be an alternative to
humanization of mAbs, it may also be applied to non-mAb bio-
logic products. The approach is based on detailed studies show-
ing Tregitopes lead to tolerance by Treg activation and epitope-
specific tolerance induction. Using Campath (alemtuzumab) as
an example, the tolerization approach is illustrated in FIGURE 3.

The Campath example

To date, de-immunization and humanization approaches
have provided a partial solution to the immunogenicity prob-
lem, and in the case of some fully human proteins, despite
human sequence homologies, immunogenicity is still a prob-
lem in the clinic, for example, the alemtuzumab (Campath)
mAbs that are directed against the antigen CD52 expressed
on the surface of virtually all lymphocytes and monocytes.
The humanized form, Campath 1H, is currently in use as a
therapy for B-cell chronic lymphocytic leukemia, and has
emerged as a potential therapeutic for multiple sclerosis in
recent clinical studies [82]. The original rat-derived alemtuzu-
mab (Campath 1G and Campath 1M) mAbs have limited
clinical use due to the development of neutralizing antibodies
in large numbers of subjects.

Three potential approaches have been considered for improv-
ing Campath 1H: i) administration of a tolerizing, non-binding
(soluble) alemtuzumab [83], ii) de-immunization of immuno-
genic epitopes as performed in unpublished studies by De
Groot et al. and iii) re-introduction of Tregitopes that may
have already been present in the original mAb but perturbed in
the process of humanization as proposed in greater detail in the
next section. Initially, humanization appeared to have been a
successful strategy for reducing immunogenicity. However,
studies performed in immunocompetent patients have revealed
that as many as 75% of patients develop antibody responses to
the humanized alemtuzumab (Campath 1H) product, especially
when several doses are given [83–86].

Assessing Campath 1G, 1H & ‘1T’ for T effector & regula-

tory T-cell epitopes

The process of humanization in the case of Campath involved the
grafting of the CDR regions onto a new, human antibody frame-
work. In FIGURE 3, we have compared Campath 1H with Campath
1G for T-cell epitope content and Treg (Tregitope) epitope con-
tent (defined using the ISPRI system) to illustrate that humaniza-
tion did not reduce the number of Teff cell epitopes present in

the derivative (1H) product, but rather removed one Tregitope.
The unaltered Campath 1G molecule is predicted to be very
immunogenic. The heavy and light chains have Tregitope-
adjusted (TR-) EpiMatrix scores of 22.44 and 29.17, respectively.
Modifying the Campath molecule from 1G to 1H involved graft-
ing the CDR regions onto a new human antibody framework.
This transformation resulted in a net change of 40 amino acids in
the heavy chain, leading to an increase in the TR-EpiMatrix score
from 22.44 to 42.36, meaning it became more immunogenic.
One of the significant contributors to the increase in score was the
introduction of 11 new epitopes. Another increase was due to the
loss of one Tregitope, causing an 8-point increase. Humanization
of the light chain (also through grafting CDR regions onto a new
human antibody framework) resulted in a net 12 amino acid
changes; the addition of three Tregitopes, and the removal of one,
leaving a net gain of two Tregitopes. The TR-EpiMatrix score for
the humanized light chain decreased from 29.17 to 0.77. The two
major contributors to this decrease in score were the loss of six
epitopes and the gain of three Tregitopes, causing a total decrease
of nearly 50 points. This decrease was countered most aggressively
by the loss of a Tregitope, leading to roughly a 20-point increase.

Tolerization of Campath 1G

Rather than humanizing, one might consider tolerizing 1G. The
first step in tolerization is to identify where Treg epitopes may
be present in a non-human version (rat or mouse version).

CDR

Epitopes

Tregitopes

1G

1H
1T

Figure 3. The design of a less immunogenic Campath�. The
Campath 1G to 1H transformation results in an almost equal
gain/loss of Tregitopes and a net gain of potential Teff epitopes
(based on Tregitope-adjusted EpiMatrix analysis, see [8]), while the
1G to 1T transformation results in a large gain of Tregitopes, a
minimal gain of epitopes and a dramatically better EpiMatrix
score.
CDR: Complementarity determining region.
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Then amino acid changes are made to recover the human ver-
sion of the Tregitope. In FIGURE 3, we have contrasted the human-
ization of Campath 1G to Campath 1H, with an alternative
pathway creating Campath ‘1T’ from 1G through the incorpo-
ration of Tregitopes. A description of the approach follows:
modifying the heavy chain from Campath 1G to introduce Tre-
gitopes and reduce immunogenicity (called ‘1T’ in this case
study) would require 21 amino acid point mutations, leading to
a decrease in the EpiMatrix score from 22.44 to -66.21, These
point mutations create 13 known Tregitopes and reduce or
destroy five Teff epitopes. Tolerization of the light chain would
require 10 amino acid point mutations, leading to a decrease in
EpiMatrix score from 29.17 to -33.15. These point mutations
create five known Tregitopes and reduce or destroy seven Teff
epitopes. Changes to the CDR regions are avoided in this
scenario.

Of course, this description ignores one of the most signifi-
cant barriers to successful re-engineering: protein expression.
Cell-culture production of the tolerized product may be
impaired by the protein sequence modifications. Tools for pre-
dicting the impact of the T-cell epitope modification on the
biologic protein stability have been developed [48] and have
been applied to the de-immunization. Since the Tregitopes that
were introduced are naturally located in these locations (in
human framework regions), there is no expected perturbation
of the structure. An analysis of the Campath 1G, 1H and 1T
molecules for stability is in progress.

