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ABSTRACT 9	  

In this paper, we present a systematic evaluation of the effects of local clays and the 10	  

manufacturing process on the performance of ceramic water filters (CWFs) impregnated with 11	  

silver compounds, which are used for point-of-use water treatment in developing countries.  12	  

Mineral composition, silver sorption/desorption, and strength are the important characteristics 13	  

that influence effectiveness and durability of CWFs during transport and use.  Laboratory tests 14	  

were conducted on ceramic samples obtained from five CWF factories around the world to 15	  

determine their mineral composition, silver sorption/desorption, and flexural strength.  The 16	  

results of this study showed that clays that contain traces of crystalline albite or crystalline 17	  

pyroxene have better sorption of silver species than those that do not.  The results showed that 18	  

the Freundlich model provided the best fit for both ionic silver and silver nanoparticles for all of 19	  

the ceramic materials that were tested.  Thus, this model can be used to optimize the 20	  

manufacturing process and the application of silver.  Silver nanoparticles were desorbed more 21	  

slowly than ionic silver, so they last longer in the ceramic material.  Water that contains a high 22	  

concentration of divalent ions is not recommended for preparing solutions of silver nanoparticles 23	  

due to aggregation of the particles, which limits their sorption by the ceramic materials.  In this 24	  

study, the mineralogy of the source materials was found to have the most significant influence on 25	  

the strength of ceramic filters.   26	  
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 28	  

1. INTRODUCTION  29	  
 30	  

Ceramic water filters (CWFs) impregnated with silver nanoparticles were developed in 31	  

Guatemala by Dr. Fernando Mazariegos with the support of the World Bank and the Inter-32	  

American Bank.  Dr. Mazariegos’ work involved the evaluation of ten models of low-cost, 33	  

domestic water filters.  In response to Hurricane Mitch in 1999, Potters for Peace used CWFs as 34	  

a sustainable water treatment technology in Nicaragua [1].  At present, there are more than 30 35	  

established ceramic filter manufacturing facilities in 20 countries that produce about 40,000 36	  

filters per month [1].  These silver-impregnated CWFs are easy to use, requiring little training for 37	  

the users, and they are produced locally and require no additional chemicals for operation.  38	  

Ceramic filters are manufactured by pressing and firing a mixture of clay and a 39	  

combustible material, such as flour, rice husks, or sawdust, prior to treatment with silver 40	  

nanoparticles. The filters are formed using a filter press, after which they are air-dried and fired 41	  

in a flat-top kiln, in which the temperature in increased gradually to about 900 ˚C over an eight-42	  

hour period.  This forms the ceramic material and combusts the sawdust, flour, or rice husks in 43	  

the filters, making it porous and permeable to water [1].  After firing, the filters are cooled and 44	  

impregnated with a silver solution (either silver nanoparticles or silver nitrate) by painting it onto 45	  

the filters or dipping the filters in a bath of the solution. It has been demonstrated that the silver 46	  

solution adds disinfectant properties to the CWF, thereby decreasing the bacteria concentration 47	  

and increasing the quality of the water.   48	  

Ionic silver and silver nanoparticles are used extensively for their medicinal and 49	  

disinfectant properties [2-7]. It has been demonstrated that silver ions produce reactive oxygen 50	  

species (ROS) by proxy [8], prevent the replication of DNA, and affect the permeability and 51	  



3	  
	  

structure of the cell membrane [9]. Similarly, silver nanoparticles have different anti-microbial 52	  

mechanisms, including (i) interactions with the surface of the cell membrane, creating “pits” and 53	  

affecting permeability, (ii) the release silver ions that penetrate the cell and interrupt the 54	  

replication of DNA, and (iii) the production of ROS.  55	  

Both silver salts and nanoparticles are added to CWFs in three different ways, i.e., by 56	  

painting them onto the filter, dipping the filter in a silver solution, and mixing the silver with 57	  

clay, sawdust, and water in a powder form.  One survey found that 33% of the factories painted 58	  

the silver solution onto the CWFs, 56% dipped the CWFs into the silver solution, and the 59	  

remaining 11% mixed the silver in powdered form with clay and sawdust [1]. About 83% of 60	  

factories used silver nanoparticles, and 17% used silver nitrate [1]. 61	  

Previous studies of CWFs showed that increasing the concentration of silver added to the 62	  

CWFs increased the removal of pathogens  [10-12]. The current average amount of silver added 63	  

to CWFs is about 0.003 mg Ag/g ceramic. No study has assessed the possibility of obtaining a 64	  

higher sorption of silver species by the ceramic material while minimizing desorption. The rate 65	  

of desorption of silver from CWFs has been determined in field and laboratory studies [12, 13], 66	  

but no studies have been performed to evaluate the influence of the type of clay, accessory 67	  

minerals, and the concentration of silver added to the ceramic materials. 68	  

The strength of CWFs also is an important factor because it is related to the durability of 69	  

the filters during transport and use. CWFs are unreinforced, so the strength of the filters depends 70	  

largely on the tensile strength of the ceramic material used to make the filter. Recent studies by 71	  

