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In the present paper we identify a rigorous property of a number of tempering-based Monte Carlo
sampling methods, including parallel tempering as well as partial and infinite swapping. Based on
this property we develop a variety of performance measures for such rare-event sampling methods
that are broadly applicable, informative, and straightforward to implement. We illustrate the use of
these performance measures with a series of applications involving the equilibrium properties of
simple Lennard-Jones clusters, applications for which the performance levels of partial and infinite
swapping approaches are found to be higher than those of conventional parallel tempering. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4765060]

I. INTRODUCTION

Monte Carlo methods1–4 constitute an important and ver-
satile set of tools for the study of many-body systems. By
providing a refinable means for extracting macroscopic prop-
erties from specified microscopic force laws, such methods
permit the atomistic study of systems of realistic physical
complexity without the need for the introduction of uncon-
trollable approximations.

Although robust and general purpose, important prac-
tical issues can arise in the application of Monte Carlo
techniques.2–4 One such matter is the general problem of rare-
event sampling. In typical equilibrium applications, where
the relevant numerical task involves estimating averages of
interest over known probability distributions, the adequacy
of the sampling methods involved is an obvious and criti-
cal issue. If the probability distribution has a single, sim-
ply connected region of importance, ordinary random walk
sampling procedures1, 3–5 are generally adequate. If, however,
the distribution in question contains multiple, isolated regions
of importance, transitions between them can become infre-
quent (rare) when using conventional Metropolis-style meth-
ods rendering the associated property estimates unreliable.
Unfortunately, from a practical point of view, applications
in which such rare-event difficulties arise are themselves not
rare. They arise frequently, for example, in studies of activated
processes,6 applications of substantial importance in chemi-
cal, biological, and materials investigations.

A number of approaches have been devised in an ef-
fort to overcome rare-event sampling concerns. One of
the more widely used is the parallel tempering7, 8 (PT) or
replica exchange technique.9 As summarized in Ref. 6, this
method utilizes an expanded computational ensemble com-
posed of systems corresponding to a range of control pa-
rameters such as the temperature. The core idea is to make
use of information produced by one portion of the ensem-
ble (e.g., higher temperatures) to improve the sampling in

another (e.g., lower temperatures). The information transfer
needed to improve the sampling is generally accomplished
by augmenting conventional Metropolis-style particle dis-
placements with suitably designed “swaps” of coordi-
nates between ensemble temperatures. Strategies for the
selection of the ensemble temperatures10–14 as well as for the
frequency15, 16 and nature17–20 of the swap attempts have been
discussed.

Recently, a large deviation analysis of the performance
of parallel tempering has led to the development of a new
class of rare-event methods, the infinite swapping (INS)
approach.21, 22 In its most complete form the INS method can
be viewed as the extreme limit of parallel tempering in which
swaps involving all possible temperatures are attempted at
an infinitely rapid rate, a limit the large deviation analysis
demonstrates to be optimal. The infinitely rapid swaps in-
duce a Born-Oppenheimer like environment, one in which the
relevant distribution becomes a thermally symmetrized ana-
log of that used in conventional parallel tempering. Although
the computational requirements for the full INS method grow
rapidly with the number of temperatures involved, practical
methods that capture a substantial level of the performance
potential of the full approach while offering a significant
cost/performance increase relative to parallel tempering are
available. Details of these partial infinite swapping (PINS) ap-
proaches and their implementation are discussed in Refs. 21
and 22.

Performance measures are important tools in the develop-
ment and application of rare-event sampling methods. Such
measures are necessary, for example, for making decisions
concerning questions ranging from whether or not a par-
ticular method is “working” to those related to the relative
performance of alternative approaches or implementations.
Ideally, the measures in question should be informative,
straightforward to implement, and of sufficient generality
that their utility transcends specific systems or properties. In
practice, since approaches may differ with respect to these
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desirable features, having a variety of performance measures
available is useful.

One general strategy for approaching the discussion of
performance measures is to identify criteria that are plausi-
bly related to the functioning of the computational method
involved and to utilize those criteria to “optimize” the asso-
ciated simulation. In the case of the parallel tempering ap-
proach, for example, tempering swaps are at the core of the
method and are thus a reasonable focus for attention. Kofke
has posited that achieving a uniform acceptance probability
for such swap attempts across the computational ensemble
is a desirable goal, one that provides a means for selecting
ensemble temperatures.10, 23 In their work Predescu and co-
workers11, 12 have expanded this line of argument by linking
the acceptance probabilities involved to system heat capac-
ity information. A somewhat different approach, explored by
Katzgraber et al.,14 is based on the premise that in a paral-
lel tempering application it is the rate at which configurations
transit the computational ensemble that is of primary inter-
est. Applications have shown that the tempering ensembles
produced by the uniform acceptance and maximum rate ap-
proaches are in general not identical.

Rather than beginning with the identification of an opti-
mization criterion, another approach in the discussion of per-
formance measures is to identify a property (or properties)
inherent in the simulation method itself and to utilize the
presence/absence/rate of achievement of this property as a
performance measure. Neirotti et al.24 adopt such an “inher-
ent property” approach in their study of rare-event sampling.
Building upon earlier work by Thirumalai and co-workers,25

they utilize the decay of energy-related metrics to known lim-
iting values to monitor sampling.

In the present paper we explore the development and
application of occupation-based approaches for tempering-
based Monte Carlo methods. The outline of the paper is as
follows. We begin in Sec. II with an empirical observation
that points to a somewhat surprising property of parallel tem-
pering methods. After demonstrating the rigorous and general
nature of this result, we use the property involved to develop a
number of convenient performance diagnostics for both par-
allel tempering and PINS methods. In Sec. III we illustrate
the use of the resulting diagnostics for a number of numerical
examples of varying complexity that involve the equilibrium
properties of models of simple rare-gas clusters. Section IV
contains a summary and discussion of our results.

