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ABSTRACT 

Agins, Alan P., Ph.D., University of Rhode Island, 1982. Age Related 
Changes in the Induction of the Hepatic Mixed-Function Monooxygenase 
Sys tern in Miniature Pigs: Effects of Pentachloroanisole, Pentachloro­
phenol and Phenobarbital. Major Professor: Dr. George C. Fuller. 

Pentachloroanisole (PCA), an environment a 1 degradation product of 

the biocide pentachlorophenol (PCP), has been detected in the food 

chain. The metabolic fate of PCA was examined in miniature pig 

hepatic microsomes, in vitro. The compound was shown to be a substrate 

for a cytochrome P450-dependent demethylation reaction, which results 

in the regeneration of the parent compound, PCP. A disproportionately 

large increase in PCA demethylase activity (PCADM) following pretreat-

ment with phenobarbital suggests that the compound is preferentially 

metabolized by specific-inducible form(s) of cytochrome P450. 

A comparison of the effects of PCA and purified PCP on the 

hepatic MFO system of miniature pigs was conducted at various stages 

of postnatal development. Phenobarbital was utilized as a positive 

control for induction. PCA, PCP and phenobarbital (10 mg/kg/day X 4 

days, P.O.) were administered to piglets at 1, 4, and 8 weeks of age 

and the levels of cytochromes P450 and b
5

, and the activities of 

NADPH-Cytochrome c reductase, aniline hydroxylase (ANOH), p-nitro-

anisole demethylase (NADM), and PCA demethylase were determined. In 

one week old piglets, PCA produced significant increases in all 

parameters measured, with the greatest effect (300% of control) on 

its own in vitro metabolism. The pleiotropic response evoked by PCA 



was similar to that of phenobarbital, but of lesser magnitude . PCP 

produced small increases in only P450 and nitroanisole demethylase . 

The qualitative differences in the induction patterns produced by PCA 

and PCP suggests that the two compounds exert different effect on 

MFO . By eight weeks of age, the magnitude of induction by PCA was 

diminished . Furthermore, although specific activities for ANOH, NADM, 

and PCADM in phenobarbital treated pigs were similar at 1 and 8 weeks 

of age, examination of catalytic activity profiles suggested an age 

dependent decrease in the induction of specific forms of cytochrome 

P450 . On further investigation, Eadie-Hofstee plots from kinetic 

experiments with ANOH and PCADM exhibited biphasic patterns suggestive 

of multiple forms of P450 catalyzing the same reaction . By integrating 

the effects of age and treatment on the various kinetic species for 

each substrate, a minimum of four forms of cytochrome P450 are 

suggested to exist in miniature pig hepatic microsomes . Of the four 

forms, two are inducible by phenobarbital and one of these forms 

appears to display age-dependency in the magnitude of induction . 

These data indicate that MFO induction by exogenous chemicals varies 

qualitatively as well as quantitatively with age . 
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INTRODUCTION 

In recent years, research in perinatal toxicology has gained 

substantial impetus and is now considered by many an important facet 

for the complete evaluation of chemical hazards to man. The increased 

interest in developmental toxicity studies has grown from both theoret­

ical considerations and practical experience. In pharmacology, it has 

long been recognized that an effect in the infant cannot always be 

predicted by extrapolation of adult response. Yet, with the exception 

of teratology studies, the vast majority of toxicological research is 

conducted in relatively mature animals. Since the human infant is 

often unavoidably exposed to the same chemical milieu as the adult 

population, responses of the neonate need to be examined and defined. 

It appears that within this framework, perinatal enzymology may 

play a central role. Chemically induced perturbations of enzyme ontoge­

netic profiles, alterations in isoenzyme patterns, or other modifica­

tions to key metabolic pathways may result in subtle biochemical 

lesions in the absence of apparent morphological or functional abnormal­

ities. Furthermore, such changes may have profound effects on matura­

tional processes or future health. 

One enzyme system, the microsomal mixed-function monooxygenase 

(MFO) system, plays a critical role in the metabolism of foreign 

compounds such as drugs, pesticides and carcinogens. The enzyme system 

also has important homeostatic functions through its metabolism of 

steroids, heme, fatty acids and a number of other endogenous substrates. 
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Additionally, the multicomponent enzyme system, in many cases, is 

extremely sensitive to induction by exogenous chemicals. This adaptive 

mechanism, once thought to be strictly beneficial for the detoxifica­

tion of xenobiotics, has received much attention over the last decade 

with the knowledge that many chemicals, particularly carcinogens, 

require metabolic activation prior to exhibiting their detrimental 

effects. 

This study attempts to examine temporal changes in the response 

of hepatic microsomal enzymes to xenobiotic induction during early 

postnatal life in miniature pigs . The effects of the environmental 

contaminants, pentachlorophenol (PCP) and pentachloroanisole (PCA) on 

the levels and activity of various MFO parameters are investigated 

with emphasis on age dependent differences in the response to induc­

tion . The in vitro metabolism of PCA is characterized and subsequently 

utilized in activity measurements . Due to its well established potent, 

comprehensive inductive effects, phenobarbital is used as a positive 

control for comparisons . Finally, alterations in cytochrome P450 subpop­

ulations are examined as a determinant for age and treatment effects . 
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LITERATURE SURVEY 

Historical perspectives of Microsomal Metabolism 

The metabolism of foreign compounds by hepatic microsomes was 

first described by Mueller and Miller (1949) . These investigators 

showed that both the oxidative N-demethylation and the reduction of 

the azo linkage of aminoazo dyes were catalyzed in vitro by microsomes 

derived from rat liver homogenates . In 1955, Brodie and coworkers 

extended these initial studies by utilizing various drugs as sub­

strates, and after compiling the research efforts from numerous labora­

tories (Brodie et ~· , 1958) proposed that the microsomal fraction of 

cells was responsible for a vast number of reactions involved in drug 

metabolism . The reactions had a strict requirement for both molecular 

oxygen and pyridine nucleotides as reducing agents , which lead to the 

classification of this enzyme system as a mixed-function oxidase 

(Mason, 195 7) or monooxygenase (Hayaishi, 1962) . Further direct support 

for this terminology was provided by Posner et al. (1961) who showed 

that the oxygen molecule inserted into a hydroxylated product was 

derived from 
18

0
2 

and not water . 