Plapally et al. [14] indicated that clay mineralogy and the combustible material (e.g., sawdust 72	  

and rice husks) used in manufacturing CWFs affect the pore distribution and hence the strength 73	  

of the ceramic materials. In this study, we performed a fracture toughness test on single-edged, 74	  
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notched, bend specimens from different sections of CWFs that were manufactured under 75	  

controlled conditions in the laboratory. The roles of process variables, such as the ratio of clay to 76	  

combustible material, the firing program, and the way the materials are handled during the 77	  

manufacturing process, are still somewhat uncertain.  78	  

 The objective of this study was to investigate the influence of local clay materials 79	  

and the manufacturing process on silver sorption/desorption and the strength characteristics of 80	  

CWFs. The specific hypothesis to be tested is that the silver sorption capacity and strength 81	  

properties of CWFs can be predicted based on the distribution of the minerals in the clay used to 82	  

make the CWFs.  83	  

2. TESTING PROCEDURES 84	  
 85	  

Ceramic samples were obtained from CWF factories located in the United States (A), 86	  

Guatemala (B), Ghana (C), Peru (D), and Nicaragua (E).  These samples were representative of a 87	  

wide variety of clay types and manufacturing methods.  None of the CWFs had silver added to 88	  

them during the manufacturing process.  89	  

2.1. Bulk Mineralogy and Chemistry 90	  

The ceramic samples were pulverized using a porcelain mortar and pestle, and the 91	  

pulverized material was passed through a 150-micron sieve and placed in the sample cell of a 92	  

Terra X-ray diffraction and fluorescence unit manufactured by InXitu, Inc. Samples were 93	  

analyzed for at least 50 exposures to the X-ray. Dominant XRD peaks were compared with 94	  

standard reference profiles for known minerals using XPowder software 95	  

(http://www.xpowder.com/). Bulk chemistry data, collected during the same analysis, yielded 96	  

low-resolution detection of the selected metals.  97	  
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2.2. Porosity 98	  

Porosity is defined as the ratio of the volume of voids (Vv) to the total volume (Vt). Thus, 99	  

it is a measure of the void space in a material. The ceramic materials were dried at 105 °C until 100	  

they reached a constant weight.  This weight was recorded as Wo, and then the ceramic materials 101	  

were immersed in water for 24 h. Then they were weighed again, and this weight was recorded 102	  

as Wf.  With the voids still full of water, the ceramic materials were covered in parafilm and 103	  

placed in a graduated cylinder with a known volume of water, recorded as Vo.  Then, the final 104	  

volume of water after the addition of the ceramic material was recorded as Vf.  The porosity (n) 105	  

was determined using the following equation:   106	  

  (1) 107	  

 108	  

2.3. Sorption/Desorption of Silver Species 109	  

Silver nanoparticles were obtained from Laboratorios Argenol SL in Spain (Collargol 110	  

70.37% silver content).  The nanoparticles manufactured by Laboratorios Argenol were 111	  

synthesized by irradiation techniques and stabilized using casein. This is the most common 112	  

source of silver nanoparticles used by CWF factories.  Ionic silver was obtained in the form of 113	  

silver nitrate (AgNO3) from Sigma-Aldrich (> 99.999% purity).  114	  

Concentrations of ionic silver were determined using a Thermo-Scientific Orion 115	  

9616BNWP ion-Plus Sure-Flow Silver/Sulfide probe. The concentration of silver nanoparticles 116	  

in solution was obtained using ICP-OES (X series, Thermo Elemental); with this method, we are 117	  

able to detect the total silver in solution, i.e., the combination of silver nanoparticles and ionic 118	  

silver.  119	  

n(%) = Vv
Vt
=
Wf −W0( )
Vf −V0( )

×100
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The experiments were conducted at similar conditions of ionic strength (I) using 0.00147 120	  

I of KNO3 (1.9 mM KNO3) and 0.00147 I of Ca(NO3)2 (0.48 mM Ca(NO3)2), which represented 121	  

monovalent and divalent electrolytes, respectively. A dynamic light scattering (DLS) system was 122	  

used to determine the sizes and distributions of the particles in the different electrolyte solutions 123	  

that were prepared. Malvern Zetasizer Nanoseries ZS90 was used to determine the zeta potential 124	  

of the silver nanoparticles at the different water chemistry conditions used in the experiments. 125	  

The characterization methodologies were described by the authors of previously-published work 126	  

[7, 15]. 127	  

Batch sorption experiments for each silver specie on each of the five CWF materials using 128	  

either monovalent or divalent electrolyte solutions, were performed by combining the sorbent, 129	  

the aqueous silver solution, and organic-free, deionized (DI) water in 15-mL polypropylene 130	  

tubes.  The mass of sorbent (ceramic material) used in each isotherm experiment was 5 g with a 131	  

total sample volume of 1 cm3. The aqueous silver solutions were prepared at concentrations of 10 132	  

g/L Ag+ (AgNO3) and 4.0 g/L Ag0.  These concentrations and sorbent masses were used to 133	  

ensure that 30% to 90% of the silver species were sorbed at equilibrium.  The aqueous silver 134	  

solution was mixed with DI water prior to contacting the ceramic materials at different ratios. 135	  

