
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Equilibrium Statistical Physics Physics Open Educational Resources 

12-15-2015 

01. Equilibrium Thermodynamics I: Introduction 01. Equilibrium Thermodynamics I: Introduction 

Gerhard Müller 
University of Rhode Island, gmuller@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/equilibrium_statistical_physics 

Abstract 
Part one of course materials for Statistical Physics I: PHY525, taught by Gerhard Müller at the 

University of Rhode Island. Documents will be updated periodically as more entries become 

presentable. 

Recommended Citation Recommended Citation 
Müller, Gerhard, "01. Equilibrium Thermodynamics I: Introduction" (2015). Equilibrium Statistical Physics. 
Paper 14. 
https://digitalcommons.uri.edu/equilibrium_statistical_physics/14 

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in 
Equilibrium Statistical Physics by an authorized administrator of DigitalCommons@URI. For more information, 
please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author 
directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/equilibrium_statistical_physics
https://digitalcommons.uri.edu/phys_course
https://digitalcommons.uri.edu/equilibrium_statistical_physics?utm_source=digitalcommons.uri.edu%2Fequilibrium_statistical_physics%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/equilibrium_statistical_physics/14?utm_source=digitalcommons.uri.edu%2Fequilibrium_statistical_physics%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


Table of Contents [ttc]

1. Equilibrium Thermodynamics I: Introduction

• Thermodynamics overview. [tln2]

• Preliminary list of state variables. [tln1]

• Physical constants. [tsl47]

• Equations of state. [tln78]

• Equation of state for ideal gas and real fluid. [tsl12]

• Classification of thermodynamic systems. Laws of thermodynam-
ics. [tln10]

• Thermodynamic processes (irreversible, quasi-static, adiabatic).
[tln79]

• Fast heat. [tex143]

• Expansion and compression of nitrogen gas. [tex144]

• Bathtub icebreaker. [tex145]

• Exact differentials. Applications to internal energy and entropy.
[tln14]

• Exact and inexact differentials I. [tex5]

• Exact and inexact differentials II. [tex146]

2. Equilibrium Thermodynamics II: Engines

• Carnot engine. [tln11]

• Maximum efficiency. [tln12]

• Absolute temperature. [tln13]

• Entropy change caused by expanding ideal gas. [tex1]

• Carnot cycle of the classical ideal gas. [tex3]

• Carnot cycle of an ideal paramagnet. [tex4]

• Reversible processes in fluid systems. [tln15]

• Adiabates of the classical ideal gas. [tex7]



• Roads from 1 to 2: isothermal, isentropic, isochoric, isobaric.
[tex25]

• Room heater: electric radiator versus heat pump. [tex13]

• Mayer’s relation for the heat capacities of the classical ideal gas.
[tex12]

• Positive and negative heat capacities. [tex26]

• Work extracted from finite heat reservoir in infinite environment.
[tex9]

• Work extracted from finite heat reservoir in finite environment.
[tex10]

• Heating the air in a room. [tex2]

• Gasoline engine. [tln65]

• Idealized gasoline engine(Otto cycle). [tex8]

• Diesel engine. [tln66]

• Idealized Diesel engine. [tex16]

• Escher-Wyss gas turbine. [tln75]

• Joule cycle. [tex108]

• Stirling engine. [tln76]

• Idealized Stirling cycle. [tex131]

• Ideal-gas engine with two-step cycle I. [tex106]

• Ideal-gas engine with two-step cycle II. [tex107]

• Circular heat engine I. [tex147]

• Circular heat engine II. [tex148]

• Square heat engine. [tex149]

3. Equilibrium Thermodynamics III: Free Energies

• Fundamental equation of thermodynamics. [tln16]

• Free energy. [tln3]

• Retrievable and irretrievable energy put in heat reservoir. [tex6]

• Legendre transform. [tln77]



• Thermodynamic potentials. [tln4]

• Alternative set of thermodynamic potentials. [tln9]

• Thermodynamic functions. [tln5]

• Maxwell’s relations. [tln17]

• Free energy stored and retrieved. [tln18]

• Useful relations between partial derivatives. [tln6]

• Response functions (thermal, mechanical, magnetic). [tln7] (2)

• Isothermal and adiabatic processes in fluid systems and magnetic
systems. [tln8]

• Conditions for thermal equilibrium. [tln19]

• Stability of thermal equilibrium. [tln20]

• Jacobi transformation. [tln21]