Although investigators in the early 1950s had successfully iso­

lated and characterized various individual components of microsomes , a 
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direct connection to drug metabolizing capacity remained obscure. In 

the latter part of the decade, Klingenberg (1958) and Garfinkel (1958) 

reported that an additional component, a cytochrome not y et accounted 

for, existed in microsomes. The ability of this cytochrome to undergo 

unique spectral changes in the presence of carbon monoxide led to the 

early name of "CO Binding Pigment". Omura and Sato ( 1964) further 

characterized this new cytochrome and labeled it Cytocrhome P450 due 

to the location of the Sor et peak of the reduced, carbon monoxide 

complexed material. The reactivity of Cytochrome P450 with carbon 

monoxide provided a powerful tool for experimentation linking micro­

somal electron transport to drug metabolism. Estabrook et ~·, (1963) 

provided firm evidence that Cytochrome P450 was a crucial component 

for hydroxylation reactions in adrenal cortex particles and subse­

quently extablished its role as the "terminal oxidase" of the micro­

somal drug-metabolizing enzyme system (Cooper~~., 1965). 

In 1968, Lu and Coon successfully solubilized and resolved the 

enzyme system into fractions containing Cytochrome P450, NADPH-

Cytochrome P450-Reductase, and a heat stable factor, subsequently 

shown to be phosphatidylcholine. The ability to reconstitute catalytic 

activity toward a variety of drug, steroid and fatty acid substrates 

was a major milestone and opened the way for more refined approaches 

to mechanistic and functional studies. 

In the two decades following the initial studies of microsomal 

mediated metabolism an extremely large body of literature has been 

generated from research in the areas of pharmacology, toxicology, 

biochemistry, endocrinology, molecular biology and genetics. 
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Components of the Microsomal MFO System 

The microsomal fraction of liver contains at least three flavo­

proteins; NADPH-Cytochrome P450-Reductase, NADH-Cytochrome b
5
-Reductase 

and Amine Oxidase, two heme proteins; Cytochrome P450 and Cytochrome 

b
5

, and a non-heme iron protein; Stearyl-CoA Desaturase. In the 

presence of the microenvironment of the smooth endoplasmic reticulum 

these components work either independently or in concert in an electron 

transfer capacity. The following discussion will be limited to those 

components investigated in the present study. 

NADPH-Cytochrome P450-Reductase 

NADPH-Cytochrome P450-Reductase (NADPH Dehydrogenase. EC 1. 6 . 2 . 4) 

was first observed in whole liver extracts by Horecker (1950) . Phillips 

and Langdon (1962) and Williams and Kamin (1962) identified the 

microsomal fraction as the origin of this enzyme and upon purification 

revealed that the protein is capable of reducing a wide variety of 

both one and two electron acceptors . The nomenclature for this enzyme 

varies between laboratories and is dependent on both the acceptor used 

and the condition for the assay. Artificial acceptors such as cyto­

chrome c and ferricyanide are routinely utilized due to the ease of 

measurement, the extended linearity and the higher turnover in these 

assays . Although Cytochrome P450 is known to be the native acceptor, 

the term NADPH-Cytochrome c Reductase is often used interchangeab ly. 

One major difference is that phosphatidylcholine is required for 
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reduction of Cytochrome P450 in reconstituted systems but not for 

electron transfer to artificial acceptors (Strobel and Digman, 1978) . 

The mechanism by which the enzyme transfers electrons to 

Cytochrome P450 has been extensively investigated . It has been demon­

strated that the protein contains equimolar amounts of FAD and FMN 

(Yasukochi and Masters, 1976). Vermillion and Coon (1978), using 

FMN-depleted reductase demonstrated that the enzyme containing only 

FAD remains capable of being readily reduced by NADPH and suggested 

that the FMN moiety probably interacts directly with Cytochrome P450 . 

Although conclusive evidence for the exact mechanism is still lacking, 

the overall sequence of electron transfer from NADPH to FAD to FMN to 

P450 is consistent with the observed biphasic reduction kinetics of 

the enzyme. Furthermore, this scheme appears to be thermodynamically 

favorable as a function of reduction potential differences of the two 

flavin moieties (Oprian ~al . , 1979) . 

In addition to its essential role in transferring reducing equiva­

lents to Cytochrome P450, the reductase has also been reported to have 

P450-independent catalytic activity. Hernandez et ~· , (1967) showed 

that Cytochrome c Reductase catalyzed the reduction of azo dyes 

without benefit of P450 . Furthermore, the participation of this flavo­

protein in the initiation of microsomal NADPH-dependent lipid peroxida­

tion has been reported (Pederson et~. , 1973) . 

Cytochrome BS 

Cytochrome was originally isolated from microsomes by 

Strittmatter and Ve lick (1956) . In addition to purifying and 
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characterizing this cytochrome the investigators also purified a flavo­

protein specific for NADH which transferred electrons to Cytochrome b
5 

(Strittmatter and Velick, 1956a) . Although the physiological function 

of this enzyme system was not apparent at that time, approximately a 

decade later Holloway and Wakil (1970) implicated Cytochrome b
5 

in 

microsomal fatty acid desaturation reactions . It is now well estab­

lished that this microsomal electron transport system is composed of 

NADH-Cytochrome b
5
-Reductase, Cytochrome b

5 
and a cyanide-sensitive 

terminal desaturase which functions to convert Steryl-CoA to Oleyl-CoA 

(Prasad and Joshi, 1979) . 

Less well established has been the role of these components with 

respect to the "drug-metabolizing" enzyme system. The synergistic 

effect of NADH on NADPH-dependent reactions led early investigators to 

postulate a permissive role for Cytochrome b
5

. With the knowledge that 

Cytochrome P450 mediated oxidations required two separate electron 

transfers, it was suggested that the second electron may be denoted 

via Cytochrome b
5 

(Estabrook and Cohen, 1969) . Lu and coworkers (1974) 

and Imai and Sato (1977) demonstrated that in reconstituted metabolic 

systems, Cytochrome b
5 

was not an obligatory component for activity, 

although in both studies synergistic effects were seen. It was also 

suggested by Lu et al. (1974) that the role of Cytochrome b
5 

may be 

dependent on such factors as tissue, sex, age and the particular 

substrate utilized . More recently, Imai (1979), using various purified 

forms of Cytochrome P450, showed that Cytochrome b
5 

was required for 

maximal activity with some forms of P450, but had little or no effect 



8 

on other forms in reconstituted systems . Sugiyama (1979) reported the 

purification of a unique form of Cytochrome P450 from rabbit liver . 