II. BACKGROUND AND AN OBSERVATION

We begin by considering a number of tempering inves-
tigations of a particular system, a Lennard-Jones model of
a 13 atom rare-gas cluster. In addition to providing a con-
crete framework for the present discussion, these simple clus-
ter simulations contain hints of features that prove useful in
the broader consideration of rare-event sampling. We find
it convenient to express the results with reference to a par-
ticular system (argon) thereby giving a physical context to
the observed features noting that computed properties for the
Lennard-Jones model are universal and can be expressed us-
ing reduced variables.

Occupation traces of the type introduced by Katzgraber
et al.14 are a convenient device for discussing tempering based
sampling methods. Such traces are a record of the temperature
associations for a particular coordinate set as it moves within
the tempering ensemble during the simulation. For parallel
tempering applications there are clear temperature-coordinate
associations at each step in the simulation. For infinite and
PINS swapping approaches, on the other hand, such explicit
associations are obscured by the symmetrization involved. Al-
though this makes the identification and construction of oc-
cupation traces for INS and PINS applications a somewhat
more subtle issue, a generalization of the basic parallel tem-
pering result proves both possible and practical. The key is to
base such a generalization on steps in the sampling process
for which the temperature-coordinate associations are unam-
biguous.

Sampling in the present work is based on the “dual-
chain” approach, a method that is described in detail in
Refs. 21 and 22. This technique involves partitioning the
ensemble temperatures into contiguous blocks in two dis-
tinct ways (dual chains). Although symmetrization in this ap-
proach is “partial” (i.e., occurs only within the various sepa-
rate temperature blocks), by suitably combining moves within
the individual chains with others that exchange information
between them it is possible to produce a sampling of the
fully symmetrized, infinite swapping distribution. Most im-
portantly, this sampling is accomplished without the factorial-
scale growth in computational effort that would be incurred
in a brute-force INS approach. The “hand-off” or transfer
of information between the two sampling chains is a critical
step in the dual-chain process. During such hand-offs explicit
temperature-coordinate associations are established, associa-
tions that provide a natural basis for the construction of INS
and PINS occupation traces and that are utilized for such tasks
in the present work.

Figure 1 shows a number of occupation traces obtained
from short, three-temperature simulations of the Ar13 clus-
ter. The traces displayed chronicle the progress of configu-
rations that are initially at the lowest of the three ensemble

FIG. 1. Occupation traces for three-temperature PT (top row) and PINS (bot-
tom row) simulations for Ar13. T1 = 30 K and T3 = 40 K for all simulations,
while T2 = 35 K for simulations in left column and 39 K for those in right
column.
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temperatures for a period of 1000 moves. Analogous traces
for configurations initially associated with either of the other
two ensemble temperatures could be similarly constructed.
The low and high-temperatures used in all simulations in
Fig. 1 are T1 = 30 K, T3 = 40 K, respectively, values cho-
sen to bracket the temperature of the Ar13 cluster’s heat ca-
pacity maximum (34 K).26 The intermediate temperature, T2,
varies being 35 K for the simulations in the left column of
Fig. 1 and 39 K for those in the right column. Results in the
top row of Fig. 1 correspond to PT simulations, while those
in the bottom row are analogous, three-temperature PINS re-
sults. Unless otherwise stated all numerical simulations in the
present work utilize the methods described in Appendix A
and in Refs. 21 and 22. The dual chains in the PINS simula-
tions have one chain with temperature blocks that consist of
T1 and T2–3 and another chain with blocks that consist of T1–2

and T3. We see in Fig. 1 that the movement of the system in
question throughout the computational ensemble is sensitive
to both ensemble choice (T2 value) and to sampling method
(PT or PINS).

Trebst et al.14, 27 have suggested that the number of sam-
pling moves required to traverse the computational ensemble
provides a convenient measure of sampling performance. This
idea is illustrated for the present application in Fig. 2 where
the average number of moves required for the system to make
a round trip across the various computational ensembles, 〈nrt〉,
is plotted as a function of the choice of the intermediate en-
semble temperature, T2, for the various methods. These re-
sults are obtained from occupation traces that contain a total
of 217 moves. As anticipated, there is a minimum in 〈nrt〉 val-
ues as a function of the choice of T2 for the various sampling
methods. The “optimal” T2 choice for this system (i.e., the
value that produces the most rapid traversal of the computa-
tional ensemble) is ∼35 K for both PT and PINS methods.
For a specified value of T2, on the other hand, we see in Fig. 2
that the movement across the computational ensemble is ap-
preciably more rapid with the INS and PINS methods than
with parallel tempering. For example, for T2 = 35 K the PT,
PINS, and INS 〈nrt〉 values are approximately 298.6, 61.2, and

FIG. 2. Plots of the average number of moves required for a round-trip transit
of the computational ensemble, 〈nrt〉 as function of T2, for extended versions
of the three-temperature Ar13 simulations of the type in Fig. 1.

TABLE I. Observed fractions of total moves (fn) spent at each of the en-
semble temperatures by two three-temperature Ar13 parallel tempering (PT)
and partial swapping (PINS) simulations. In both ensembles, T1 = 30 K and
T3 = 40 K, while in one ensemble T2 = 35 K and in the other T2 = 39 K.

Tn fn (PT) fn (PINS) Tn fn (PT) fn (PINS)

30 0.3314 0.3317 30 0.3342 0.3348
35 0.3330 0.3329 39 0.3334 0.3324
40 0.3356 0.3354 40 0.3324 0.3328

29.9, respectively. As an aside, the “flatter” nature of the INS
and PINS plots in Fig. 2 suggests that the performance of such
methods is more robust than that of parallel tempering with re-
spect to sub-optimal choices of the computational ensemble.

We now turn to a somewhat unexpected aspect of the
tempering results in Fig. 1. Beyond its intrinsic interest, this
feature provides the basis for a number of simple, property-
independent tools that prove useful in the characterization and
analysis of rare-event sampling issues. Table I examines the
fraction of moves various three-temperature Ar13 occupation
traces of the type in Fig. 1 spend in the different tempera-
ture streams. The occupation traces used to generate these re-
sults are longer (223 total moves), but otherwise of the type
shown in Fig. 1. The numerical results of Table I suggest that
the fractional occupancies of the various temperature streams
are in fact uniform for all the tempering methods involved
regardless of the choice of T2. Such uniformity turns out to
be a general and rigorous property of INS, PINS, and paral-
lel tempering approaches and holds for an arbitrary number
of temperatures. That is, if there are Nt temperatures in the
computational ensemble, the fraction of the total number of
moves such occupation traces spend in any particular ensem-
ble temperature asymptotically approaches a value of 1/Nt.
This “equal occupancy” result is one of the principal findings
of the current work.

