Preliminary Study Examining the Presence of a Wolbachia Endosymbiont in Winter Moth Populations

Matthew Pederson
University of Rhode Island, mpederson@my.uri.edu

Follow this and additional works at: http://digitalcommons.uri.edu/srhonorsprog

Recommended Citation
http://digitalcommons.uri.edu/srhonorsprog/604

This Article is brought to you for free and open access by the Honors Program at the University of Rhode Island at DigitalCommons@URI. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Introduction
The winter moth (Operophtera brumata) is a geometrid native to Europe. It invaded New England just over a decade ago (1). The larvae defoliate juvenile leaves of many hardwood and fruit-bearing plants (Figure 1). Fruit yields and home ornamentals suffer from this defoliation. O. brumata forms an endosymbiosis with the bacterium, Wolbachia pipientis. Infection by W. pipientis can create reproductive problems (feminization and cytoplasmic incompatibility) (2). The phenotypic effects of the relationship with O. brumata are unclear, but up to 25% of populations are infected (personal communication, N. Havill, USDA Forestry Service). The aim of this study was to test Rhode Island, Massachusetts and European moths for the presence of W. pipientis. Understanding the infection rate of populations can help us trace the invasion back to its origins in New England and Europe.

Methods
I. Sample Collection
- O. brumata DNA extracts (8 Massachusetts & 8 Europe; gift of N. Havill)
- Wolbachia positive control sample (gift of J. Andersen)
- Pheromone trapped specimens (Figure 2; Wakefield, RI; 41.452696, -71.535842)
II. Primer Design
We created PCR primer sets for O. brumata and W. pipientis on NCBI based on their recently sequenced genomes (3).

O. brumata primer sets: IDH & cycY (4)
- W. pipientis primer sets: wsp & 16S (5,6)
III. Troubleshooting
- Switched DNA extraction methods from a squish buffer method (7) to a Qiagen DNeasy Blood and Tissue kit (Hilden, Germany)
- Switched DNA extraction methods from a squish buffer method (7) to a Qiagen DNeasy Blood and Tissue kit (Hilden, Germany)

European Samples
Of the 8 European samples received, one amplified. A 12.5% infection rate is consistent with findings by our collaborator (personal communication, N. Havill, USDA Forestry Service). The positive sample was from the Republic of Georgia and amplified both O. brumata and Wolbachia genes (Figure 3). Its wsp and 16S genes were sequenced and aligned with reference sequences from NCBI and pubmlst.org, a database created to analyze genomic diversity amongst prokaryotes (8). The wsp gene sequence was highly conserved at 99.2% identity to wsp allele 577 and 100% identity to alleles wsp460 & wsp385 in pubmlst.org (0.0 e-value) (Figure 4). The 16S gene sequence of the Georgia sample was highly conserved (99% identity; 0.0 e-value) with the W. pipientis 16S ribosomal gene (U23709.1) logged in Genbank (Figure 5).

Massachusetts Samples
O. brumata genes IDH and cycY were amplified in 5 of 8 samples (62.5%), indicating high quality DNA. No Wolbachia genes were amplified in the same samples. This yielded a 0% infection rate of W. pipientis in Massachusetts O. brumata samples.

Rhode Island Population
O. brumata genes amplified in 14 of 17 samples (82.4%) and no Wolbachia genes amplified. This yielded a 0% infection rate of W. pipientis (Figure 6), which were collected from one population in Wakefield, RI.

Discussion
The data collected from our samples is preliminary, but gives a glimpse into the population structure of O. brumata in both New England and Europe. The infection rate in Europe was similar to that found in North America (personal communication, N. Havill, USDA Forestry Service), which indicates a constant vertical transfer of the endosymbiont. The 0% infection rates we observed from New England populations do not give us a completely accurate representation of the population structure in the region. A 25% infection rate was observed in other New England populations using a very large sample size (1200 individuals; personal communication, N. Havill, USDA Forestry Service). Our sample size for these populations was low. This was magnified due to troubleshooting problems, poor DNA quality from shipped MA samples, and time restrictions. Testing more samples from these areas would give a more accurate representation of the W. pipientis infection of O. brumata in New England.

The next phase of the project will be to amplify and sequence more samples for Wolbachia genes. Additional samples are in progress. We can also determine the bacterial strain type by comparing the sequences to references in the database, pubmlst.org (8). The strains will give a scope of the genetic differences in these endosymbionts throughout the world. From here, we can analyze the European strain(s) to see whether the same ones appear in North America. The bacterium essentially acts as a tracking device to follow the spread of the invasive species. This is a hypothetical outline of where the project can take us in the future.

References
8. Matt Pederson & Marian R. Goldsmith

Figure 1: O. brumata DNA extracts (8 Massachusetts & 8 Europe; gift of N. Havill)
Figure 2: Adult moths inhabiting a hardwood tree. Males can fly, while females are wingless (December)
Figure 3: Amplification of O. brumata (IDH) and W. pipientis (16S & wsp) genes in the Republic of Georgia sample (15-179.17). Band sizes are consistent with expected amplification products based on the published sequences.
Figure 4: Alignment of 16S sequences: Republic of Georgia (MP1), bottom; positive control from J. Andersen (MP2), and the top BLAST hit for the Georgia sample (16S Wsp NCBI). The positive control and Georgia samples are 100% conserved, while the NCBI sequence differs by one nucleotide.
Figure 5: Alignment of wsp amplified sequences for the Republic of Georgia (MP4), the positive control from J. Andersen (MP5), and three wsp alleles from pubmlst.org, wsp385, wsp460, MP4, and MP5 are all 100% conserved, while wsp377 and wsp555 have nucleotide differences.
Figure 6: Amplification of O. brumata and Wolbachia genes in Rhode Island samples. Left: IDH Right: Wolbachia 16S (no amplification). These results indicate no bacterial DNA present.