This form of P450 had a high affinity for Cytochrome b
5 

and required 

its presence for reconstitution of catalytic activity with nitroanisole 

as substrate . Further support for the role of Cytochrome b
5 

in 

P450-dependent reactions has come from the finding that in addition to 

NADH-Cytochrome b
5
-Reductase, NADPH Cytochrome P450 Reductase can effi­

ciently reduce Cytochrome b
5 

(Enoch and Strittmatter, 1979) . Thus it 

appears that Cytochrome b
5 

serves a central role in microsomal electron 

transport by interacting with two separate reductases, a desaturase 

and some forms of Cytochrome P450 . 

Cytochrome P450 

Cytochrome P450 is the dominant heme protein in microsomes . The 

mammalian liver is the richest source of the hemoprotein, however, 

Cytochrome P450 is also found in kidney, lung, skin, intestinal tract, 

adrenal gland, placenta, ovary and blood platelets (Hodgson and 

Dauterman, 1980) . cytochrome P450 as the terminal oxidase of the MFO 

system displays functional heterogeneity in the various tissues, yet 

although many of the extrahepatic tissues are capable of supporting 

low levels of xenobiotic metabolism, empirically, the liver is the 

major site for such metabolism . The Cytochrome P450 in kidney, for 

example, appears to be quite active in the omega oxidation of fatty 

acids (Masters et ~· , 1980), while the P450 in adrenal gland mitochon­

dria is mainly responsible for the metabolism of steriod hormones 

(Sih, 1969). 
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The ability of Cytochrome P450 to serve as the terminal oxidase 

of the MFO system lies in its ability to bind substrate, undergo 

reversible oxidation state transitions, bind molecular oxygen and 

activate it for subsequent insertion into the substrate molecule. The 

binding of substrate by P450 results in measurable spectral perturba­

tions . Rernrner et al. (1966) and Schenkman et al. (1967) described 

characteristic absorbance changes upon addition of various compounds 

to microsomal suspensions . There are primarily two major and one minor 

types of spectra observed dependent on the compound utilized . A Type I 

difference spectrum is characterized by an absorption maximum between 

385 - 390 nm and a minimum at approximately 420 nm. A Type II spectrum 

is characterized by a peak at about 430 nm and a broad trough between 

390 - 410 nm . A third type of difference spectrum was also described 

as a reverse Type I . This spectrum is characterized by a peak at 420 nm 

and a trough between 385 - 390 nm and thus appears to be a mirror 

image of a Type I spectrum . 

Whereas Type I producing compounds represent a large, structurally 

diverse group including drugs, pesticides and steriods, Type II com­

pounds tend to be primary amines, pyridines and imidazole compounds 

(Mailman et ~., 1974) . Gigon and coworkers ( 1968) found that the 

reduction of Cytochrome P450 by NADPH-Cytochrome P450-Reductase was 

accelerated in the presence of Type I compounds while unchanged or 

decreased in the presence of Type II compounds . These results cor­

related well with the fact that Type I compounds were generally better 

substrates for P450 dependent oxidation than Type II compounds and 
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further indicated that the substrate binding preceded reduction in 

the dominant reaction pathway . 

In conjunction with optical difference spectra studies, electron 

paramagnetic resonance (EPR) spectroscopy had shown that Cytochrome 

P450 can exist in a high-spin (Fe
3

+ heme: S = 5/2), a low-spin (Fe
3

+ 

heme: S 1/2) or most commonly in a mixed spin state (Jefcoate, 

1978). A Type I change correlates with an increase in high-spin 

character upon binding of the substrate, while a Type II change 

reflects a conversion of native high-spin P450 to a low-spin complex 

of the heme and the ligand . In this respect, two modes of compound 

interaction with P450 are now recognized as "substrate" binding and 

"ligand" binding (Testa and Jenner, 1981) . 

From the integration of diverse physical and chemical studies, 

a structural model of the active site of Cytochrome P450 has been 

proposed (Lipscomb and Gunsalus, 1973; Rein et al . , 1976) . 

In these models, the active site contains an iron protoporphyrin 

IX moiety in a large, relatively accessible hydrophobic pocket in 

the apoprotein . The heme is loosely anchored to the site by a combina-

tion of hydrophobic forces and covalent bonds to the central iron 

ion . The fifth iron ligand has been reported to be a thiolate anion 

contributed by a cycteine residue of the protein (Dolphin et al., 

1979) . This anionic mercaptide linkage has been implicated for both 

the unique specral properties of this cytochrome and in having impor-

tant electronic effects on oxygen activation in the normal cycle 

of catalysis (Collman and Sorrell, 1975) . The sixth axial ligand 
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has been reported to be either oxygen, in the form of water or a 

hydroxyl group from a proximal amino acid (Griffin and Peterson, 

1975) or nitrogen in the form of histidine. Although conclusive evi­

dence is lacking, it is generally accepted that the sixth linkage is 

relatively weak, but functions to hold the heme iron in a square 

octahedral, hexacoordinated configuration. Displacement of the weak 

bond by stronger ligands such as amines and pyridines results in a 

heme-ligand complex typified by a Type II spectrum and low-spin 

cytochrome. The "locking" of Cytochrome P450 into a low-spin state 

appears to be responsible for some of the inhibitory actions exerted 

by such compounds (Testa and Jenner, 1981). 

In contrast to ligand binding, substrate binding involves mainly 

hydrophobic interactions between non-polar regions of the protein and 

the substrate. This binding results in a dissociation of the native 

sixth ligand linkage and a change in the configuration of the heme 

molecule from octahedral, hexacoordinated to square pyramidal, pentaco­

ordinated (White and Coon, 1980). This change also results in a 

conversion to a high-spin state, which increases the redox potential 

of the system and creates a more favorable electron flow sequence to 

Cytochrome P450 (Slingar ~ ~., 1979). 

The mechanism of binding and subsequent activation of molecular 

oxygen by Cytochrome P450 is quite complex and has recently been 

reviewed (White and Coon, 1980). Essentially, following the binding 

of oxygen to the reduced P450-substrate complex, a second electron 

transfer results in the creation of peroxide anion. This reactive 
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protein-complexed intermediate then reacts with substrate to form a 

hydroxylated compound and water. In addition to this mechanism, 

evidence has accumulated indicating that in some cases, Cytochrome 

p450 acts in an oxidase or peroxygenase capacity resulting in the 

production of hydrogen peroxide or other peroxy compounds. The hemo­

lytic cleavage of the oxygen-oxygen bond may lead directly to inser­

tion of a hydroxyl group into a substrate independent of the NADPH/0
2 

pathway (Coon, 1981). 