Although the property appears not to have been noticed
previously, it turns out that the equal occupancy result sug-
gested by Table I is a general feature of the parallel tempering
method. We provide a heuristic argument for this claim below.
A more detailed argument as well as extensions to cover both
infinite and PINS approaches are given in Appendix B.

We begin by considering an M-step parallel tempering
simulation that involves Nt temperatures, {Tn}, n = 1, Nt. As
they move about in the computational ensemble, the initial
configurations in such a simulation generate Nt distinct occu-
pation traces, one for each of the possible initial temperatures.
If we designate the temperatures for one such trace, labeled
α, at step m in the simulation as Tα(m), then the fraction of
moves trace-α spends in temperature stream Tn, fα

n , is given
by

fα
n = 1

M

M∑
m=1

1Tα (m),Tn
, (2.1)

where

1Tα (m),Tn
=

{
1, Tα(m) = Tn

0, otherwise
. (2.2)
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The underlying occupation traces are stationary, ergodic ran-
dom processes. Consequently, the asymptotic statistical prop-
erties of the Nt possible occupation traces arising from the
various starting locations must be equivalent (i.e., there can
be no dependence of the fαn values on the index α). As a result
the values of fαn for a given temperature approach a common
value, fn, for all Nt possible occupation traces. Since we know
that the fαn values are all asymptotically equal for all values of
α, and since we know from Eq. (2.1) that their sum over α for
a given temperature totals unity, we conclude that fn = 1/Nt

for any temperature Tn. Other than assuming it to be non-zero,
the equal occupancy result does not depend on a particular
choice for the parallel tempering swap attempt frequency. As
noted in the Introduction, the infinite swapping approach can
be viewed as a limiting form of parallel tempering in which
swaps involving all possible temperatures are attempted at an
infinitely rapid rate. One thus suspects (properly) that the par-
allel tempering equal occupancy result is also valid for INS
and PINS approaches. A demonstration of this general result
is presented in Appendix B.

The uniform occupation property of the parallel temper-
ing, PINS, and INS methods provides the basis of a number
of useful sampling performance measures. One such measure
is the Shannon entropy associated with the occupation frac-
tions for the simulation. If the occupation fraction for temper-
ature stream Tn after nmove simulation moves is designated by
fn(nmove), then the occupation entropy for the simulation, Sf,
is defined as

Sf= −
Nt∑

n=1

fn(nmove)ln[fn(nmove)]. (2.3)

When nmove = 1, fn(nmove) = δn,s, where s is the index of the
initial temperature stream of the trace. So defined, the Sf value
begins at zero and increases as the simulation proceeds. Be-
cause the asymptotic limit of Sf is known (i.e., Smax = ln(Nt)),
both the convergence and the rate of convergence to this limit
can serve as practical performance diagnostics. At the crud-
est level the failure of Sf to achieve its known limiting value
signals an obvious breakdown in the sampling. More gener-
ally, the rate of approach of Sf to this limit provides a con-
venient, quantitative, property-independent means for com-
paring the performance of different computational ensembles
and/or sampling methods.

Figures 3 and 4 contain plots of the entropies com-
puted from the PT and PINS occupation traces for Ar13 from
Table I. We see in Fig. 3 that the entropies for all simula-
tions considered appear to achieve their proper limiting val-
ues, which in this case is ln(3). We also see in Fig. 4 that the
rate at which this limit is achieved for a specified intermediate
temperature is more rapid with the PINS method than with
parallel tempering. In fact, judged by this entropic measure
the results of Fig. 4 indicate that the PINS performance for
a “bad” choice of intermediate temperatures (T2 = 39 K) is
actually superior to that of parallel tempering for the optimal
choice (T2 = 35 K).

A related performance measure is the fluctuation autocor-
relation function of the occupation trace index. If we define
the index of the temperature at step m in an occupation trace

FIG. 3. Approach of Sf(nmove) (c.f., Eq. (2.3)) to its uniform limiting value
for the three-temperature PINS and PT simulations of Ar13 used in Table I
and described in the text. T1 = 30 K, T3 = 40 K, T2 = 35 K or 39 K.

as N(m), where 1 ≤ N ≤ Nt, and the fluctuation of this value
about its overall average as δN(m), then the correlation func-
tion, C(s), for the stationary random process δN(m) is defined
as

C(s) =〈δN(m)δN(m + s)〉
〈δN(m)δN(m)〉 , (2.4)

where the brackets in Eq. (2.4) denote an average over the
occupation trace in question. Plots of C(s) for the various oc-
cupation traces of Table I are shown in Fig. 5. We see that for
this rather simple application the performance rankings sug-
gested by Fig. 5 are consistent with those in Figs. 3 and 4 as
well as with those based on the round-trip transit measures
shown in Fig. 2.

Although modest in the examples considered thus far,
the utility of the occupation-based performance measures set
forth in Eqs. (2.3) and (2.4) can become more significant
when dealing with more challenging applications. An exam-
ple is illustrated in Figs. 6 and 7. Figure 6 shows occupation
traces for a 66-temperature Ar38 PINS and PT simulations,
both of which begin in the highest temperature. The details of
these and related simulations will be described in Sec. III. For

FIG. 4. Plot of ln(Smax − Sf) for the three-temperature Ar13 results of
Fig. 3.
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FIG. 5. Plots of C(s) (c.f., Eq. (2.4)) for the three-temperature Ar13 simula-
tions of Fig. 3.