• Entropy of mixing. [tln25]

• Osmotic pressure. [tln26]

4. Equilibrium Thermodynamics IV: Applications

• Entropy and internal energy of the classical ideal gas. [tex14]

• Thermodynamic potentials of the classical ideal gas. [tex15]

• Chemical potential of the classical ideal gas. [tex17]

• Ideal gas heat capacity by design. [tex35]

• Sound velocity in the classical ideal gas I. [tex18]

• Sound velocity in the classical ideal gas II. [tex99]

• Absolute temperature from measurements. [tex134]

• Polytropic process of classical ideal gas. [tex138]

• Heavy piston. [tex141]

• Isothermal atmosphere. [tex150]

• Adiabatic atmosphere. [tex151]

• Homogeneous atmosphere. [tex152]

• Van der Waals equation of state. [tln22]



• Cooling gases: Joule effect (free expansion) and Joule-Thomson
effect (throttling). [tln23]

• Joule-Thomson inversion curves. [tsl1]

• Heat capacities of the van der Waals gas. [tex27]

• Internal energy and entropy of the van der Waals gas. [tex38]

• Joule coefficient of the van der Waals gas. [tex31]

• Joule-Thomson coefficient of the van der Waals gas. [tex32]

• Assembling thermodynamic information. [tex29]

• How not to modify the ideal gas equation of state. [tex11]

• Reconstructing the equation of state of a fluid system. [tex42]

• Reconstructing the equation of state of a gas. [tex43]

• Effects of first virial correction on ideal gas properties. [tex33]

• Entropy due to electronic spins in iron ammonium alum. [tsl2]

• Adiabatic demagnetization. [tln24]

• Thermodynamics of an ideal paramagnet I. [tex19]

• Thermodynamics of an ideal paramagnet II. [tex20]

• Thermodynamics of an ideal paramagnet III. [tex21]

• Thermodynamics of a real paramagnet. [tex36]

• Thermodynamics of a classical ideal paramagnetic gas I. [tex22]

• Thermodynamics of a classical ideal paramagnetic gas II. [tex133]

• Hydrostatic pressure. [tex132]

• Rubber band heat engine. [tex39]

• Equation of state and adiabate of an elastic band. [tex40]

• Determining CV of condensed matter. [tex28]

• Thermodynamics of blackbody radiation. [tex23]

• Carnot cycle of thermal radiation. [tex24]

5. Thermodynamics of Phase Transitions I

• Phase diagram of a “normal” substance. [tsl3]



• Phase diagram of H2O. [tsl4]

• Ferrimagnetic phases. [tsl49]

• Liquid crystal phases. [tsl51]

• Ordering of surfactant molecules. [tsl50]

• Phase coexistence: Gibbs phase rule. [tln27]

• Classification of phase transitions. [tln28]

• Gibbs free energy and derivatives at discontinuous transition. [tsl7]

• Gibbs free energy and derivatives at continuous transition. [tsl8]

• Clausius-Clapeyron equation. [tln29]

• Entropy of a supercooled liquid. [tex30]

• Coexistence line of continuous phase transition. [tex37]

• Latent Heat and response functions. [tex124]

• Heat capacity of vapor in equilibrium with liquid phase. [tex41]

• Discontinuous transition: change in internal energy. [tex123]

• Dry ice. [tex125]

• Abnormal phase behavior. [tex54]

• Melting or freezing. [tex51]

• Triple-point phase changes. [tex52]

• Cooling down? Heating up? [tex153]

• Phase coexistence of ammonia. [tex55]

6. Thermodynamics of Phase Transitions II

• Van der Waals equation of state with coexistence curve. [tsl10]

• Law of corresponding states. [tln30]

• Maxwell construction. [tln31]

• Gibbs and Helmholtz free energies of the van der Waals fluid at
T < Tc. [tsl11]

• Condensation and evaporation. [tln32]

• Dieterici equation of state. [tex34]



• Helium liquids. [tln33]

• Phase diagram of 4He. [tsl13]

• Phase diagram of 3He. [tsl14]

• Exotic properties of helium II. [tln34]

• Superconducting transition. [tln35]

• Thermodynamics of a ferromagnet. [tsl5]

• Structural transitions of iron. [tex53]

• Latent heat and heat capacities at superconducting transition.
[tex44]

• Thermodynamics of the mean-field ferromagnet I. [tex45]

• Thermodynamics of the mean-field ferromagnet II. [tex46]