Induction of Monooxygenase Activity 

Conney and Burns (1959) first demonstrated the phenomenon of 

drug induced synthesis of liver microsomal enzymes. This finding 

served to substantiate a number of earlier assumptions concerning the 

MFO system and became a powerful tool for the study of induced enzyme 

synthesis in general. Extensive reviews on MFO induction have been 

published (Conney, 1967; Mannering, 1968). 

Historically, inducers of MFO have fallen into one of two cate­

gories. One group, containing numerous drugs and xenobiotics of di­

verse chemical structure, is best typified by phenobarbital. The 

other class consists primarily of polycyclic aromatic hydrocarbons of 

which 3-methylcholanthrene is generally recognized as the prototype 

(Conney, 1967). The effects of these two types of inducers are 

similar in some respects in that they lead to increased protein 

synthesis, as determined by amino acid incorporation both in vivo and 
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in vitro (Kato ~ ~·, 1965; Gelboin, 1964) . The increase in protein 

synthesis can be blocked by the metabolic inhibitor, ethionine (Conney 

et al . , 1956), and at the level of translation by puromycin, however, --
the inhibition by Actinomycin D indicates that induction by both 

types of inducers involves DNA-dependent RNA synthesis (Nebert and 

Gelboin, 1969). There are however, major differences between the two 

classes of inducers. 

Phenobarbital is a much more comprehensive inducer of MFO compo-

nents than 3-MC. Among the effects produced by phenobarbital are an 

increase in both the total liver protein and the specific protein 

content in microsomes (Conney et~ . , 1960), increased levels of Cyto-

chrome P450, Cytochrome b
5

, NADPH-Cytochrome P450 Reductase, and numer-

ous Cytochrome P450-dependent reactions (Kuriyama et ~., 1969; 

Conney, 1967). In addition, a marked proliferation of the smooth endo-

plasmic reticulum can be observed by electron microscopy (Fouts and 

Rogers, 1965) which is consistent with the observed increase in micro-

somal protein and phospholipid content following induction (Orrenius 

and Ericsson, 1966) . 

In contrast to phenobarbital, 3- MC and cogeners induce fewer 

components of microsomes. There are, however, two major qualitative 

changes observed in microsomes fol lowing 3-MC treatment . A shift in 

the wavelength of the reduced CO peak to 448 nm and a substantial 

increase in the activity of Aryl Hydrocarbon Hydroxylase, have been 

associated with the de ~ synthesis of a new hemoprotein, Cytochrome 

P448 (Alvares et~., 1967; Kuntzman et~. , 1969) . 
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A third class of inducers, the polychlorinated biphenyls, came 

to interest during the 1970s as a result of their increasing contamina­

tion of the environment (Alvares et ~., 1973). These compounds, 

typified by Aroclor 1254, exhibited potent inductive effects which 

were consistent with both phenobarbital and 3-MC effects. On further 

examination, it was concluded that this combined effect was probably 

due to the complex mixture of isomers in various preparations (Stonard 

and Greig, 1976). 

Although most inducers of MFO usually require multiple administra­

tions with fairly high doses to produce their maximal effect, the 

extremely toxic compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

was found to be an inducer of the 3-MC type and was more potent than 

any other inducer on a dose-per-unit body weight basis (Poland and 

Glover, 1974). Lucier et al. (1975) demonstrated that a single oral 

dose of TCDD at 3 µg/kg to pregnant rats caused marked elevations in 

both maternal and progeny hepatic MFO parameters. These effects were 

still present months later. 

Although the number of xenobiotics capable of induction is quite 

large they have in the past been conveniently placed into one of the 

two classes. It is, however, becoming evident as assay capabilities 

and separation techniques expand, that many compounds exhibit unique 

induction properties. The effects of pregnenolone-16-a-carbonitrile 

(Elshourbagy and Guzelian, 1980) and isosafrole (Ryan ~ al., 1980) 

cannot be definitively categorized as either 3-MC or phenobarbital 

type of induction. 
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The mechanism(s) by which inducers lead to increased synthesis 

of MFO components remains somewhat obscure. The documented increase 

in DNA-dependent RNA synthesis during the induction process has led 

investigators to propose that inducers play some role as derepressors 

of regulatory or other genes (Nebert et ~·, 1981). One early theory 

to account for the ability of such a diverse structural group of com­

pounds to invoke similar effects was proposed by Marshall and McLean 

( 1971). These authors suggested that induction was mediated through 

an "endogenous factor", which was normally inactivated by Cytochrome 

P450. Compounds capable of binding to P450 would block inactivation, 

resulting in increased cellular levels of the factor and subsequent 

induction. This theory is supported by the empirically derived evi­

dence that a very large proportion of inducers are either substrates 

or inhibitors of P450 capable of producing Type I binding spectra 

(Mannering, 1969). Identification of a specific "endogenous factor" 

however, has yet to be accomplished. 

The discovery of a hepatic cytosolic "species" in mice, which 

stereospecifically and reversibly bound TCDD, led to the postulation 

of a specific receptor for the induction of Aryl Hydrocarbon Hydroxyl­

ase (Poland et ~·, 1976). This receptor was shown to bind a variety 

of halogenated dibenzo- dioxins and furans with different affinity 

which closely correlated with their potencies as inducers. Further­

more, although the inductive polycyclic aromatic hydrocarbons competed 

with TCDD for binding, phenobarbital, pregnenolone-16-a-carbonitrile 

and steroid hormones displayed no specific binding. This cytosolic 
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species, now termed the Ah receptor, is recognized as the major prod-

uct of regulatory gene ( s) in the murine Ah locus (Nebert et al., 

1981). The receptor has also been detected in rats and rabbits (Kahl 

et al., 1980). Excellent reviews of the research on the Ah locus and --
genetic control of induction have recently been published (Nebert et 

al., 1981, 1982). Of great interest has been Nebert's comparison of 

the Cytochrome P450 and immune systems and his hypothesis that 

mammalian tissues have the genetic capacity to produce hundreds or 

thousands of inducible forms of P450 in response to different chemical 

stimuli. 

