Document Type


Date of Original Version



The cranial lateral line canal system of teleost fishes is morphologically diverse and is characterized by four patterns. One of these, widened lateral line canals, has evolved convergently in a wide range of teleosts, including the Lake Malawi peacock cichlids (Aulonocara), and has been attributed to its role in prey detection. The ability to study Aulonocara in the laboratory provides an opportunity to test the hypothesis that their reported ability to feed on invertebrate prey living in sandy substrates in their natural habitat is the result of lateral-line-mediated prey detection. The goal of this study was to determine whether Aulonocara stuartgranti could detect hydrodynamic stimuli generated by tethered brine shrimp (visualized using digital particle image velocimetry) under light and dark conditions, with and without treatment with cobalt chloride, which is known to temporarily inactivate the lateral line system. Fish were presented with six pairs of tethered live and dead adult brine shrimp and feeding behavior was recorded with HD digital video. Results demonstrate that A. stuartgranti: (1) uses the same swimming/feeding strategy as they do in the field; (2) detects and consumes invertebrate prey in the dark using its lateral line system; (3) alters prey detection behavior when feeding on the same prey under light and dark conditions, suggesting the involvement of multiple sensory modalities; and (4) after treatment with cobalt chloride, exhibits a reduction in their ability to detect hydrodynamic stimuli produced by prey, especially in the dark, thus demonstrating the role of the lateral line system in prey detection.