De-immunization may still be necessary in some cases. This
is accomplished by identifying at which of the regions (where
change is desired) one could make modifications without de-
stabilizing the 3D structure of the protein. This approach
requires protein-engineering experience, as amino acid changes
in the primary sequence may have compensatory changes at a
distal location within the protein. As previously mentioned, 3D
modeling may improve attempts to de-immunize proteins with-
out introducing destabilizing mutations. De-immunization of
the Campath 1T heavy chain would require 1 amino acid
change to the remaining Teff epitope, resulting in a decrease
from -66.21 to -80.35, and 2 changes in the light chain with
a resulting change in the EpiMatrix score from -33.15 to
-75.92, further de-immunizing the tolerized Campath mole-
cule. However, these changes may not be necessary as the tol-
erization described above might be sufficient. Clearly, each of
these further modifications would have to be evaluated for de-
stabilization, so this example is only provided as an illustration
of an alternative approach to reducing the immunogenicity of
a mAb.

Expert commentary
Anti-therapeutic antibodies can have a dramatic effect on the
safety and efficacy of a protein therapeutic product. While sev-
eral methods of reducing immunogenicity have been applied
with a range of success (humanization and de-immunization),
we propose a novel approach (tolerization) for engineering
improving protein therapeutics by stimulating natural

mechanisms of tolerance induction through the introduction of
human regulatory T-cell epitopes into the biologic sequence.

One means of reducing immunogenicity is to develop prod-
ucts that have lower immunogenicity profiles. Over the past
10 years, immunoinformatics-driven immunogenicity screening
has been fully integrated into the pipeline of companies devel-
oping biologicals. Immunogenicity screening has become de
rigueur in most large companies. Unfortunately, on-line tools
have been slow to adapt to the needs of the biologics commun-
ity, and are not able to provide high-throughput screening in
safe and secure interfaces, protected from ‘public’ viewing while
products are still in development.

In response to increasing demand for an integrated immu-
noinformatics system for immunogenicity screening, De Groot
and Martin developed a web-accessible toolbox called the
ISPRI system that allows drug developers to accelerate the pre-
clinical development of their protein products. Using this
system, researchers can screen protein sequences of product
candidates for the presence and immunogenic potential of
putative T-cell epitopes (EpiMatrix) and epitope clusters (Clus-
tiMer). Protein sequences can be ranked for immunogenic
potential in comparison with known proteins on a normalized
scale, and an interactive protein reengineering tool (OptiMa-
trix) allows researchers to modify, or de-immunize, T-cell
epitope clusters in real time (in silico) by optimizing the amino
acid sequence so that it is no longer able to interact with
T cells.

The suite of tools developed by De Groot and Martin has
been extensively validated internally and externally, with several
key publications demonstrating the technology and rigorous
testing procedures using known protein therapeutic targets
[35,40,41]. In addition, this integrated system is the only available
immunogenicity predictor that adjusts immunogenicity predic-
tions for the presence of Tregitopes (see De Groot and Martin
for additional information [12]).

If a protein therapeutic is known to be immunogenic but
still has significant market value, it may be possible to create a
‘bio-better’ version. In this review article, we discuss two
options for reducing protein immunogenicity (de-immunization
and tolerization), and we illustrate the process of tolerization
using Campath as an example. Based on available evidence, we
expect that the integration of Tregitope sequences into biolog-
ics will stimulate regulatory cell expansion, cytokine production
and suppress inflammatory cytokine levels and effectively pre-
vent ADA production. Evaluation of Campath 1G revealed
that there were a number of Tregitope-like sequences that
could be converted to full Tregitopes by making single amino
acid changes in the primary sequence with minimal change to
the 3D structure, thus integration of new Tregitopes was not
necessary. Clearly, these modified products would have to be
produced in cell culture and tested in the appropriate labora-
tory assay, but it may be possible to identify changes that mini-
mize the perturbation of the 3D structure, and 3D modeling
tools can help with this process. This tolerization approach
may accelerate development of a new generation of protein
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therapeutics, providing an effective solution to the problem of
immunogenicity in this field.

Five-year view
Even though the potential for Tregitopes to regulate immuno-
genicity was recognized by De Groot and Martin in 2008,
extensive validation studies were required before biologics
developers were willing to accept the new concept and to begin
to integrate Tregitopes into their biologics development plans.
Extensive validation studies have now been performed in more
than eight laboratories in six different regions of the world
(Japan, Canada, USA, The Netherlands, France and Austria).
Their potential for regulating immune responses to biologic
proteins and for contributing to the development of improved
‘bio-betters’ is just beginning to mature. Thus, we expect that
the Tregitopes described in this article will have a significant
impact on biologics development over the next 5 years, leading
to further differentiation of biologic products and improved

competitiveness of Tregitope-containing products in the protein
therapeutics field.
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Key issues

• Immunogenicity is a differentiating factor in the market for biologics.

• In silico screening has become the starting point for ‘quality by design’.

• The discovery of Tregitopes has had a significant impact on immunogenicity screening, leading to higher accuracy predictions and better

correlations with clinical outcomes.

• Tolerization involves the introduction of Tregitope sequences into biologic proteins.

• There is significant potential for this approach to accelerate the development of bio-better biologic products.
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Extended rituximab (anti-CD20 monoclonal

antibody) therapy for relapsed or refractory

low-grade or follicular non-Hodgkin’s

lymphoma. Ann. Oncol. 10(6), 655–661
(1999).

22 Pijpe J, van Imhoff GW, Spijkervet FK et al.
Rituximab treatment in patients with
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