Tubes containing the diluted silver solution and no ceramic were also included in the experiment 136	  

and analyzed to determine the losses due to contact with the tubes or caps.  No significant losses 137	  

were measured, and recovery in all tubes was determined to be greater than 98%.  The difference 138	  

between the initial and final (equilibrium) mass of silver in the aqueous phase was considered to 139	  

be equal to that sorbed by the solid phase.  140	  

The data were fitted by two well-known models, i.e., the Langmuir and Freundlich 141	  

models. The Langmuir adsorption isotherm was used to describe the equilibrium between the 142	  
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surface and the solution as a reversible chemical equilibrium between species.  The surface of the 143	  

adsorbent was made up of fixed individual sites at which molecules of the adsorbate could be 144	  

chemically bound.  We assumed that the reaction had a fixed free energy change for all sites and 145	  

that each site was capable of binding, at most, one molecule of adsorbate.  This assumes, at most, 146	  

a monolayer of adsorbate on the adsorbent.  (35)  147	  

To model the Langmuir Isotherm, the data were plotted as !!
!!

 versus 𝐶!, which resulted in 148	  

a straight line with a slope of !
!!

 and an intercept of   !
!!∙!!

.  Linear regression was used to 149	  

determine the best fit parameters and the Langmuir regression parameters, 𝑄! and 𝑏!,where  𝑄! 150	  

is the maximum adsorbent-phase concentration of sorbate when the surface sites are saturated 151	  

with sorbate, !"  !"#$%&'
!  !"#$%&'

, and  𝑏! is the Langmuir adsorption constant of the sorbate, !
!"

.   152	  

!!
!!
= !

!!∙!!
+ !!

!!
  (2) 153	  

 154	  

The Freundlich adsorption isotherm was used to describe the data for heterogeneous 155	  

adsorbents, such as activated carbon.  Heterogeneous adsorbents often have varying site energies 156	  

and are best described using the Freundlich isotherm. The Freundlich Sorption Equilibrium 157	  

Model was derived as an empirical equation.  It describes the equilibrium for heterogeneous 158	  

sorbents and is the most frequently-used isotherm for activated carbon.   To model the 159	  

Freundlich isotherm, the data were plotted as log  (𝑞!) versus log  (𝐶!), using an equation that 160	  

results in a straight line with a slope of !
!
 and an intercept of log 𝐾 .The  term   !

!
 is the 161	  

Freundlich sorption intensity parameter (unitless).  K is the Freundlich sorption 162	  

capacityparameter, !"
!

∙ !
!"

!
! . 163	  
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log 𝑞! = log 𝐾 +    !
!
∙ log  (𝐶!)  (3) 164	  

Desorption experiments were conducted to determine the amount of sorbate (silver 165	  

species) that was desorbed from the sorbent (ceramic materials). After the sorption experiments, 166	  

the ceramic materials were dried in an oven at 25 °C for 24 h.  This temperature was chosen to 167	  

simulate the incubator temperatures for both sorption and desorption agitating and the 168	  

temperature of the drying process used at the filter manufacturing factories.  Then, the ceramics 169	  

were immersed in a vial that contained a background solution with the same background ions as 170	  

the sorption experiment.  The vials were rotated in a rotating tumbler for 24 h at 25 rpm at 25 °C.  171	  

Equilibrium concentrations were measured at the completion of this period.  Following this, the 172	  

ceramic materials were removed from the vials and dried in an oven at 25 °C for 24 h. This 173	  

procedure was performed twice for each sample of ceramic material.  174	  

2.4. Strength 175	  

Flexural strength was determined using the three-point bending test (ASTM C1161-02c) 176	  

that is commonly used in testing high-strength ceramic materials. A band saw was used to cut 177	  

small beams from pieces of the CWFs, and the tests were performed on these small beams. It 178	  

was only possible to perform the test on ceramic materials A, B, and E due to the lack of 179	  

appropriate materials shipped from the other factories. It was not feasible to obtain specimens 180	  

that had dimensions that were in exact accordance with ASTM specifications. Thus, for this 181	  

study, the height and length of the beams were 1 and 4.5 cm, respectively. The depth of the 182	  

beams was established by the wall thickness of the CWFs (which ranged from 1.5 to 2 cm), so 183	  

trimming was done only to obtain the necessary width and length. Therefore, trimming did not 184	  

influence the top or bottom surfaces of the beam, because any changes in these surfaces could 185	  

have affected the strength of the beam. Figure 1 shows the three different orientations of the 186	  
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beams that were cut from the sides of the CWFs. The different orientations were used to 187	  

investigate possible strength anisotropy in the ceramic material associated with the 188	  

manufacturing process. Specimens trimmed from the bottom of the CWFs were tested in the z-189	  

direction from the inside out.  190	  

The following equations were used to calculate flexural stress (σf) and flexural strain (εf), 191	  

respectively,[16]: 192	  

 193	  

 (4) 194	  

,
	    (5) 195	  

 196	  
where P is the load applied to the beam at midspan, L is the length of the span, w is the width of 197	  

the beam, d is the depth of the beam, and D is the displacement where P is located. The load was 198	  

applied at a constant displacement rate of 0.005 in/min using a Karol Warner Model 76 Load 199	  