7. Kinetic Theory I

• Statistical uncertainty and information. [tln37]

• Statistical concept of uncertainty. [tex47]

• Statistical uncertainty and information. [tln37]

• Statistical uncertainty and information. [tex48]

• Information of sequenced messages. [tex61]

• Kinetics of classical ideal gas. [tsl28]

• Pressure and mean square velocity in classical ideal gas. [tex49]

• Maxwell velocity distribution. [tln38]

• Maxwell velocity distribution (Maxwell’s derivation). [tex50]

• Maxwell distribution in D-dimensional space. [tex56]

• Boltzmannn equation. [tln39]

• Boltzmann’s H-theorem. [tln40]

• Energy distribution for N ideal gas atoms. [tex57]

• Maxwell velocity distribution (Boltzmann’s derivation). [mex58]

• Ideal-gas entropy and Boltzmann’s H-function. [tex59]

• H-theorem and entropy. [tln41]



• Boltzmann’s H-function simulated. [tsl27]

• Maxwell distribution derived from minimizing the H-function. [tex60]

• Doppler broadening of atomic spectral lines. [tex63]

8. Kinetic Theory II

• Ideal gas atoms escaping from a container. [tex62]

• Toward thermal equilibrium via particle transfer. [tex64]

• Isotope separation via diffusion. [tex65]

• Kinematic pressure and interaction pressure. [tln42]

• Interaction pressure produced by Gaussian interparticle potential.
[tex66]

• Kinetic forces and mobility. [tln43]

• Average force of particle beam on heavy hard sphere. [tex68]

• Mobility of a hard sphere in a dilute gas. [tex69]

• Collision rate and mean free path. [tln44]

• Collision rate in classical ideal gas. [tex70]

• Mean free path of particle in classical ideal gas. [tex71]

• Rate of chemical reaction A + A→ A2 in gas phase. [tex67]

• Effect of escaping particles on temperature of 1D ideal gas. [tex72]

9. Microcanonical Ensemble

• Classical Hamiltonian system. [tln45]

• Classical Liouville operator. [tln46]

• Quantum Liouville operator. [tln47]

• Gibbs entropy. [tln48]

• Microcanonical ensemble. [tln49]

• Classical ideal gas (microcanonical ensemble). [tex73]

• Array of classical harmonic oscillators (microcanonical ensemble).
[tex74]

• Quantum harmonic oscillators (microcanocal ensemble I). [tex75]



• Quantum harmonic oscillators (microcanocal ensemble II). [tex126]

• Quantum paramagnet (microcanonical ensemble). [tex127]

• Entropy of mixing revisited. [tln50]

10. Canonical Ensemble I

• Canonical ensemble. [tln51]

• Classical ideal gas (canonical ensemble). [tex76]

• Ultrarelativistic classical ideal gas (canonical idela gas). [tex77]

• Ultrarelativistic classical ideal gas in two dimensions. [tex154]

• Array of classical harmonic oscillators (canonical ensemble). [tex78]

• Irreversible decompression. [tex136]

• Irreversible heat exchange. [tex137]

• Reversible decompression. [tex139]

• Reversible heat exchange. [tex140]

• Heavy piston. [tex141]

• Ensemble averages. [tln52]

• Classical virial theorem. [tln83]

• Systems of noninteracting particles. [tln54]

• Further ensemble averages. [tln55]

• Classical ideal gas in a uniform gravitational field. [tex79]

• Gas pressure and density inside centrifuge. [tex135]

• Relative momentum of two ideal gas particles. [tex80]

• Partition function and density of states. [tln56]

• Ideal gas partition function and density of states. [tex81]

• Vibrational heat capacities of solids. [tln57]

• Array of quantum harmonic oscillators (canonical ensemble). [tex82]

• Vibrational heat capacities of solids (Debye theory). [tsl29]

• Thermodynamic perturbation expansion. [tln80]

• Vibrational heat capacity of a solid. [tex83]



• Anharmonic oscillator and thermodynamic perturbation. [tex104]

11. Canonical Ensemble II

• Paramagnetism. [tln58]

• Paramagnetic salts. [tsl30]

• Fluctuations in a magnetic system. [tln53]

• Fluctuations in a magnetic system. [tex109]

• Classical paramagnet (canonical ensemble). [tex84]

• Quantum paramagnet (two-level system). [tex85]

• Quantum paramagnet (Brillouin function). [tex86]

• Ising trimer. [tex142]