Developmental Aspects of Monooxygenase Activity 

Since the first reports by Jondorf et ~· (1959) and Fouts and 

Adamson (1959), investigators of the perinatal development of MFO 

activity have flourished in the literature. Extensive reviews by 

Short et al. (1976), Neims et al. (1976) and most recently Klinger et 

al. (1981) have indicated that although variations exist between 

laboratories with respect to species, sex and substrates utilized, 

the general patterns of development are similar in most mammalian 

species. Essentially the monooxygenases are apparently absent or 

barely detectable in fetal organs, especially in the fetal liver, 

until just before birth. After birth, in most species, development of 

specific microsomal components and metabolic pathways generally follow 

one of three profiles: (1) activity rises rapidly from birth and 
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plateaus at maturity, (2) activities peak shortly after birth, often 

exceeding adult levels, and subsequently decrease to adult levels, or 

(3) activity remains low during early postnatal development and rises 

rapidly coincident with the onset of sexual maturity. 

A number of factors have been postulated to explain the defi-

ciency of MFO activity during late fetal and early postnatal life . 

Wilson (1969) suggested that high levels of somatotropin during 

development inhibited MFO . Soyka and Long (1972) found that progester-

one inhibited MFO in vitro and suggested that this maternally derived 

inhibitor was responsible for decreased activity in fetal and neonatal 

animals . Short et al . (1976) and Kuenzig et al. (1975) implicated the 

immaturity of hepatocellular morphology, especially the absence of 

smooth endoplasmic reticulum in the fetus and neonate, as a primary 

determinant for low MFO activity . Both groups demonstrated a good 

correlation between age related development of smooth endoplasmic 

reticulum and increases in hepatic drug metabolic activity. Other 

factors, including the presence of endogenous P450 ligands or age 

related phospholipid differences in microsomal membranes, have recent-

ly been discounted as responsible for the age differences in biotrans-

formation (Klinger et ~. , 1981) . Furthermore, these authors suggested 

that qualitative differences in Cytochrome P450, or in the ratio of 

different P450 subpopulation may be responsible for the many varia-

tions observed in developmental profiles . 

Induction of monooxygenase activity during perinatal development 

appears to be highly dependent on both the inducer and species util-

ized. In laboratory animals with long gestation periods, such as the 
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guinea pig, phenobarbital type inducers are effective in increasing 

MFO activity in the late gestational fetus (Kuenzig et ~·, 1975). 

Species less developed at birth, such as the rat, are generally refrac­

tory to phenobarbital induction in utero (Guenther and Mannering, 

1977; Cresteil et~., 1979), but rapidly become responsive after 

birth. Shubert and Netter (1981) have further demonstrated that the 

onset of inducibility is independent of parturition, but is largely 

determined by the time passed since conception. In contrast, inducers 

of Cytochrome P448, such as TCDD and 3-MC, are quite effective trans­

placental inducers (Guenther and Mannering, 1977; Lucier et~., 1975). 

Early studies on the postnatal inducibility of MFO activity indi­

cated that younger animals were more responsive to phenobarbital induc­

tion when measured as percent increase of specific activity over con­

trols (Basu et ~·, 1971). Although such studies did not receive a 

great deal of attention at that point in time, more recently interest 

has been rekindled with the knowledge of the heterogeneity of Cyto­

chrome P450. Atlas et al. (1977) showed that various P450 (P448) 

subspecies follow different developmental patterns in rabbit, as well 

as altered sensitivity to induction. Cresteil and coworkers (1979) 

reported age dependent changes in the catalytic activity of aniline 

hydroxylation and nitroanisole demethylation as a function of induc­

tion by either phenobarbital or 3-MC. Klinger et al. (1981) has 

summarized a number of reports showing greater enhancement of MFO by 

phenobarbital in young rats. The conclusion that is beginning to 
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emerge from these studies is that the neonate is not only 

quantitatively different from the adult in its capacity to metabolize 

compounds, but may be qualitatively different in its response to 

induction. 

Heterogeniety of Cytochrome P450 

Species differences in the rates of metabolism of several narco-

tics (Axelrod, 1956) and the induction of specific metabolic pathways 

at the expense of others in a single species (Conney !::!_ al., 1959) 

led to the early proposal of more than one liver microsomal drug metab-

olizing system. With the discovery that Cytochrome P450 was the 

terminal oxidase of the enzyme system (Cooper et al., 1965) numerous 

investigations focused on determining whether the broad substrate 

specificity, the equally diverse number of metabolic reactions, and 

the induced alterations in specific catalytic activities could be 

accounted for by a single Cytochrome P450. 

Early approaches to resolving the question of multiple forms 

of P450 were based on manipulations of various biochemical and biophys-

ical properties of the enzyme in microsomal suspensions. The differ-

ent, selective effects of phenobarbital and 3-MC induction have been 

well documented (Conney, 1967) and previously discussed. Similarly, 

in vitro inhibition studies have centered around the use of selective --
inhibitors of various reactions and forms of P450. SKF 525A, a potent 

inhibitor of drug metabolism, was utilized to demonstrate differences 

between the forms of Cytochrome P450 in control and phenobarbital 
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induced microsomes and that in 3-MC treated animals (Sladek and 

Mannering, 1969). It was generally accepted during this period that 

phenobarbital caused only a quantitative increase in the form of Cyto-

chrome P450 normally present in uninduced microsomes, however, 

Grasdalen et ~· (1975) demonstrated that phenobarbital induced micro-

somes displayed different characteristics from controls and indicated 

that metyrapone was more selective for the former while SKF 525A was 

more selective for uninduced form(s). Jonen et al. (1974) also indi-

cated that metyrapone had a greater affinity for phenobarbital induced 

P450. Thus the early evidence indicated that phenobarbital induction 

led to qualitative as well as quantitative changes in microsomes. 

Napthoflavone (7,8-Benzoflavone) strongly inhibits many reactions 

induced by 3-MC (Burke ~ ~·, 1977), yet stimulates the activity of 

native and phenobarbital induced Cytochrome P450 (Cinti, 1978). Tetra-

hydrofuran has recently been shown to be a potent inhibitor of a form 

of P450 found in uninduced microsomes, but has little or no effect in 

phenobarbital induced forms of P450 (Hultmark et ~., 1979). An 

extremely thorough review of the types of mechanisms of P450 inhibi-

tors was recently published (Testa and Jenner, 1981). 

