2018

CRISPR Gene Editing in the Sea Squirt, *Ciona intestinalis*

Evelyn Siler
University of Rhode Island, evelynsiler@my.uri.edu

Steven Irvine
University of Rhode Island, sirvine@uri.edu

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Follow this and additional works at: http://digitalcommons.uri.edu/srhonorsprog

Part of the Genetics Commons, and the Molecular Biology Commons

Recommended Citation

http://digitalcommons.uri.edu/srhonorsprog/622

This Article is brought to you for free and open access by the Honors Program at the University of Rhode Island at DigitalCommons@URI. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Introduction

Our aim was to use CRISPR, a cutting-edge genome editing technique, to induce a mutation in marine invertebrate embryos that will cause them to lose pigment in their eyespots as larvae. We will be using embryos from the model chordate *Ciona intestinalis*, also known as the sea squirt.

The CRISPR system will be used to inactivate tyrosinase, the gene which encodes for an enzyme responsible for producing the pigment seen in the dark eye spots of *Ciona* larvae.

CRISPR

CRISPR is not a machine or a physical tool, but rather it is a system that involves introducing a protein into a cell along with a DNA segment that attracts a DNA cutting protein called Cas9 to a desired location. The Cas9 protein then induces a double stranded break at the location, silencing the gene located there.

Methods

- Build the CRISPR construct by performing polymerase chain reactions (PCRs) using four primers and two plasmid templates
- Spawn *Ciona intestinalis* via dissection
- Dechorionate embryos to remove the outer membrane
- Electroporate the PCR product and a Cas9 vector into the dechorionated embryo
- The construct binds to the *Ciona* DNA. The Cas9 recognizes it and cuts the DNA there, disrupting the gene
- Allow the mutant embryo to develop to late tailbud stage to view changes in eye spot appearance

Results

After numerous variations in PCR conditions, our lab was able to produce the CRISPR construct at the correct size of approximately 1400 base pairs.

The next phase will be to electroporate this PCR product into *Ciona* embryos along with the Cas9 protein vector.

Discussion

The rationale for inactivating the melanin-producing gene in *Ciona* is that it produces a visible phenotype, the loss of pigment in the eye spots of the larvae, thereby demonstrating the successful use of the CRISPR system.

In the future, we can use the same procedure to silence other *Ciona* genes, namely those involved in temperature response pathways.

These tests will further our understanding of how projected increases in ocean temperatures will impact reproduction in *Ciona* populations, and potentially in other aquatic species as well.

Deletion of Tyrosinase

The tyrosinase gene encodes for the enzyme responsible for producing melanin. After silencing the gene, the eyespots of the *Ciona* larvae lose their pigment and appear transparent under the microscope.

Acknowledgements

We acknowledge the generous support of the Rhode Island Science and Technology Advisory Council, use of the RI EPSCoR funded Genomics and Sequencing Center and Marine Life Sciences Center, and funding from Rhode Island Sea Grant. Special thanks to Rose Jacobson for her expert advice and assistance.

References