• Negative temperatures. [tsl31]

• Gases with internal degrees of freedom. [tln59]

• Classical rotational free energy of NH3 gas. [tex87]

• Classical rotational entropy of HCl and N2 gas. [tex88]

• Quantum rotational heat capacity of a gas at low temperature.
[tex89]

• Quantum rotational heat capacity of a gas at high temperature.
[tex90]

• Rotational and vibrational heat capacities. [tsl32]

• Orthohydrogen and parahydrogen. [tln81]

• Relativistic classical ideal gas (canonical partition function). [tex91]

• Relativistic classical ideal gas (entropy and internal energy). [tex92]

• Relativistic classical ideal gas (heat capacity). [tex93]

• Relativistic classical ideal gas (heat capacity). [tsl34]

12. Grandcanonical Ensemble

• Grandcanonical ensemble. [tln60]

• Classical ideal gas (grandcanonical ensemble). [tex94]

• Density fluctuations and compressibility. [tln61]



• Density fluctuations in the grand canonical ensemble. [tex95]

• Density fluctuations and compressibility in the classical ideal gas.
[tex96]

• Energy fluctuations and thermal response functions. [tex103]

• Microscopic states of quantum ideal gases. [tln62]

• Partition function of quantum ideal gases. [tln63]

• Ideal quantum gases: grand potential and thermal averages. [tln64]

• Ideal quantum gases: average level occupancies. [tsl35]

• Occupation number fluctuations. [tex110]

• Density of energy levels for ideal quantum gas. [tex111]

• Maxwell-Boltzmann gas in D dimensions. [tex112]

13. Ideal Quantum Gases I: Bosons

• Bose-Einstein functions. [tsl36]

• Ideal Bose-Einstein gas: equation of state and internal energy.
[tln67]

• BE gas in D dimensions I: fundamental relations. [tex113]

• Reference values for T , V/N , and p. [tln71]

• Bose-Einstein condensation. [tsl38]

• Ideal Bose-Einstein gas: isochores. [tsl39]

• BE gas in D dimensions II: isochore. [tex114]

• BE gas in D dimensions III: isotherm and isobar. [tex115]

• Bose-Einstein gas: isotherms. [tsl40]

• Bose-Einstein gas: isobars. [tsl48]

• Bose-Einstein gas: phase diagram. [tln72]

• Bose-Einstein heat capacity. [tsl41]

• BE gas in D dimensions IV: heat capacity at high temperature.
[tex97]

• BE gas in D dimensions V: heat capacity at low temperature.
[tex116]



• BE gas in D dimensions VI: isothermal compressibility. [tex128]

• BE gas in D dimensions VII: isobaric expansivity. [tex129]

• BE gas in D dimensions VIII: speed of sound. [tex130]

• Ultrarelativistic Bose-Einstein gas. [tex98]

• Blackbody radiation. [tln68]

• Statistical mechanics of blackbody radiation. [tex105]

14. Ideal Quantum Gases II: Fermions

• Fermi-Dirac functions. [tsl42]

• Ideal Fermi-Dirac gas: equation of state and internal energy. [tln69]

• Ideal Fermi-Dirac gas: chemical potentia.l [tsl43]

• FD gas in D dimensions: chemical potential I. [tex117]

• FD gas in D dimensions: chemical potential II. [tex118]

• Ideal Fermi-dirac gas: average level occupancy. [tsl44]

• Ideal Fermi-Dirac gas: isochores I. [tsl46]

• FD gas in D dimensions: statistical interaction pressure. [tex119]

• Ideal Fermi-Dirac gas: isotherms. [tln70]

• FD gas in D dimensions: isotherm and adiabate. [tex120]

• FD gas in D dimensions: ground-state energy. [tex102]

• Ideal Fermi-Dirac gas: heat capacity. [tsl45]

• FD gas in D dimensions: heat capacity at high temperature.
[tex100]

• FD gas in D dimensions: heat capacity at low temperature. [tex101]

• Ideal Fermi-Dirac gas: isochores II. [tln73]

• Ideal Fermi-Dirac gas: phase diagram in infinite dimensions. [tln74]

• Stable white dwarf. [tex121]

• Unstable white dwarf. [tex122]



Contents of this Document [ttc1]

1. Equilibrium Thermodynamics I: Introduction

• Table of contents (entire course) [ttc]

• Thermodynamics overview. [tln2]

• Preliminary list of state variables. [tln1]

• Physical constants. [tsl47]