Frame with a load cell that had a 50-lb capacity. Displacement was calculated by multiplying the 200	  

specified strain rate by the elapsed time. Equation 2 was used to determine the strength at the 201	  

maximum applied load. 202	  

 203	  
3. RESULTS  204	  

 205	  
3.1. Bulk mineralogy and geochemistry 206	  

Mineralogy and Geochemistry via simultaneous XRD/XRF 207	  

Ceramic samples from the United States (A), Guatemala (B), Ghana (C), Peru (D), and 208	  

Nicaragua (E) were analyzed under the same conditions. The ceramic sample from Nicaragua 209	  

was exceptional in its high background noise, indicating poor crystallinity, which was possibly 210	  

due to heavy erosion of the source material or additional milling of the ceramic components prior 211	  

σ f =
3PL
2wd 2

ε f =
6Dd
L2
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to assembling the CWFs. Overlapping mineral contents in the fired ceramic material showed that 212	  

all of the samples except the Nicaraguan samples, had a quartz-dominated matrix (Table 1). 213	  

Differing amounts of the smectite group of clays occurred in the samples from the U.S., 214	  

Guatemala, Peru, and, possibly, Nicaragua.  Illite was detected in the samples from Peru and 215	  

Nicaragua. Samples from Guatemala and Peru contained pyroxene grains, which are common in 216	  

mafic volcanic rocks. The samples from Peru and Nicaragua contained albitic grains, which are 217	  

commonly found in weathered volcanic terrains. The samples from Ghana were exceptional in 218	  

that they were essentially all quartz.  Note that the smectite group of clays has expandable 219	  

interlayer spaces, so the clays can accommodate interlayer water or large cations, according to 220	  

convention (Figure S1 in supplemental information).  221	  

3.2. Porosity  222	  

Porosity is the measure of interconnected voids in the ceramic material.  The maximum 223	  

porosity measured, i.e., 48%, was for the CWFs made in Ghana, and and the minimum porosity, 224	  

i.e., 40%, was measured for the CWFs made in the U.S. Table S1 (supplemental information) 225	  

shows the porosities that were measured for the ceramic materials used in the experiments.   226	  

Many studies have found that the range of porosity for CFWs manufactured in different 227	  

countries is between 35% and 44% [1]. Our results fell near the upper limit of the range. This 228	  

discrepancy with previous studies could be have been caused by the differences in the analytical 229	  

techniques used to determine porosity; we used a water intrusion method instead of the mercury 230	  

porosimetry that was used in other studies [13]. 231	  

3.3. Properties of the silver nanoparticles  232	  

Figure 2 shows the mean size of the nanoparticles as a function of the type of electrolyte 233	  

used.  As the calcium concentration increased, the mean size of the nanoparticle aggregates 234	  
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increased up to 500 nm.  When sodium was used as background ions, the largest size of the 235	  

aggregates was only 100 nm.  The influence of the background electrolytes on the aggregation 236	  

kinetics of silver nanoparticles was reported previously by several authors with similar results as 237	  

those obtained in this study [7, 15, 17-19]. The aggregation of the nanoparticles could limit the 238	  

penetration of the particles to pores smaller than the size of the aggregate, thereby reducing the 239	  

amount of silver taken up by the ceramic material. 240	  

The zeta potentials of the silver nanoparticles for Ca(NO3)2 and KNO3 water conditions 241	  

were -23.95 and -18.55 mV, respectively. The results implied that the nanoparticles were more 242	  

stable with 200 mg/L KNO3 as the background solution than they were in the solution that 243	  

contained Ca(NO3)2. All of the nanoparticles had negative zeta potentials.  244	  

3.4. Sorption of silver compounds 245	  

3.4.1. Silver Nanoparticles 246	  

Figure 3 shows isotherm results of the batch silver nanoparticles for all the ceramic 247	  

materials at the different conditions of water chemistry. The isotherm data fitted both the 248	  

Langmuir isotherm and the Freundlich isotherm for the sorption of the silver nanoparticles. The 249	  

best fit was chosen by the R2 values.  The Freundlich isotherm provided the best fit for the range 250	  

of concentrations of silver nanoparticles sorbed by the ceramic materials at all water-chemistry 251	  

conditions that were tested.  However, the R2 values were much higher when potassium nitrate 252	  

was used, indicating a much better fit than that for calcium nitrate.  Table 2 shows the fitting 253	  

parameters. From the fitting of the experimental results, it could be inferred that there was no 254	  

limit to the amount silver nanoparticles that can be sorbed by the ceramic materials, but, in 255	  

reality, we know that such a limit exists; we just could not determine what it was at the 256	  

experimental conditions used in this study.  257	  

 258	  
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3.4.2. Ionic Silver 259	  

Figure 4 shows the isotherms for all of the ceramic materials at the different water 260	  

chemistry conditions that were tested. Both Langmuir and Freundlich models fit the isotherm 261	  

data for silver ion sorption (data not shown).  However, the Freundlich fit produced higher R2 262	  

values than the Langmuir fit, so the former was selected as the better fit for the tested range of 263	  

concentrations of silver ions as sorbed by the ceramic materials in all water-chemistry cases.  264	  