the moment the relevant feature to note in Fig. 6 is that over
the course of the simulation the PINS occupation trace moves
throughout the entire computational ensemble making a total
of nine round trips across the 10–30 K interval, a range that
includes both solid-like and liquid-like cluster behavior, while
PT trace’s movement is appreciably more limited. The failure
of the PT occupation trace to complete even a single transit
of the computational ensemble during the simulation interval
shown is sufficient to raise questions concerning the adequacy
of its associated sampling. In contrast, the ease and frequency
with which the PINS occupation trace in Fig. 6 transits the
ensemble could, if taken by itself, be viewed as evidence that
all was in order and that the properties derived from the un-
derlying simulation are reliable. The occupation analysis in
Fig. 7, however, indicates that such a conclusion is premature.
In particular, we see in Fig. 7 a significant underrepresenta-
tion of visits to the low-temperature portions of the ensemble.
The occupation entropy for the distribution shown in Fig. 7 is
Sf = 3.98, well short of the ln(66) = 4.19 uniform limit. As
discussed more fully in Sec. III, the underrepresentation of
low-temperature visits seen in Fig. 7 is ultimately eliminated

FIG. 6. A portion of occupation traces for 66-temperature Ar38 PINS (black)
and PT (red) simulations discussed in the text. The vertical axis denotes the
temperature index (1–66) as a function of the number of moves in the simu-
lation.

FIG. 7. A histogram of the PINS occupation trace shown in Fig. 6 showing
the number of times the various temperature indices are visited, M(n), as a
function of n.

as more sampling points are included. The point we wish to
emphasize, however, is that this underrepresentation is an in-
dication of an important deficiency in the original, short simu-
lation, a deficiency detected by the equal occupancy analysis,
but not by transit-based measures.

In what follows it is useful to recast the difference
between the actual and maximum occupation entropies in
slightly different terms. Specifically, if we view the calcu-
lated Sf value as arising from a uniform limit of a fictitious
ensemble, the “active number” of temperatures in that ensem-
ble, Na, would be the exponential of the associated occupation
entropy. In the case of Fig. 7 Na would thus be exp(3.98) or
53.5, appreciably smaller than the actual number of 66. We
can also define a related quantity, the “active fraction” for the
simulation, Fa, as the ratio of Na to the actual number of tem-
peratures, Nt. In the example associated with Figs. 6 and 7, Fa

is 53.5/66, or ∼0.810. The concepts of active ensemble size
and fraction will prove convenient in later discussions.

III. ILLUSTRATIVE APPLICATIONS

To explore further the utility of the performance measures
developed in Sec. II, we consider their application to systems
in which the number of temperatures in the computational en-
semble and the physical complexity of the systems involved
are increased.

Our first example is designed to illustrate how one can
utilize the performance measures discussed in Sec. II to aid
in the selection of both the tempering ensemble and the sam-
pling method. Figures 8–11 contain various occupation en-
tropy and autocorrelation function results for the Ar13 cluster.
These are obtained with three different computational ensem-
bles using both the PINS and PT methods outlined in Sec. II
and Appendix A. The computational ensembles involved
are each composed of a common number of temperatures,
T1−T24, with T1 < T2, . . . ., < T24 and T1 = 20 K, T24

= 50 K. Although they span the same overall range, the en-
sembles are chosen to have different temperature distribu-
tions. Specifically, in ensemble-a temperatures T1–T12 and
T13–T24 uniformly cover the intervals 20–28 K and 42–50 K,
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FIG. 8. A plot of Sf(nmove) obtained for Ar13 using PINS and PT methods
for the various 24-temperature ensembles described in the text. The apparent
“break” in the PINS-24a results occurs at an Sf value of roughly 2.5, a value
that corresponds to an active number of temperatures (Na) of ∼12.

respectively, while in ensemble-b the two, uniform 12-
temperature regions range from 20–32 K and 38–50 K. The
third ensemble, ensemble-c, consists of 24 temperatures uni-
formly distributed over the entire 20–50 K interval. The PINS
results are obtained using dual-chain sampling methods of the
type discussed previously. In these simulations one chain is
composed of four symmetrized blocks of six temperatures
(T1–6, T7–12, T13–18, T19–24), while the other chain consists
of five symmetrized blocks (T1–3, T4–9, T10–15, T16–21,T22–24).
The PINS simulations utilize 216 total moves, while the PT re-
sults utilize 218. The other computational details for the PINS
and PT simulations are discussed in Sec. II and Appendix A.

We see in Figs. 8 and 9 that for a given ensemble the rate
of convergence of the PINS occupation entropies to the uni-
form, asymptotic limit of ln(24) is appreciably greater than
that achieved with parallel tempering. We also see that the
asymptotic convergence rate of the PINS results is highest for
ensemble-c of the three considered. Interestingly, the initial
(small nmove) PINS convergence rates seen in Figs. 8 and 9 are
similar for all three ensembles. As seen most clearly in Fig. 8,

FIG. 9. Plot of ln(Smax − Sf) for results in Fig. 8.

FIG. 10. C(s) for the PINS Ar13 results obtained using the three, 24-
temperature ensembles described in the text. PT results for ensemble-c are
shown for comparison (dashed line near top of plot).

the PINS occupation entropy increase for ensemble-a is rapid
up to a value of ∼Sf = 2.5 after which a distinctly slower
rate of increase is observed. This suggests (exp (2.5) ≈ 12)
that equilibration is rapid within the 12-temperature blocks of
ensemble-a, but is ultimately hindered by the large temper-
ature “gap” between 28–42 K in this ensemble. As with the
analogous PINS results, the rate of approach of the occupa-
tion entropy to its uniform limit for the PT results in Fig. 8
is slowest for ensemble-a. While not identical, PT results for
ensemble-b and ensemble-c are numerically quite similar for
this system.

Figure 10 contains plots of the fluctuation autocorrela-
tion functions, C(s), obtained from the various 24-temperature
Ar13 simulations shown in Figs. 8 and 9. The plots in
Fig. 10 reinforce the basic convergence story conveyed by the
entropic measures and serve to illustrate the dramatic differ-
ence in the decay rates seen in the PINS and parallel temper-
ing simulations. This difference is also conveyed by Fig. 11
where we plot a small portion of the PINS and PT occupa-
tion traces obtained for the best of the three 24-temperature

FIG. 11. Brief portions of occupation traces for PINS (top panel) and
PT (bottom panel) simulations for Ar13 obtained using 24-temperature
ensemble-c (see text for details).
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computational ensembles, ensemble-c. Although both PINS
and PT traces show frequent passage through the temperature
region of the heat capacity maximum (34 K), the qualitatively
different character of the two traces provides a visual sense of
the far greater rate of information transfer within the compu-
tational ensemble achieved by the PINS approach relative to
the PT method for this application. This dramatic difference
in the movement of the PINS and PT traces through the com-
putational ensemble lies behind the vastly different rates of
decay of the corresponding PINS and PT fluctuation autocor-
relation functions seen in Fig. 10.