Further evidence for the presence of multiple forms of Cytochrome 

P450 in liver microsomes has been deduced from kinetic studies with 

various substrates. Although the metabolism of many compounds appears 

to follow normal Michalis-Menten kinetics, with resulting linear 

double reciprocal plots, a number of substrates such as aniline 

(McCoy, 1980), aminopyrine (Kotake, 1981) 7-ethoxycoumarin (Greenlee 
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and Poland, 1978; Boobis et ~·, 1981) and phenacetin (Boobis et al., 

1981) have been shown to exhibit biphasic kinetic profiles indicative 

of multiple enzymes acting on the same substrate (Segel, 1975). Mul­

tiple forms have also been implicated (Shiverick and Neims, 1979) for 

the developmental changes observed in the hydroxylation of testos­

terone at the 6S, 7a and 16a positions in rats (Conney et~., 1969). 

The ability to solubilize and resolve microsomal enzyme compo­

nents (Lu and Coon, 1968), has enabled a finer approach to studying 

the multiplicity of Cytochrome P450. A number of criteria have been 

utilized and include determination of molecular weights by SDS-PAGE, 

differences in spectral characteristics, differences in catalytic 

activities of purified forms, immunological properties, peptide map­

ping, and amino acid sequencing (Lu and West, 1980). By assimilating 

the research from numerous laboratories, the authors have indicated 

that thus far, depending on treatment, there are five to seven forms 

of P450 that have been isolated from rabbit, five to six forms from 

rat, four to six forms from mice, and at least two forms from pigs. 

An undetermined number may be present in human liver microsomes. 

Pentachlorophenol and Pentachloroanisol 

Pentachlorophenol (PCP) and the lower chlorinated phenols, tetra­

and tri- chlorophenol have been used as fungicides, herbicides, insec­

ticides, and precursors in the synthesis of other pesticides since 

the early 1930s. The literature on PCP is abundant. A review of the 

toxicology and occurrence of PCP in the environment up to 1967 was 
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published by Bevenue and Beckman (1967) . More recently, Ahlborg and 

Thunberg (1980) compiled an extensive review of the literature from 

1967 on, including some aspects not covered by the previous authors . 

The acute toxicity of PCP has generally been attributed to the 

uncoupling effect of the compound on oxidative phosphorylation 

(Weinbach, 1954) . The clinical symptoms associated with acute poison­

ing, including increased respiratory rate and volume, progressive 

neuromuscular weakness and increased body temperature are consistent 

with such a mechanism of action . Of greater concern, however, are the 

potential chronic effects of chlorinated phenols . The occurrence of 

PCP in water and the food chain (Ahlborg and Thunberg, 1980) coupled 

with the detection of this compound in the urine of a diverse 

population of non-occupationally exposed persons, suggests that PCP 

is quite ubiquitous in the environment . 

Subacute and chronic toxicity studies (Knudsen et ~· ; Schwetz 

et ~· , 1977) have led to variable and inconsistent results, which 

have now been attributed to differences in the purity of the PCP pre­

parations utilized (Ahlborg and Thunberg, 1980) . Specifically, the 

presence of chlorinated dibenzodioxins and dibenzofurans in tecnical 

grades of PCP, and the documented wide spectrum of toxic manifesta­

tions of these agents (Kimbrough, 1972) precludes analysis of specific 

cause and effect relationships . Goldstein and coworkers (1977) demon­

strated that technical grade PCP produced hepatic porphyria and dra­

matic increases in microsomal drug metabolizing activity in an eight 

month feeding study in female rats . The qualitative and quantitative 
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nature of these effects were consistent with the effects of a number 

of chlorinated dioxins. In the same study, purified PCP was shown to 

be devoid of any hepatic effects with the exception of a moderate 

increase in glucuronyl transferase activity at the highest dosage 

level. This study implied that many of the hepatic and extrahepatic 

effects reported in earlier studies were probably due to contaminants. 

Kimbrough and Linder (197 S) reported that purified PCP, in addition 

to increasing liver size, produced an enlargement of hepatocytes, a 

slight increase in smooth endoplasmic reticulum and lipid vacuoles . 

The cause of these effects, however, is not known . 

In contrast to studies on enzyme induction, a number of investiga­

tors have examined the potential for PCP and other chlorinated 

phenols to inhibit MFO activity . Arrhenius et ~·, (1977) showed that 

in vitro, PCP selectively inhibited the C-oxygenation of dimethyl-

aniline (P450-dependent) thus favoring the N-oxygenation (P450-

independent). The author concluded that these results were due to 

either a specific attack on the P450 enzyme or a disturbance in the 

transfer of electrons to P450 . Carlson (1978) reported inhibition of 

EPN detoxification and nitroanisole demethylation in vitro by various 

trichlorophenol isomers . The observed inhibition appeared to be non­

competitive and was not demonstrated in microsomes obtained from 

treated animals . It thus appears that PCP and cogeners may be similar 

to various other phenols and alcohols in their interaction with Cyto­

chrome P450 (cf Testa and Jenner, 1981) . Furthermore, a competitive 

aspect for inhibition may be consistent with the finding that PCP is 
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a substrate for Cytochrome P450 (P448) mediated dechlorination 

(Ahlborg, 1978) • 

Pentachloroanisol (PCA), the methyl ether of PCP, has been found 

in lake sediments and fish tissues (Kuehl et ~· , 1978), in shellfish 

(Miyazaki, 1981) and in the blood and milk of cows exposed to commer-

cial grades of PCP (Firestone et ~. , 1979) . The occurrence of PCA in 

the environment has been attributed solely to the degradation of PCP 

by microorganisms in soil and wood (Kaufman, 1978). Cserjesi and 

Johnson (1972) reported the capacity of three species of Trichoderma 

to methylate PCP in liquid cultures . Curtis et ~· (1972) reported 

t hat feeding chickens maintained on shavings from wood treated with 

chlorophenols produced meat and eggs displaying a musty taint . The 

same group (Curtis et ~· , 1974) established that the methylating 

action of certain fungi present in poultry litter was responsible for 

the occurrence of chlorinated anisoles . 

Despite these findings, pentachloroanisole has not received much 

attention in the toxicological literature . Glickman and coworkers 

(1977) studied the uptake, distribution and elimination of PCP and 

PCA in rainbow trout. Their results indicated that PCA is more 

readily bioaccumulated, more persistent, and that the presence of 

PCP-glucuronide in the bile of PCA treated fish indicated some demeth-

ylation of the compound in vivo . The same group (Vodicnik et ~· , 

1980) undertook similar experiments in female mice . The results of 

this study, however, indicated that the pattern of distribution and 
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elimination of PCA was similar to that for PCP in rodents. They con­

cluded that PCA must be demethylated prior to excretion and that this 

step was probably rate limiting for clearance . 