There is one case for which the Freundlich model did not provide the better fit, i.e., l, ceramic 265	  

materials from Guatemala with a background solution of calcium nitrate.  However, the R2 266	  

values for both isotherm fits were greater than 0.9, indicating a good fit for both the Freundlich 267	  

and Langmuir models. Table 2 shows details of the parameters used to obtain the fits of the 268	  

Freundlich and Langmuir models.  269	  

3.5. Desorption 270	  

3.5.1. Silver Nanoparticles 271	  

Figure 5(a) shows the average desorption per ceramic material for the two solutions. The 272	  

highest desorption with KNO3 was for ceramic material from Ghana, which had an average 273	  

desorption of 0.41% ± 0.3%, and the lowest desorption was for the ceramic material from 274	  

Guatemala, with an average that was below our detection limit.  The highest desorption with 275	  

Ca(NO3)2 occurred in the ceramic material from Ghana, which had an average of 1.92% ± 276	  

1.02%, and the lowest desorption occurred in the ceramic material from Guatemala, which had 277	  

an average of 0.12% ± 0.09%. For all the ceramic materials tested, higher desorption values were 278	  

obtained when Ca(NO3)2 was used. This difference could have been caused by the particle size 279	  

of the aggregated nanoparticles. Large aggregates formed in the calcium solutions may not be 280	  

effectively trapped in the porous matrix of the ceramic material, so they may be desorbed easily. 281	  
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These results are relevant to the manufacture of CWFs in the different countries, since the water-282	  

chemistry conditions used to prepare the silver solution used to coat the CWFs in each location 283	  

could differ significantly. Factories that use groundwater, which usually has high concentrations 284	  

of divalent salts, to produce the nano-suspension of silver nanoparticles will produce CWFs that 285	  

release more silver nanoparticles to the treated water in comparison with factories that use 286	  

surface water with its low concentrations of divalent salts. 287	  

3.5.2. Ionic Silver 288	  

Figure 5(b) shows the total average desorption per ceramic material for the two water 289	  

quality conditions. The maximum desorption with KNO3 occurred with the ceramic material 290	  

from Nicaragua, with an average of 44.54% ± 27.57%, and the minimum occurred with the 291	  

ceramic material from Guatemala, with an average of 6.40% ± 4.18%.  The highest desorption 292	  

with Ca(NO3)2 occurred with the ceramic material from Ghana, with an average of 12.06% ± 293	  

6.30%, and the minimum occurred with the ceramic material from Guatemala, with an average 294	  

of 5.67% ± 2.73%. 295	  

3.6. Strength 296	  

Figure 6 shows typical stress-strain curves from the sides of three different sources in the 297	  

inside-out (+R) loading direction. As the figure shows, the stress-strain behavior is almost linear, 298	  

eventually reaching a brittle failure at strains between about 1% and 3%. The strengths 299	  

calculated from the flexural tests are summarized in Figure 7. 300	  

Independent of the loading direction, the ceramic material from Nicaragua had the 301	  

highest flexural strength (> 500 psi), and USA sample had the lowest (<150 psi). Ceramic 302	  

material from Guatemala was slightly weaker than that from Nicaragua. To investigate the 303	  

possible reasons for the difference in strength, the strengths in the +R direction were plotted 304	  
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versus effective porosity in Figure 8. As shown in the figure, the strength increases with an 305	  

increase in effective porosity, an unexpected behavior. A more porous material should have more 306	  

void space and thus have higher stresses in the ceramic matrix, resulting in a lower strength. 307	  

Therefore, the differences in strength are expected to be primarily due to differences in the 308	  

mineralogy of the clay, which could affect the bonding between particles. However, surface 309	  

imperfections induced by the manufacturing process may also have an effect.  310	  

The manufacturing process appears to produce a material that has the same strength on 311	  

the sides as it does on the bottom. This is shown by comparing the strengths measured from the 312	  

sides on the inside-out loading condition (+R) with the inside-out bottom strengths (Z). For 313	  

example, ceramic B showed 423 psi (sides) versus 440 psi (bottom), and sample E showed 528 314	  

psi (sides) versus 510 psi (bottom).  315	  

The orientation of the specimens on the sides had some effect on the measured strength, 316	  

suggesting minimal strength anisotropy. The effect was lowest in ceramic E which had a 317	  

maximum difference of 10 psi (2%) for an average strength of 524 psi. The anisotropy was more 318	  

pronounced in ceramic A, which had differences of 20 psi (23%) from the average strength of 319	  

132 psi. Also, the material appears to be the strongest when it is loaded from the outside-in (-R) 320	  

direction rather than the inside-out (+R) direction. However, this may be more attributable to the 321	  

curvature of the beam than to anisotropy. The -R loading direction has a beam that is concave 322	  

down (Figure 1), which produces more of an arch structure that would tend to result in more 323	  

compressive stresses than tensile stresses, making the material appear to be stronger. 324	  