We now turn to our second, more challenging example,
the 38-atom Lennard-Jones cluster. The LJ-38 system exhibits
an interesting and diverse phenomenology, and, as a conse-
quence, has received a significant amount of attention.28 As
discussed in the pioneering work of Doye et al.,29 this cluster
has a double-funnel potential energy landscape for which the
global minimum and the lowest lying local minimum are sim-
ilar in energy, dissimilar in structure, and separated by a rela-
tively large energy barrier. In particular, the global minimum
and lowest local minimum correspond to fcc truncated octa-
hedral and incomplete icosahedral structures, respectively.

We begin by specifying the computational ensemble. Pre-
vious work18 has shown that the heat capacity of the LJ-38
system has a primary peak in the reduced temperature range
of kBT/ε = 0.165, a value that for argon corresponds to a
physical temperature of ∼19.8 K. As in the Ar13 simulations
discussed earlier in this section, we choose the overall temper-
ature range for our Ar38 simulations to bracket the tempera-
ture of the major heat capacity maximum. Here, we choose to
include temperatures that cover the range 10 K ≤ T ≤ 30 K, a
region previous structural studies have shown marks the tran-
sition from solid-like to liquid-like behavior in the Ar38 clus-
ter. The choice of the number of temperatures to include in the
ensemble is somewhat arbitrary. In general, we want the num-
ber to be large enough to facilitate information flow within
the ensemble, but small enough to make the simulation com-
putationally manageable. Based on considerations described
in Appendix C, we utilize a 66-temperature ensemble. The re-
quired PINS sampling is performed using the dual-chain sam-
pling methods described in Refs. 21 and 22. Assuming that
the temperatures involved are ordered, T1 < T2 < ,. . . ., <T66,
one chain consists of 11 symmetrized blocks of six temper-
atures each (T1–6, T7–12, . . . ., T61–66), while the other con-
sists of 10 symmetrized blocks of six temperatures each that
form the chain’s interior and two symmetrized blocks of three
temperatures that form the low and high-temperature caps for
the chain, (T1–3, T4–9,. . . .,T58–63,T64–66). The specific values
of T1-T66 are listed in Appendix C.

Figures 12 and 13 contain a variety of results for the
Ar38 cluster obtained from two PINS simulations based on
the 66-temperature ensemble described in Appendix C. Each
of the two simulations contains a total of 2.0 × 106 moves of
which the last 1.6 × 106 are utilized for data collection. To
check that the computed results are independent of the start-
ing conditions, one simulation is initiated using configura-
tions corresponding to the cluster global minimum geometry,
while the other is initiated using configurations correspond-
ing to the lowest-lying icosahedral local minimum. Figures 12

FIG. 12. Plots of the occupation entropy, Sf(nmove), for 66-temperature
PINS and PT simulations of the Ar38 system. The two PINS results cor-
respond to simulations that are initiated in the global minimum geometry
(black curve) or lowest-lying icosahedral minimum (red curve). The limiting
Sf value of ln(66) is shown for reference.

and 13 show the occupation entropies (c.f., Eq. (2.3)) obtained
from the two Ar38 simulations. Both PINS simulations con-
verge to their uniform limits in a similar fashion. For compar-
ison, analogous parallel tempering results are also presented
in Fig. 12. The PT simulation uses the same 66-temperature
ensemble, the same underlying smart Monte Carlo displace-
ment strategy, and the same data collection procedures that are
used in the PINS studies. A significant difference in the levels
of performance for the PINS and PT approaches is apparent.

In Fig. 14 we show plots of the temperature depen-
dence of the average structural order parameter, 〈Q4(T)〉, ob-
tained from the two PINS simulations associated with Figs. 12
and 13. Q4 is a convenient choice for distinguishing structures
associated with the two major potential energy funnels of the
LJ-38 system, its value ranging from near zero for icosahe-
dral and melt structures to ∼0.19 for fcc-like forms. Used by
a variety of investigators,18, 29, 30 these order parameters are

FIG. 13. Plot of ln(Smax − Sf) for results in Fig. 12.
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FIG. 14. A plot of 〈Q4(T)〉 for the Ar38 cluster obtained by the PINS simu-
lations described in the text. Results in black (red) are obtained using a simu-
lation initialized using the fcc global minimum (icosahedral local minimum)
structure. For clarity and as an aid in comparing the two simulations 〈Q4(T)〉
only values for every other (every fourth) temperature are shown for the fcc
(icosahedral) results.

defined more generally as

Q� =
(

4π

2� + 1

�∑
m=−�

|Q̄�m|2
)1/2

, (3.1)

where

Q̄�m = 1

Nb

∑
rij <r0

Y�m(ϑij , φij ), (3.2)

and where the summation in Eq. (3.2) is over all pairs of
atoms (bonds) for which the separation distance, rij, is less
than a preset threshold, r0. In line with previous studies,18, 29

the r0 value used in the current work is taken to be 1.391 times
the Lennard-Jones σ -parameter. Again, we see equivalence in
Fig. 14 for the results produced by the fcc and icosahedrally
initiated simulations.