Miniature Pigs 

The development of a strain of genetically small pigs was initi­

ated at the Hormel Institute of the University of Minnisota in 1949 

(England, 1954). Since then, other breeds of miniature pigs have been 

established in the United States and abroad. 

The use of the pig in biomedical research received much attention 

in the 1960s by virtue of its similarities to the human in renal, 

cardiovascular, and digestive tract anatomy and physiology, dental 

characteristics, eye structure, and skin morphology . In addition to 

these traits, the pig is capable of developing many human pathological 

conditions including atherosclerosis, gastric ulcer and obesity (Pond 

and Houpt, 1978). The young pig has found greatest utility in studies 

of nutrition. Since the digestive physiology and nutrient requirements 

of newborn pigs is remarkably similar to human infants, baby pigs 

have been used to develop and evaluate some human infant formulas 

(Book and Bustard, 1974) . Although the pig has received increasing 

popularity as a laboratory model, housing and handling constraints 

continue to restrict its use to larger, well equipped facilities . 

The use of the swine in drug toxicity studies was advocated by 

Earl et al . (1964). Investigators of drug metabolism pathways in minia­

ture pigs, however, have been extremely limited. In an attempt to 
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find a suitable "metabolic" replacement for the dwindling supply of 

rhesus monkeys, Litterst et al . (1976) conducted a comparative study 

using the miniature pig as one of five species . Based on an arbitrary 

scale, the authors concluded that the miniature pig was the most com-

parable species . Freudenthal et al. (1976) further characterized some 

parameters of the MFO system in miniature pigs ranging in age from 

two to eight months . They concluded that the two month old pig demon-

strated adult levels of activity . Early postnatal development of the 

MFO system has been reported for the domestic, Duroc pig (Short and 

David, 1970; Short and Stith, 1973), however to date similar studies 

in the miniature pig have not been found in the literature . 
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EXPERIMENTAL 

Materials 

Pentachlorophenol (99%) was purchased from Aldrich Chemical 

Company (Milwaukee, WI) . The stock material was subjected to further 

purification as described below . Pentachloroanisole was synthesized 

from the purified PCP as below . Sodium Phenobarbital was purchased 

from Mallinkrodt Chemical Works (St . Louis, MO). 

NADP, NADPH, NADH, Glucose-6- Phosphate and Glucose-6- Phosphate 

Dehydrogenase were purchased from PL Biochemicals, Inc . (Milwaukee, 

WI) . Aniline hydrochloride was purchased from Fisher Scientific 

(Silver Spring, MD) . Sigma Chemical Company (St . Louis, MO) was the 

supplier of cytochrome c (Type III) and p-nitrophenol standard solu­

tion . Eastman-Kodak (Rochester , NY) was the supplier of p-nitroanisole 

and p-aminophenol. 

All other reagents utilized throughout the investigation were 

analytical grade or better . 

Preparation of PCP and PCA 

Pentachlorophenol (Aldrich 99%) was further purified in an attempt 

to remove trace residual of non-phenolic contaminants. Twenty grams 

of PCP, Aldrich 99% were dissolved in 100 mls methanol in a 1 . 0 liter 
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separatory funnel. Fifty mls of 2 . 5 N Na OH were added, followed by 

200 mls distilled water . The contents were extracted four separate 

times with 100 mls petroleum ether, which was discarded after each 

extraction by aspiration . The aqueous layer was then acidified with 

20 mls concentrated HCl. The resulting white precipitate was trans-

ferred to a Buchner funnel and vacuum filtered . The remaining material 

was washed copiously with distilled water and then transferred to a 

clean container and dried overnight in a vacuum oven . The procedure 

decolorized the starting material (yellow to white) and the final 

product gave a melting point of 187-190°, consistent with a purified 

standard . 
1 

Further analysis for the presence of contaminating mater-

ials was kindly provided by Mr . Ron Thomas of the Office of Pesticide 

Programs, US EPA, Beltsville, MD. A summary of this analysis is pro-

vided in Appendix A. 

Pentachloroanisole was synthesized by methylating PCP using diazo-

methane (P . Sapienza and G. Ikeda, personal comm . ) . Ten grams of puri-

fied PCP were dissolved in a small volume of methanol. A three- fold 

molar excess of diazomethane, prepared using a Diazald Kit (Aldrich 

Chemical Company, Milwaukee, WI) was added to . the PCP-methanol solu-

tion . The solution was then evaporated unter nitrogen . The resulting 

material was then recrystallized with hot 95% ethanol . Activated char-

coal was added to aid in decolorizing . The solution was filtered 

1 
Purified standards of pentachlorophenol 
provided by the Division of Chemistry, 
Drug Administration. 

and pentachloroanisole were 
Bureau of Foods, Food and 
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while hot to remove the charcoal and again after cooling . The 

resulting PCA was dried overnight in a vacuum oven . The newly 

synthesized PCA had a melting point of 106-107° which agreed with a 

purified standard . Thin layer chromatographic analysis using 

Benzene:MeOH (95:5) showed a single spot (Rf 0 . 91) indentical to the 

PCA standard. No PCP (Rf 0 . 47 was detected in the sample. Further 

analysis for contaminants was conducted as above. 

Animals 

The miniature pigs utilized in this study were a cross of Hanford 

and Hormel strains belonging to FDA' s Beltsville Research Facility . 

Sows were bred at a swine breeding facility operated by Environmental 

Consultants, Inc . , Suffolk, Virginia . Bred sows were transferred to 

the Beltsville Research Facility at approximately the beginning of 

their third trimester (70 days of gestation), where they were main-

tained until farrowing . From the 109th day of gestation, sows were 

housed in individual pens containing sterilized corn cob bedding and 

equipped with an overhead heat lamp . Within 24 hours of birth, piglets 

were assigned a unique identification number and received 1 cc iron 

dextran (Nomemic; Burns-Biotec, Omaha, NB) . Piglets were maintained 

with the sow for 96 + 12 hours after birth at which time they were 

removed to individual stainless-steel metabolism cages in a specially 

designed neonatal nursery . The temperature and humidity in the nursery 

were maintained at approximately 
0 

90 F and 40/o, respectively, during 

the fi· rst f k d h f h d d ew wee s an t erea ter t e temperature was re uce at 
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a rate of 2-5°F per week to a minimum of approximately 72°F . A twelve 

hour light/dark cycle was maintained through the entire study . 