 325	  

4. DISCUSSION 326	  
 327	  
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Quartz and smectite-group clay minerals were present in all of the ceramic materials 328	  

studied; chemical differences (not assessed here) in the smectite-group clay fraction may be 329	  

partially responsible for the different sorption behaviors. Ceramic materials from Guatemala and 330	  

Peru were able to sorb greater amounts of silver nanoparticles; these ceramic materials contain 331	  

accessory pyroxene (R2Si2O6, where R is an available cation, usually Mg2+, Fe2+, Ca2+, Al3+, Fe3+, 332	  

Ti3+, Mn3+, Na+, K+, or Li +), and they contain albitic plagioclase feldspar (NaAlSi3O8) [20], so 333	  

they may have an overall negative surface charge. This may concentrate protons or available 334	  

cations on the surfaces of the mineral, localizing a patchy, positive charge distribution that would 335	  

attract the moderately-negative silver nanoparticles.  There are several well-known examples of 336	  

surface charges existing on the surfaces of silicate minerals in response to pH-dependent ion 337	  

exchange and sorption processes, particularly when H+ and OH- interact with surficial ions [21]. 338	  

In the cases of pyroxene and albite, the negative charges that are fundamental to their silicate 339	  

structure are likely controlling sorption behavior. More generally, H+ and OH- sorption also has 340	  

been observed in the case of zeolite minerals [22], especially in albites  [23].  341	  

Regarding the silver nanoparticles used in this study, both their sizes and charges were 342	  

similar to those of citrate-capped nanoparticles, which are the nanoparticles that are most 343	  

commonly used in nanoproducts. In previous studies performed by one of the authors [15], it was 344	  

shown that casein-capped silver nanoparticles have greater stability the capping agents that have 345	  

lower molecular weights. It was also found that the dissolution of casein-capped nanoparticles 346	  

was below 0.5% of the total mass of silver added, so it was expected that the experimental 347	  

conditions used in this study would have resulted in a similar dissolution rate.  348	  

Ceramic materials from Ghana and the U.S. sorbed the least amount; these two materials 349	  

have simple mineral profiles, consisting of just quartz and smectite-group clays, respectively. 350	  
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The Nicaraguan ceramic material presented an intermediate case, i.e., sorption properties were 351	  

intermediate when compared to the high-sorption Guatemala/Peru group and the low-sorption 352	  

Ghana/U.S. group. XRD data for the Nicaraguan ceramic material suggest the presence of trace 353	  

albite and pyroxene a lower overall crystallinity, as observed in high background in the XRD 354	  

results.  When potassium nitrate was used as the background solution, high levels of sorption 355	  

occurred, the use of calcium nitrate as the background solution resulted in significantly less 356	  

sorption. The importance of the detection of albitic feldspar and pyroxene in the mineral profiles 357	  

of the ceramic materials that were tested may be as follows. First, the surfaces of natural mineral 358	  

grains are not regular; in fact, they are quite heterogeneous, with dissolution and reactivity of 359	  

surface phases dependent on their fine structures, including step and kink features [24]. Second, 360	  

feldspars are tectosilicate minerals with a three-dimensional array of linked SiO4 and AlO4 361	  

tetrahedra, with interstices that can host K, Na, Ca, or Ba in electroneutral arrangements [20]. 362	  

Pyroxenes are inosilicates (i.e., chain silicates) composed of linked SiO4 tetrahedra, each sharing 363	  

two O atoms with the neighboring tetrahedron. Available cations link the tetrahedral chains 364	  

together in pyroxenes, yielding a diverse cation (“R” in mineral formula above) budget for this 365	  

mineral, although, typically, it is dominated by Fe and Mg. R-O bonds typically are weaker than 366	  

Si-O bonds in silicate minerals, and natural specimens cleave along these weaker bond planes 367	  

(Huang, 1989); the resulting natural mixtures of pyroxene grains may have broken R-O bonds at 368	  

the edges, which may participate more readily in sorption. Indeed, cation exchange and 369	  

stoichiometric surface dissolution of pyroxene grains are well supported [25]. Although these 370	  

silicate minerals comprise only a small fraction of the total material, they may provide reactive 371	  

surfaces for the ionic and silver nanoparticles in experimental systems. 372	  
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When potassium nitrate was used as the background solution, the ceramic material from 373	  

Guatemala sorbed the most ionic silver (followed by Peru), and the ceramic material from 374	  

Nicaragua sorbed the least.  When calcium nitrate was used as the background solution, the 375	  

ceramic material from Guatemala sorbed the most ionic silver (followed by Peru), and the 376	  

ceramic material from Ghana sorbed the least.  Ceramic materials from Guatemala and Peru 377	  

contain silicate mineral components (pyroxene or albite), and we propose that these components 378	  

contributed to the greater sorption capacity of metal ions, as discussed above. These results 379	  

indicated that the mineralogy of the ceramic material and the water chemistry of the background 380	  

solutions are important variables to consider when predicting the sorption of ionic silver by 381	  

ceramic materials.   382	  

Steep slopes in the coefficient (or when 1/n is close to 1) indicated high adsorptive 383	  

capacity at high equilibrium concentrations, but it diminished rapidly at lower equilibrium 384	  

