Palisade mesophyll cell expansion during leaf development in Zinnia elegans (Asteraceae)

Document Type

Article

Date of Original Version

1-1-1994

Abstract

Temporal and spatial patterns of palisade mesophyll cell expansion in Zinnia elegans were characterized as a basis for developing a suspension culture model for mesophyll cell expansion. Our objectives were to 1) identify the leaf regions from which cells in various stages of expansion could be selectively isolated for culture, and 2) develop a basis for comparison of rate and extent of mesophyll cell expansion in culture with that in the leaf. Palisade mesophyll cells were isolated from expanding leaves by gentle physical maceration without the use of enzymes. Isolated cells from leaves in different stages of expansion were then measured by computer image analysis. Analysis of size frequency distributions showed that unexpanded cells can be isolated from the entire blade of small leaves or the basal regions of partially expanded leaves. Fully expanded cells can be obtained from the apical and middle regions of partially expanded leaves. Within the leaf, Zinnia mesophyll cells expanded from about 400 μm2 to about 2.300 μm2 at an estimated rate of 160 μm2 d-1. The percent increase in cell length exceeded the percent increase in cell width. Expansion of mesophyll cells continued for 6–8 d after epidermal expansion ceased. This difference in the timing of cell expansion in epidermal and mesophyll cells indicates that different regulatory factors may be operating in these adjacent tissues and underscores the importance of investigating the regulation of mesophyll cell expansion at the cellular level.

Publication Title, e.g., Journal

American Journal of Botany

Volume

81

Issue

5

Share

COinS