We close by returning to the issue raised at the end of
Sec. II, the breakdown in the equal occupancy behavior seen
in Fig. 7. Figure 15 shows the instantaneous Q4 values for the
configurations visited during a somewhat longer segment of
the occupation trace presented in Fig. 6. During the portion of
the trace shown in Fig. 6 (nmove < 105), we see Q4 values rep-
resentative of those for the icosahedral and melt forms of the
cluster, but not for those of the fcc global minimum energy
structure. Because the global minimum exists preferentially
at low-temperatures, its absence from the shorter occupation
trace shown in Fig. 6 is the reason for the breakdown of the
equal occupancy behavior seen in Fig. 7. It is interesting to
note that in this example the equal occupancy measure is thus
detecting the absence of visits to the global minimum. For
completeness, we note that the final occupation entropies for
the entire 1.6 × 106 move global minimum and icosahedrally
initiated PINS studies associated with Figs. 12–14 are 4.1875
and 4.1895, respectively. In the language of Sec. II, such occu-
pation entropy values correspond to active ensemble fractions
of 0.9978 and 0.9998, values that indicate equal occupancy is
indeed achieved in the two simulations.

FIG. 15. Q4 values for an extended portion of the global minimum initiated
occupation trace of Fig. 6.

It is useful to examine the issue of equilibration raised by
Fig. 15 from a somewhat different perspective. At any given
instant in the PINS simulations one can evaluate the Q4 values
for the configurations in the various data streams of the com-
putational ensemble. Such a set of values provides a rough
sense of population in the various structural basins. Shown in
Fig. 16 is the number of systems (out of the total of 66) for
which the associated Q4 values lie below a specified threshold
(here taken to be 0.09) for the Ar38 PINS simulations initiated
in the global minimum and icosahedral basins. This number,
K(nmove), is basically a count of the number of icosahedral and
melt forms. It builds from an initial value of zero as the global
minimum initiated simulation proceeds, while the analogous,
icosahedrally initiated result declines from an initial value of
66. After roughly 400 000 moves the values of K(nmove) for
the two simulations stabilize at an average value of ∼45.

Shown in Fig. 17 are block averages of Q4 values for the
two PINS simulations at two specific temperatures, T1 = 10 K
and T20 = 14.9350 K. T1 is the lowest ensemble tempera-
ture while (c.f., Fig. 15) T20 is the temperature for which 〈Q4〉
is roughly 0.1, the approximate mean of Q4’s limiting val-
ues. As with the results in Fig. 17, we see that after an ini-
tial equilibration period the block averages for the two PINS

FIG. 16. A history of the number of configurations (out of 66) in the two
PINS Ar38 simulations described in the text for which Q4 ≤ 0.09.
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FIG. 17. Block averages of Q4 for Ar38 for T1 = 10 K, T2 = 14.9350 K for
the PINS simulations described in the text.

simulations approach common limiting values. Interestingly,
we see in Fig. 17 that the warm up period required to achieve
stable estimates of the 〈Q4〉 values matches that seen in
Fig. 16. In other words, the warm up period necessary to pro-
duce stable estimates of thermally averaged properties is dic-
tated by the period required to establish the relative popula-
tions of the major energy basins. Parenthetically, we note that
the equilibration period seen in Fig. 17 is the basis for our
choice of 400 000 move warm up periods in the PINS Ar38

simulations of this section. The values of 〈Q4〉 for each of the
temperatures shown in Fig. 14 are constructed from the block
averages of the type shown in Fig. 17 using the last 1.6 × 106

move portions of the two PINS simulations.
Results of the type shown in Fig. 15 represent simulation

histories obtained by following a specified occupation trace
throughout the simulation. Figure 18 represents another type
of simulation history, one that follows a property associated
with configurations that correspond to a particular tempera-
ture. Shown in Fig. 18 are the Q4 values of Ar38 configura-
tions for a fixed temperature of 22.727 K (kBT/ε = 0.190).
The results in Fig. 18 are taken from a 10 000 move segment
of the larger, icosahedral minimum initiated PINS simulation
after the 400 000 move warm up period has been completed.

FIG. 18. Shown are the Q4 values for T = 22.727 K for a short, post warm up
portion of the icosahedral minimum initiated Ar38 PINS simulation. Compare
with Fig. 11 of Ref. 29.

Analogous results have been obtained for PINS simulations
initiated using the global minimum configuration. These are
statistically indistinguishable from those of Fig. 18 and are
not shown. The particular temperature of 22.727 K is chosen
to permit a comparison of the results of Fig. 18 with those of
conventional Monte Carlo studies (c.f., Fig. 11 of Ref. 29).
Rapid switches of configurations with differing Q4 values at a
fixed temperature in the PINS simulation are evident.

IV. DISCUSSION AND SUMMARY

The ubiquitous and difficult nature of rare-event sam-
pling issues makes the development of methods for their
detection and treatment an important topic. In the present
paper we have introduced a variety of occupation-based per-
formance measures for tempering applications and have ex-
plored their utility with a number of numerical examples.

The equal occupancy result of Sec. II is the core of the
present developments. Briefly summarized, equal occupancy
for a tempering simulation implies that the asymptotic frac-
tion of the total number of moves a particular configuration
spends in a given data stream in a simulation that contains Nt

temperatures is a constant, 1/Nt, independent of the choice of
ensemble temperatures. Starting with the empirical observa-
tion of such behavior in parallel tempering simulations, we
have demonstrated that the result is a general property of both
parallel tempering as well as of PINS and infinite swapping
approaches. Given that equal occupancy is a rigorous feature
of such methods, its absence serves as a diagnostic for flawed
and/or inadequate sampling. More generally, the rate at which
equal occupancy is achieved in such a simulation offers a con-
venient, property-independent basis for probing both the char-
acteristics of the sampling methods involved and the associ-
ated simulation details.

Based on these ideas we have constructed a number of
occupation-based performance measures and have explored
their utility using models of simple, single-component atomic
clusters. We have found the resulting methods both easy to
implement and effective. Based on our findings we have con-
cluded that the occupation-based techniques presented here
represent useful additions to the list of existing performance
measures that have been designed to aid in the ongoing devel-
opment of rare-event sampling methods.
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APPENDIX A: NUMERICAL METHODS

In this appendix we describe the generic numerical meth-
ods used in the present studies including the underlying force
laws and numerical methods.

