Document Type

Article

Date of Original Version

2-17-2017

Department

Biomedical and Pharmaceutical Sciences

Abstract

Predators that feed on chemically-defended prey often experience non-lethal effects that result in learned avoidance of the prey species. Some predators are able to consume toxic prey without ill-effect. The Chinese mantid is able to consume cardenolide-containing monarch caterpillars without immediate adverse effects. Although they discard the caterpillars’ gut contents, mantids consume sequestered cardenolides. Although consumption of these cardenolides does not elicit an acute response, there may be long-term costs associated with cardenolide consumption. We tested the hypothesis that consumption of monarch caterpillars will adversely affect adult mantid biomass gain and reproductive condition. We reared mantids from egg to adult and assigned them to one of four toxicity groups that differed in the number of monarch caterpillars offered over a 15-day period. Mantids consumed similar amounts of prey biomass during the experiment. Yet, mantids in the high-toxicity group had a higher conversion efficiency and gained more biomass than mantids in other groups. Mantids in all treatment groups produced similar numbers of eggs. However, mantids in the high-toxicity group produced heavier eggs and devoted a greater portion of their biomass toward egg production than those in the control group. This increase in reproductive condition is probably driven by variation in prey nutritional value and/or the nutritional advantages inherent in eating multiple food types. Our results demonstrate the mantid is able to incorporate ‘toxic’ monarch prey into its diet without acute or chronic ill-effects.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Comment

Jamie L. Rafer, Liahna Gonda-King and Chad M. Rigsby are from the Department of Biological Sciences.

Daniel Niesen and Navindra P. Seeram are from the Department of Biomedical and Pharmaceutical Sciences.

COinS