Date of Award

2011

Degree Type

Dissertation

Degree Name

Doctor of Philosophy in Ocean Engineering

Department

Ocean Engineering

First Advisor

James H. Miller

Abstract

This study examines underwater acoustic propagation in a shallow water environment, concentrating upon the impact of nonlinear internal waves. During internal wave activity, acoustic signals can fluctuate significantly due to complex three-dimensional multi-mode and multipath interference effects. Experimental measurements from the Shallow Water '06 experiment provide oceanographic and acoustic data during instances where the acoustic track is nearly parallel to an approaching internal wave train. Distinct events show internal waves modulate the acoustic field substantially. Propagation modeling using the Monterey-Miami Parabolic Equation algorithm simulates an internal wave train moving in a straight-line fashion. Horizontal refraction dominates in the nearly parallel configuration, and three specific scenarios are exemplified in both measured and modeled data: refraction (prior to the internal wave's arrival), defocusing (as a soliton spreads acoustic energy), and focusing (as two solitons create a horizontal sound channel). Normal mode decomposition and statistical analysis provide insight into the temporal and spatial acoustic fluctuations. At very small angles off-parallel, focusing effects are dramatically reduced, and refraction prior to the internal wave's arrival becomes an important factor to consider. In the exactly parallel scenario, refraction remains important, but is a second order effect compared to focusing.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.