The atomic-level force law in the present work is as-
sumed to consist of pair-wise Lennard-Jones interactions be-
tween the atoms plus a center of mass confining potential to
prevent cluster evaporation. Specifically, the total potential
energy, U(r), for the N-particle cluster is given by

U(r) = ULJ(r) + Uc(r), (A1)

where

ULJ(r) = 4ε

N∑
i<j

((
σ

rij

)12

−
(

σ

rij

)6
)

, (A2)

and where

Uc(r) = ε

N∑
i=1

( |ri − rcm|
Rc

)20

. (A3)

The Lennard-Jones length and energy parameters, σ and
ε, are taken to be ε = 119.8 K and σ = 3.405 Å for argon.
In the confining potential definition, rcm is the center of mass
of the cluster and Rc is an empirical constant. The Rc values
used in the present work are 2.5σ and 2.65σ for the Ar13 and
Ar38 investigations, respectively.

All PINS simulations in the present work are generated
using the dual-chain sampling techniques described in detail
in Appendix B of Ref. 21. Unless otherwise stated, the chains
in the simulation are constructed in the following manner. One
of the chains involved is composed entirely of blocks of six
adjacent temperatures, T1–6, T7–12, etc. In the second chain,
the first and last blocks are composed of three-temperatures,
while the remaining blocks have six temperatures each. The
basic idea is to utilize symmetrized blocks that are large
enough to promote appreciable mixing of temperature in-
formation, small enough to be computationally manageable,
and overlap sufficiently to promote chain-to-chain informa-
tion transfer.

Smart Monte Carlo (SMC) techniques31 are utilized to
perform the necessary, single-temperature sampling moves in
this approach. For the present argon studies each such SMC
move consists of a 100 step molecular dynamics segment
(each step of 103 a.u. duration) in which the initial momenta
are selected at random from equilibrium Boltzmann distribu-
tions of the appropriate temperatures. To provide a common
basis for comparison, the parallel tempering simulations re-
ported here also utilize the same SMC methods. Unless oth-
erwise stated, all parallel tempering results are based on sim-
ulations in which at each step there is a 16% probability of
an attempted swap of configurations between a randomly se-
lected adjacent pair of temperatures.

The performance measures discussed in Sec. II are gen-
erated by suitably processing the occupation traces involved.
Such occupation traces, defined in Sec. II, are a chroni-
cle of the temperature index for the system in question at
the mth step in the simulation, N(m). Once obtained, they
are processed to produce the associated performance mea-

sures. Computing the fluctuation autocorrelation function for
a specified occupation trace (c.f., Eq. (2.4)) is entirely anal-
ogous to the task of constructing time correlation functions
from molecular dynamics simulation data and thus needs no
further discussion. Computing the occupation entropy (c.f.,
Eq. (2.3)) requires knowledge of the fractional occupancies
of the various tempering data streams. To compute the occu-
pation entropy, Sf(nmove), associated with a trace that begins
in a particular temperature stream, n0, after a specified num-
ber of moves, nmove, for example, we need to know the rele-
vant fractional occupancies of the various levels, {fn(nmove)},
n = 1, Nt produced by that trace. Instead of focusing on a
particular starting point, n0, it is generally more convenient to
form the average of such individual occupation entropies over
traces that originate in all possible starting locations. Unless
otherwise noted, all occupation entropies in the present work
are of this averaged type. It should also be noted that such
averaged values can be computed from a single, long occupa-
tion trace by exploiting the stationary nature of the occupation
traces involved.

APPENDIX B: EQUAL OCCUPANCY DEMONSTRATION

In this appendix we give two arguments to demonstrate
the asymptotic equal occupancy of the temperature for PT,
INS, and PINS. The first argument formalizes the one used in
Sec. II. Consider a stationary, ergodic Markov process (S(m),
Y(m)) such that the first component takes values in the set
P{Nt} of all permutations of {T1, . . . , TNt

}. PT falls into this
framework when the pair of temperatures for which a swap
will be attempted is selected according to a randomized rule
that does not depend on the past of the simulation and which
allows all permutations to be realized. INS also falls into this
framework where the S(m) component arises through an ex-
plicit temperature-coordinate association that can be made at
each time step. If the selection of partitions in a PINS scheme
is done on a randomized basis, then an explicit temperature-
coordinate association must be done when switching between
different partitions, and this again gives a representation for
the scheme in the form described above. The asymptotic equal
occupancy is not limited to methods that use temperature
to index the ensemble, and can even be extended to multi-
dimensional parameters.

With these definitions one can interpret S(m) (in the no-
tation of Sec. II) as (T1(m), . . . , TNt

(m)). Since S(m) is a per-
mutation, for each m = 1, 2, . . . and each Tn ∈ {T1, . . . , TNt},
there is one and only one α such that Tα(m) = Tn. With fα

n (M)
defined as in Sec. II, the ergodic theorem then implies the al-
most sure limit

fαn (M) → fn (B1)

as M → ∞, where fn is independent of α, M, and Y(0). How-
ever, the fact that each n is identified with one and only one α

implies that for each n and all M∑
Tn∈{T1,...,TNt }

fα
n (M) = 1, (B2)

from which fn = 1/Nt follows.
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While this argument applies to stationary and ergodic im-
plementations of PT and PINS, in practice, they are often im-
plemented in a nonstationary way. For example, in PT one
may cycle repeatedly through the sequence of adjacent tem-
perature pairs, while in the PINS scheme one could simply
alternate between two different partitions (the “dual-chain”
method used in Refs. 21 and 22). While each such algorith-
mic step corresponds to a Markov transition kernel on (S,Y),
the kernels differ (e.g., depending on the particular pair of
temperatures in PT or the partition of temperatures used in
PINS). Thus, the processes are not stationary. Nonetheless,
one can still argue that the quantity fαn (M) converges to 1/Nt

by an argument that uses more of the structure of the PINS,
PT, and INS schemes. Here we give just a sketch of the
argument.