concentrations.  When the slope is relatively flat (or 1/n is much less than 1), it indicates that the 385	  

sorption capacity is not influenced significantly by lower equilibrium concentrations [26]. The 386	  

value of K can be taken as a relative indicator of the adsorptive capacity, and 1/n is indicative of 387	  

the energy or intensity of the reaction [27]. The Freundlich isotherm describes multilayer 388	  

adsorption, and it is not restricted to the formation of the monolayer, as is the Langmuir 389	  

isotherm.   390	  

Similarly, the model that fit the silver nanoparticles’ sorption isotherm indicated that 391	  

silver ions seem to exhibit a very high sorption capacity on the ceramic materials. The maximum 392	  

saturation threshold was not achieved at the experimental conditions used in this study. It was 393	  

impractical to attain the high concentration required to achieve the threshold in the case of silver 394	  

nitrate, and aggregation issues associated with the silver nanoparticles precluded achieving it in 395	  
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their case as well. It should be noticed that it was not possible to determine the composition of 396	  

the silver solution inside the pores of the ceramic materials at the end of the sorption test. 397	  

Therefore, it is possible that some silver still remained in solution (silver nitrate) or suspended 398	  

(silver nanoparticles) inside the pores and were not necessarily truly sorbed. The average pore 399	  

volume of the ceramic material was close to 0.5 cm3, and the mass of silver in the pore space 400	  

could be up to 5 mg at the highest equilibrium concentration obtained, indicating that less than 401	  

12% of the total silver was sorbed. 402	  

Transport of silver nanoparticles with similar physicochemical characteristics through 403	  

ceramic manufactured with industrial grade clay have been previously determine in continuous 404	  

systems [28].. This study showed that most of the desorption happen during the first 200min of 405	  

the test. In our batch mode experiments we observed that most of the detachment occurred 406	  

during the first desorption stage. 407	  

The desorption tests of silver compounds from the ceramic materials clearly showed the 408	  

advantage of the use of silver nanoparticles instead of silver ions as an anti-biofouling agent on 409	  

CWFs. Silver ions desorbed to an extent that was almost an order of magnitude greater than that 410	  

of the silver nanoparticles. This fact has two main implications, i.e., (i) large losses of chemicals 411	  

will occur if silver ions are used and (ii) more rinses will be required for CFWs impregnated with 412	  

silver ions in order to achieve the U.S. Environmental Protection Agency’s standard for silver in 413	  

drinking water of 0.1 mg/L [29]. It also should be noted that the oral reference dose for silver is 414	  

0.005 mg/kg/day, so high concentrations of silver in treated water would exceed this standard, 415	  

and this is especially of concern when one considers children under the age of five, who 416	  

comprise one of the most important target populations of this technology. 417	  

 418	  
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5. CONCLUSIONS 419	  
 420	  

 421	  
The composition of clay seems to play an important role in the sorption of silver species. 422	  

The ceramic materials that contained pyroxenes had better sorption of silver, resulting in 423	  

enhanced performance relative to the removal of pathogens from the water. Also, this finding 424	  

could allow local manufacturers of CWFs to improve the performance of their ceramic materials 425	  

by the addition of clays that are rich in pyroxenes.  426	  

The results showed that larger amounts of silver ions can be sorbed than silver 427	  

nanoparticles. However, the desorption of silver nanoparticles from the ceramic materials was 428	  

less than that of silver ions. Since it is known that silver is critical to the high performance of the 429	  

filter and that silver nanoparticles are desorbed to a lesser extent, they can be expected to have a 430	  

longer service life and to pose lower risks to the environment and human health.   431	  

Water chemistry is very important for preparing effective silver solutions during the 432	  

manufacturing process.  Water quality does not matter as much for ionic silver applications, but 433	  

it is important when silver nanoparticles are used. The nanoparticles did not sorb well with the 434	  

divalent calcium solution, so excessively hard water may not be appropriate for use in preparing 435	  

nanoparticle solutions for use in CWFs.   436	  

In this study, the factor that had the most significant influence on the strength of CWFs 437	  

was the region of manufacturing, and this was likely due to differences in the clay mineralogy of 438	  

the source materials. Potentially, the factor that ranked second relative to its influence on the 439	  

strength of CWFs was the part of the filter that was tested. The factor that had the least influence 440	  

on the strength of CWFs was the loading direction.  In fact, the highest strengths occurred when 441	  

the samples were loaded from the outside inward, suggesting that the pressing during the 442	  

manufacturing process did not induce significant anisotropy in the material. 443	  
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Figure 1. Orientation of beam specimens that were cut from the sides of the CWFs. 518	  
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 522	  
 523	  

 524	  

Figure 2. Evolution of the hydrodynamic diameter at increasing ionic strenght of 525	  

monovalent (KNO3; squares)  and divalent (Ca(NO3)2; triangles)   electrolytes solutions 526	  
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Figure 3. Silver nanoparticle sorption isotherms for ceramics (A) USA, (B) Guatemala, (C) 530	  

Ghana, (D) Peru and (E) Nicaragua at the water chemistry conditions (a) KNO3, and (b) 531	  