• Equations of state. [tln78]

• Equation of state for ideal gas and real fluid. [tsl12]

• Classification of thermodynamic systems. Laws of thermodynamics.
[tln10]

• Thermodynamic processes (irreversible, quasi-static, adiabatic). [tln79]

• Fast heat. [tex143]

• Expansion and compression of nitrogen gas. [tex144]

• Bathtub icebreaker. [tex145]

• Exact differentials. Applications to internal energy and entropy. [tln14]

• Exact and inexact differentials I. [tex5]

• Exact and inexact differentials II. [tex146]



equilibrium state

and open systems
isolated, closed,

quasi−static
processes

reversible changes
irreversible and

first law:energy second law: entropy

Gibbs−Duhem equation

grandcanonical
ensemble

microcanonical
ensemble

canonical 
ensemble

Legendre transforms

equations of state

phase coexistence,
phase transitions

differentials
exact and inexact

homogeneous functions

(first derivatives)
thermodynamic functions Maxwell relations

stability conditions

Thermodynamics overview [tln2]

gateway to equilibrium
statistical mechanics

response functions
(second derivatives)

intensive variables
extensive and state variables

thermodynamics
laws of

thermodynamic
potentials

of thermodynamics
fundamental equation

thermodynamic
limit



Preliminary list of state variables [tln1]

Thermodynamic functions

X: generic extensive variable
V : volume
S: entropy
M : magnetization
N : number of particles
n: number of moles

Y : generic intensive variable
p: pressure
T : temperature
H: magnetic field
µ: chemical potential
µ̄: chemical potential

Thermodynamic potentials

U : internal energy
E: enthalpy
A: Helmholtz free energy
G: Gibbs free energy
Ω: grand potential

Thermodynamic response functions

CV : isochoric heat capacity
Cp: isobaric heat capacity
χT : isothermal susceptibility
χS: adiabatic susceptibility

cV : isochoric specific heat
cp: isobaric specific heat

κT : isothermal compressibility
κS: adiabatic compressibility
αp: thermal expansivity



Physical Constants [tsl47]

[A. H. Carter 2001]



Equations of state [tln78]

The empirical specification of a thermodynamic system is traditionally ex-
pressed in the form of two kinds of equations of state.

• Thermodynamic equation of state:
Functional relation between thermodynamic variables.
For example: pV = nRT (classical ideal gas).

• Caloric equation of state:
Temperature dependence of internal energy or heat capacity.
For example: U = CV T with CV = const (classical ideal gas).

The complete thermodynamic information about a system is encoded in this
dual specification. In more complex systems the thermodynamic equation of
state consists of multiple relations.

The most concise way of encoding the complete specification of a thermo-
dynamic system is in the form of a thermodynamic potential. All thermo-
dynamic quantities of interest about a given system can directly be derived
from a thermodynamic potential.

Strategies commonly pursued:

• Equilibrium thermodynamics:
Construct a thermodynamic potential from the empirical information
contained in the thermodynamic and caloric equations of state. Then
derive any thermodynamic quantity of interest from the thermody-
namic potential.

• Equilibrium statistical mechanics:
Derive a thermodynamic potential (or partition function) from the mi-
croscopic specification of the system in the form of a many-body Hamil-
tonian. Then derive any thermodynamic quantity of interest from the
thermodynamic potential.



Equations of state for ideal gas and real fluid [tsl12]

classical ideal gas

argon

[from Kubo: Thermodynamics]



Classification of thermodynamic systems [tln10]

Criterion: Thermodynamic contact.

1. Mechanical interaction (with work source).
Exchange of energy via work performance.

2. Thermal interaction (with heat reservoir).
Exchange of energy via heat transfer.

3. Mass interaction (with particle reservoir).
Exchange of energy via matter transfer.

Isolated system: contact 1.
Closed system: contacts 1, 2.
Open system: contacts 1, 2, 3.

Laws of thermodynamics

Zeroth law: Two systems, each in thermal equilibrium with a third system,
are in thermal equilibrium with each other.

• Prerequisite for measurement of thermodynamic properties.

• Thermal equilibrium implies uniform temperature.

• Mechanical equilibrium implies uniform pressure.

• Chemical equilibrium implies uniform chemical potential.

First Law: Energy is conserved.

• Internal energy U is a state variable.

• Heat and work are not state variables.

Second Law: Heat flows spontaneously from high to low temperatures.

• Entropy S is a state variable.