When put in the form of transition kernels on (S,Y), there
is a stationary distribution μ, which satisfies detailed balance
with respect to each of the different transition kernels asso-
ciated with any of the PINS, PT, and INS schemes, and also
this is the only such stationary distribution under all the ker-
nels associated with a given scheme. (It is in fact the sym-
metrized version of the joint stationary distribution on the Nt

particles, symmetrized over all temperature coordinate associ-
ations (c.f., Eq. (3.6) of Ref. 21).) It follows from the explicit
form of μ that the marginal distribution on S is uniform on
P{Nt}. Using relative entropy with respect to μ as a Lyapunov
function,32 one can show that, so long as each kernel associ-
ated with a given scheme is used infinitely often, the distribu-
tion μ(m) of the process after m algorithmic steps converges
to μ as m → ∞ . Denote

gs(M) = 1

M

M∑
m=1

1S(m),s (B3)

where

1S(m),s=
{

1, S(m) = s

0, otherwise
. (B4)

Using a standard martingale argument one can show that
gs(M) and the average (over m = 1, . . . , M) of the measure
placed on s by the marginal distribution of μ(m) on S are
asymptotically the same, and therefore gβ

s (M) → 1/|P{Nt}| as
M → ∞ . The statement given in Sec. II for the equal occu-
pancy of temperatures can then be obtained by summing over
all permutations where a given coordinate is fixed.

APPENDIX C: SELECTION OF TEMPERATURE
ENSEMBLE

The present discussion summarizes the design and con-
struction of the PINS computational ensemble for studies of
Sec. III. In general, the temperature range of the computa-
tional ensemble is dictated by the system and phenomenol-
ogy under investigation. The lowest computational tempera-
ture is taken to be the lowest of physical interest, while the
highest temperature is typically chosen to be large enough to
assure a proper sampling. As a practical matter, the choice of
the highest temperature amounts to selecting a value such that
the simulation model in question exhibits a liquid-like behav-

ior or one for which even conventional Metropolis methods
prove adequate. Beyond the selection of the overall temper-
ature range, the general design of the tempering ensemble is
trade-off between the desire to minimize computational effort
(smaller number of temperatures) and the desire to facilitate
information flow (larger number of temperatures). The low
and high-temperature limits for the Ar38 ensemble of Sec. III,
10 K and 30 K, respectively, are chosen to bracket the temper-
ature of the major heat capacity peak for the Ar38 system,18 a
feature that marks the boundary between solid-like and liquid-
like behavior for the cluster.

In principle, once the total number, low, and high values
are chosen, one can utilize the asymptotic decay rate of the oc-
cupation entropy to its known limit to optimize the selection
of the remaining “interior” temperatures in the computational
ensemble. In practice, we have found for the applications con-
sidered to date that the performance of the PINS approach is
sufficiently robust that such a precise temperature selection
process is unnecessary.

The approach we have adopted for the selection of the
interior ensemble temperatures in the present work is based
on the desire to enhance the rate of information flow induced
by the PINS symmetrization. In practical terms, this translates
into selecting the interior temperatures in such a way that the
statistical importance of the various permutations that arise
within the symmetrization blocks be as widely distributed as
possible. In the notation of Ref. 21, if one of the blocks in
the dual-chain PINS approach contains N total temperatures,
there are N! possible permutations of coordinate and temper-
ature sets involved. As part of the PINS sampling process,
the statistical weights of these permutations (c.f., Eq. (3.5) of
Ref. 21) relative to the total, {ρn}, n = 1,N! are computed.

TABLE II. The temperatures used in the PINS Ar38 computational
ensemble.

n Tn n Tn n Tn

1 10.0000 23 15.7142 45 21.6364
2 10.2597 24 15.9740 46 22.0000
3 10.5195 25 16.2337 47 22.3637
4 10.7792 26 16.4935 48 22.7273
5 11.0390 27 16.7532 49 23.0909
6 11.2987 28 17.0130 50 23.4546
7 11.5585 29 17.2727 51 23.8182
8 11.8182 30 17.5324 52 24.1819
9 12.0779 31 17.7922 53 24.5455
10 12.3377 32 18.0519 54 24.9091
11 12.5974 33 18.3117 55 25.2727
12 12.8572 34 18.5714 56 25.6364
13 13.1169 35 18.8312 57 26.0000
14 13.3767 36 19.0909 58 26.3636
15 13.6364 37 19.3506 59 26.8182
16 13.8961 38 19.6104 60 27.2727
17 14.1559 39 19.8701 61 27.7272
18 14.4156 40 20.1299 62 28.1818
19 14.6753 41 20.3896 63 28.6364
20 14.9350 42 20.6494 64 29.0909
21 15.1948 43 20.9091 65 29.5454
22 15.4545 44 21.2727 66 30.0000
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TABLE III. Average of Sρ values, 〈Sρ〉 , for Ar38 PINS simulation obtained
using the computational ensemble shown in Table II. For reference, the max-
imum values for S ρ correspond to ln(3!) = 1.792 and ln(6!) = 6.579.

Chain-1 Chain-2

T-range 〈Sρ〉 T-range 〈Sρ〉

1–3 1.751 1–6 6.256
4–9 6.284 7–12 6.307
10–15 6.327 13–18 6.345
16–21 6.362 19–24 6.375
22–27 6.384 25–30 6.383
28–33 6.371 31–36 6.352
34–39 6.341 37–42 6.351
40–45 6.324 43–48 6.285
46–51 6.348 49–54 6.385
52–57 6.407 55–60 6.393
58–63 6.356 61–66 6.371
64–66 1.768

For a given set of coordinates the entropies associated with
these weights, defined for each of the symmetrized blocks as

Sρ= −
Nt∑

n=1

ρnln[ρn], (C1)

thus provides a measure of the dispersal of the statistical
weight across the set of permutations. For example, a value
of zero for Sρ corresponds to all of the statistical weight be-
ing concentrated in a single permutation, whereas the maxi-
mum value of ln(N!) signifies that each permutation carries
the same uniform statistical weight.

In the case of the 66-temperature Ar38 ensemble of
Sec. III we have chosen the number and distribution of tem-
peratures in the computational ensemble so that the Sρ val-
ues for the various temperature blocks that are produced rep-
resent an appreciable and uniform fraction of the maximum
values possible. The explicit temperatures for this ensem-
ble are listed in Table II. Table III shows the average of the
Sρ values produced by this ensemble during the two mil-
lion move simulation discussed in Sec. III that was initiated
from the global minimum configuration. Although not shown,
the corresponding results for the simulation initiated using
the lowest-lying icosahedral local minimum configuration are
statistically equivalent those of Table III.
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