Ca(NO3)2  532	  

	   	  533	  
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Figure 4. Silver ions sorption isotherms for ceramics (A) USA, (B) Guatemala, (C) Ghana, 536	  

(D) Peru and (E) Nicaragua at the water chemistry conditions (a) KNO3, and (b) Ca(NO3)2 537	  
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 540	  

Figure 5. (a) Percentage of silver nanoparticle desorption and (b) percentage of ionic silver 541	  

desorption at different water chemistry conditions for ceramics from (A) USA, (B) 542	  

Guatemala, (C) Ghana, (D) Peru and (E) Nicaragua 543	  

	  544	  
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	  547	  

 548	  
Figure 6. Typical flexural test results from three CWF sources under the same loading 549	  

orientation (+R direction). (A) USA, (B) Guatemala, and (E) Nicaragua 550	  
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	   	  552	  
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	  553	  

 554	  
Figure 7. Summary of flexural strength test results for three CWF sources. The error bars 555	  
shown represent the minimum and maximum measured strength. (A) USA, (B) Guatemala, 556	  

and (E) Nicaragua. 557	  
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	  560	  

 561	  
Figure 8. Correlation between flexural strength and porosity for the +R loading 562	  

direction for three CWF sources. The error bars shown represent the minimum and 563	  
maximum values. (A) USA, (B) Guatemala, and (E) Nicaragua 564	  
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Tables	  597	  
	  598	  
	  599	  
Table 1. Summary table of bulk powder XRD and XRF results. All samples were analyzed under 600	  

identical conditions.   601	  

Sample provenance Bulk XRD Bulk XRF Additional notes 
USA Quartz, minor 16Å smectite 

group clay  
K, Ti, Cr Illite suggested by minor  peak at 

3.49 Å (small peak area, irregular 
boundary). 

Guatemala Quartz, pyroxene (likely 
derived from arc volcanics), 
minor 16Å smectite group clay 

Ca, Ti, Mn, Fe, 
Eu 

Abundant volcanic ash from 
nearby convergent margin 
magmatism along the western 
boundary of Central and South 
America is likely the precursor to 
clay units utilized in this ceramic. 

Ghana Essentially all quartz, minor 

16Å smectite group clay 

K, Ti, Cr, Fe Geologic units of this region of 
Northern Ghana include shales and 
sandstones of the Voltaian Group 
(Anani, 1999), leading to a quartz-
rich source with clays derived 
likely from sedimentary 
formations. 

Peru  Quartz, albite, possible illite, 
and minor 16Å smectite group 
clay 

K, Ca, Ti, Fe, 
possible Sn 

This clay source is also likely 
derived from volcanic ash. 

Nicaragua Quartz, albite,  illite-group clay, 
minor 16Å smectite group clay, 
and pyroxene.  

Ca, Ti, Cr, Mo, 
Fe, Mn, Eu, Pm 

High background suggests poorly 
crystalline matrix. This clay source 
is likely derived from volcanic ash. 
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	  612	  
Table	  2.	  Fitting	  parameters	  for	  all	  the	  experiments	  613	  

	   Sample	   Langmuir	   Freundlich	  

	  
QM	   bA	   R2	   n	   K	   R2	  

Ag0	  -‐	  Ca(NO3)2	  

A	   13.8	   0.4	   0.65	   1.791	   0.039	   0.78	  
B	   65.0	   0.3	   0.74	   2.136	   0.313	   0.79	  
C	   4.9	   0.8	   0.47	   0.966	   0.001	   0.87	  
D	   60.7	   0.2	   0.92	   1.955	   0.170	   0.83	  
F	   10.0	   1.8	   0.81	   1.165	   0.005	   0.98	  

Ag0-‐	  KNO3	  

A	   63.7	   6.6	   0.49	   1.059	   0.027	   0.99	  
B	   90.0	   0.6	   0.82	   1.548	   0.305	   0.97	  
C	   33.3	   23.3	   0.45	   1.010	   0.019	   0.99	  
D	   62.2	   1.0	   0.57	   1.346	   0.135	   0.96	  
F	   38.9	   14.5	   0.45	   1.035	   0.027	   0.99	  

Ag+-‐	  Ca(NO3)2	  

A	   74.8	   1.7	   0.56	   0.785	   0.001	   0.97	  
B	   570.6	   0.2	   0.99	   1.959	   1.131	   0.93	  
C	   39.1	   0.2	   0.43	   0.799	   0.001	   0.91	  
D	   102.8	   5.0	   0.41	   1.075	   0.032	   0.96	  
F	   40.1	   0.3	   0.32	   0.863	   0.003	   0.84	  

	  Ag+	  -‐	  KNO3	  

A	   4.4	   0.6	   0.90	   1.327	   0.034	   0.97	  
B	   11.4	   0.8	   0.94	   2.606	   2.416	   0.98	  
C	   36.8	   0.8	   0.45	   0.918	   0.004	   0.78	  
D	   143.1	   0.5	   0.94	   1.688	   0.228	   0.98	  
F	   12.0	   0.2	   0.42	   0.800	   0.000	   0.88	  
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