• Efficiency of heat engines.

• Reversibility and irreversibility.

• Definition of absolute temperature T .

Third Law: ∆S → 0 as T → 0 for any process.

• No cooling to T = 0 in a finite number of steps.



Thermodynamic processes [tln79]

The study of equilibrium thermodynamics cannot do without processes that
connect equilibrium states. Processes necessarily disturb the equilibrium.

Generic process:

• During a generic process between equilibrium states some of the ther-
modynamic variables may not be defined.

• Information about changes in all thermodynamic variables during a
generic process can be obtained if we connect the same initial and final
equilibrium states by a quasi-static process.

Quasi-static process:

• A quasi-static process involves infinitesimal steps between equilibrium
states along a definite path in the space of state variables.

• The equations of state remain satisfied as the thermodynamic variables
change during a quasi-static process.

Adiabatic process:

• During an adiabatic process the system is thermally isolated. There is
no heat transfer. Changes are caused by work performance.

• An adiabatic process must not be too fast in order not to produce
entropy within the system.

• In some practical applications, an adiabatic process must not be too
slow in order to prevent significant heat exchange between the system
and the environment.

Reversible and irreversible processes:

• In an isolated system the entropy (to be defined) stays constant during
a reversible process and increases during an irreversible process.

• Quasi-static processes can be reversible or irreversible.



[tex143] Fast heat

A lead bullet of 20g mass traveling at 784mph is being lodged into a block of wood.
(a) How many calories of heat are generated in the process?
(b) If half that heat goes into the bullet, what rise in temperature will it experience?

Solution:



[tex144] Expansion and compression of nitrogen gas

One mol of N2 at 25◦C undergoes isothermal expansion from 1.0bar to 0.132bar pressure.
(a) How much work does the gas perform during expansion?
(b) If the gas is then adiabatically compressed by the same amount of work, what will be its final
temperature?
Assume that both processes are quasistatic.

Solution:



[tex145] Bathtub icebreaker

How long does it take a heater coil operating at 500W to melt 1kg of ice initially at 0◦F?

Solution:



Exact differentials [tln14]

Total differential of a function F (x1, x2): dF =
∂F

∂x1

dx1 +
∂F

∂x2

dx2.

The differential dF = c1(x1, x2)dx1 + c2(x1, x2)dx2 is exact if dF is the total
differential of a function F (x1, x2).

Condition:
∂2F

∂x1∂x2

=
∂2F

∂x2∂x1

⇒ ∂c1

∂x2

=
∂c2

∂x1

.

Consequences:

∫ (b1,b2)

(a1,a2)

dF = F (b1, b2)− F (a1, a2),

∮
dF = 0.

Internal energy U

U is a state variable.
∮

dU = 0 for reversible cyclic processes.

dU = δQ + δW + δZ = TdS + Y dX + µdN is an exact differential.

δQ = TdS: heat transfer
δW = Y dX: work performance (−pdV + HdM + . . .)
δZ = µdN : matter transfer

Entropy S

Carnot cycle:
|∆QL|
∆QH

=
TL

TH

⇒ ∆QL

TL

+
∆QH

TH

= 0.

Any reversible cyclic process is equivalent to an array of Carnot cycles run-
ning in parallel.

⇒
∮

δQ

T
≡

∮
dS = 0 for reversible cyclic processes.

S is a state variable.

Irreversible process:

η = 1− |∆QL|
∆QH

< 1− TL

TH

⇒ |∆QL|
∆QH

>
TL

TH

⇒ ∆QL

TL

+
∆QH

TH

< 0.

More general cyclic process:

∮
δQ

T
< 0,

∮
dS = 0 ⇒ dS >

δQ

T
.

Irreversible process in isolated system: δQ = 0 ⇒ dS > 0.



[tex5] Exact and inexact differentials I

(a) Show that the differential dF1 = xydx + x2dy is inexact. Determine the value of the integral∮
dF1 along the closed path shown.

(b) Show that dF2 = (2y2−3x)dx+4xydy is an exact differential. Determine the function F2(x, y).

3

y

x
310

1

Solution:



[tex146] Exact and inexact differentials II

(a) Show that the differential dF1 = (x+y)dx+ydy is inexact. Determine the value of the integral∮
dF1 along the circular path shown in counterclockwise direction.

(b) Show that dF2 = (x + y)dx + xdy is an exact differential. Determine the function F2(x, y).

x
x

y

y

0

r0

0

Solution:
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