Date of Award

2014

Degree Type

Thesis

Degree Name

Master of Science in Chemical Engineering (MSChE)

Department

Chemical Engineering

First Advisor

Otto Gregory

Abstract

Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user.

In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization.

It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst.

An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from the same catalyst simultaneously and provide a redundancy in response for positive explosive identification. TATP, 2,6-DNT and ammonium nitrate were reliably detected. Each analyte displayed a unique conductometric signature and the results indicated a detection limit at the ppb level.

A preconcentrator was designed to enhance the sensitivity of the sensor and was successfully demonstrated. The magnitude of the sensor response increased from by 50% and the preconcentrator could be operated semi-continuously, maintaining one of the most attractive features of this sensor platform: the capability to operate in real time. A method to filter out extraneous heat signals from sensor response using a dynamic control was also successfully demonstrated and will likely be a fixture in all sensor experimentation and design moving forward.

Finally, two MEMS based sensor platforms were designed and fabricated. It was theoretically demonstrated that the newest iteration of the MEMS sensor consumes considerably less power due to thinner membranes, a smaller active surface area and an overall smaller thermal mass, allowing for the possibility of creating networks of sensor arrays, even in a portable device.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.