Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders

Kristin Elmstrom Klenk, University of Rhode Island


The purpose of this study is to determine whether an instructional approach which includes computer animations is more effective than a traditional textbook-only approach in helping ninth grade students learn an abstract concept, in this case planetary retrograde motion. This investigation uses a quasi-experimental design with convenient sampling. The independent variable is the type of instruction provided to students; traditional text-based instruction (control group) compared to traditional instruction which also includes the viewing of 4 computer animations (treatment). Two conditions of the treatment examine the relative advantage of the order of the presentation of the animations and text-based instruction, as well as the quality of understanding and the retention of the learning over time. The dependent variable is student achievement which is measured using an instrument designed specifically for this study. Comparison of the independent variable to the dependent variable based upon the results from a Repeated Measure Factorial Design in ANOVA indicates that the treatment is an effective instructional technique. The posttest1 mean score of the treatment groups was significantly greater than the posttest1 mean score of the control group. Further posthoc tests indicate that there was no significant difference between the two treatments (1 and 2); read/animation versus animation/read. However, there was a significant difference in the mean score depending on the pathway, students enrolled in the A pathway achieved a significantly higher mean score after the treatment than students in the B pathway. The A pathway (n = 185) represent the larger heterogeneous population of students as compared to the B pathway (n=16) which includes students with lower cognitive abilities and special needs. When all of the students are included in the analysis the results indicate that students do not retain their understanding of the concept. However, when the students in the B pathway are removed from the data set the analysis changes, the posttest1 and posttest2 means are not significantly different. Students in the A pathway did retain their understanding of the concept and were able to demonstrate it on the assessment. A detailed item analysis of the multiple choice question suggest that students in the B pathway were much more likely to guess on the multiple choice questions than students in the A pathway who show no evidence of guessing. The outcome of this study suggests that an instructional approach with includes viewing computer animations is an effective strategy for teaching and learning an abstract concept in a ninth grade Earth Science classroom. ^

Subject Area

Education, Secondary|Education, Technology of|Education, Sciences

Recommended Citation

Kristin Elmstrom Klenk, "Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders" (2011). Dissertations and Master's Theses (Campus Access). Paper AAI3487740.