Weaned pigl e ts were fed a diet of whole cow's mild obtained from 

the USDA facility (Beltsville, MD) . Milk diet was supplemented with 

o. 4% of a multivitamin mixture (Dawes STRESSEZ) . During the first 

few weeks in the nursery, piglets received amounts of milk equal to 

approximately 20% of their body weight, divided into three equal por­

tions at 8:00 A. M. , Noon and 4 : 00 P . M. Milk was heated to room temper­

ature prior to fe e ding . As animals increased in size and weight, diet 

was adjusted accordingly so that by eight weeks of age, piglets re­

ceived approximately 30% of their body weight . Piglets that failed 

to thrive, as determined by weight gain and overall condition, were 

excluded from the study . Piglets were assigned to treatment groups 

based on a random division of littermates across the four experimental 

treatments . Each treatment group had equal numbers of male and f ema l e 

piglets. 

Animal Treatments 

Piglets were treated at 1 week, 4 weeks, or 8 weeks of age with 

either PCP (10 mg/kg in corn oil), PCA (10 mg/kg in corn oil), Pheno­

barbital (10 mg/kg in water) or corn oil alone . Phenobarbital treated 

piglets rece ived an equivalent volume of corn oil immediately after 

dosing . All dosages were adjusted such that 1 ml of solution was admin­

istered per kilogram of body we ight . Dosing was done by oral admin­

istration using a syringe fitted with a 19 ga stainless-steel stomach 
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tube . Piglets were held securely with their mouths open and the tip 

of the stomach tube was placed to the rear of the oral cavity . After 

the contents of the syringe were ejected, the piglet was held until 

complete swallowing of the dose was evidenced . 

Piglets were treated once a day at 8:00 A. M. for four consecutive 

days and sacrificed on the fifth day, approximately 24 hours after 

the final dose . 

Preparation of Microsomes 

Piglets were sacrificed by electrocution and then exsanguinated . 

Livers were removed and immediately placed into ice cold 0 . 02 M 

Tris-HCL (pH 7.4) containing 1 . 15% KCl . After removing the gall 

bladders, the livers were blotted dry and weighed . 

A portion of the liver, between five and seven grams, was 

thoroughly minced with scissors, and transferred to a glass Potter­

Elvehjem homogenizing tube . Three volumes of 0 . 02 M Tris-HCL were 

added and the contents homogenized with a teflon pestle attached to a 

variable speed motor . The homogenate was centrifuged for 15 minutes 

at 10,000 RPM in a Sorvall RC2-B refrigerated centrifuge at 4°C . The 

re sulting supernatant was filtered through one layer of sterilized 

gauze to remove the floating fat layer and then centrifuged at 

105,000 x g in a Beckman L2-65B ultracentrifuge . The supernatant was 

removed by aspiration and the microsomal pellet was resuspended in 

buffer and centrifuged again at 105,000 x g for 30 minutes . The 
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"washed" microsomal pellet was then gently resuspended with sufficient 

0 . 02 M Tris-HCl buffer to give a final protein concentration of approx­

imately 4-6 mg per ml . Microsomal suspensions were kept on ice until 

utilized. 

Pentachloroanisole Demethylation 

The in vitro metabolism of pentachloroanisole was determined by 

measuring the format ion of the demethylated by-product, formaldehyde, 

according to the method of Nash (1953) . Assays were performed in 25 ml 

erlenmeyer flasks and consisted of the following in 0.1 M Tris-HCl 

(pH 7 . 4): NADP (0 . 8 mM); glucose-6-phosphate (5 . 0 mM), MgC1
2 

(5 . 0 mM), 

glucose-6-phosphate dehydrogenase (1 . 9 Units) and semicarbazide 

(1.0 mM). 

Stock substrate was prepared by suspending PCA in 0 . 1 M Tris - HCl 

which contained 2 . 5 mg/ml Tween 80 and the mixture was sonicated for 

5 minutes . The resulting milky white suspension appeared evenly dis­

persed and was vortexed prior to each addition to incubation mixtures . 

Substrate blanks were run for each individual sample and received an 

e qual volume of the Tween 80 solution without PCA . Final PCA con­

centration in the assay was 0 . 5 mM. 

Flasks containing cofactors and substrate (or blank) were prein­

cubated for 10 minutes at 37°C to allow temperature equilibration. 

The reaction was initiated by the addition of microsomes (approxi-

mately 2-3 mg protein) and the mixtures (in a total volume of 2.5 ml) 
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were incubated aerobically, with vigorous shaking in a Dubenof f 

Metabolic shaking incubator for 10 minutes. The reaction was termin­

ated with 0.5 mls of 50/. TCA and the protein precipitated by centri­

fugation. A 1.0 ml aliquot of the clear supernatant was transferred 

to a clean test tube and 0.5 mls of Nash reagent (3.9 M Ammonium 

acetate; 0.039 M acetylacetone) was added. The resulting colored 

product was measured in an Abbott Bichromatic Analyzer (ABA-100) 

using a peak wavelength of 415 nm and sideband wavelength of 450 nm. 

An internal calibration factor, previously determined from formalde­

hyde standards, was utilized and results were obtained directly as 

nMoles HCHO/ml. Activity was calculated by subtracting substrate 

blank values from their corresponding sample value, which was then 

converted to nMoles HCHO/min/mg protein. 

Determination of PCP Formation 

Proof of the formation of pentachlorophenol (PCP) as a result 

of the demethylation of PCA was established qualitatively as follows: 

The PCA demethylation assay (above) was modified slightly such that 

the final volume was 1.0 ml. Assays were conducted in screw cap culture 

tubes and contained 0.2 mM PCA and microsomes from phenobarbital 

treated piglets. The reaction was terminated after 20 minutes by the 

addition of 1.0 ml 6 N HCl, followed by 5.0 mls hexane. Tubes were 

vortexed for 1 minute and then centrifuged to separate the aqueous 

and organic layers. The hexane phase was removed to a clean glass 

Vial and the extraction was repeated. The combined hexane extracts 
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were evaporated to dryness under a stream of nitrogen at room tempera-

ture . Analysis for PCP (and PCA) was performed using a Waters 

Associates Liquid Chromatograph . The HPLC parameters were as fol lows: 

Solvent Mc0H:H
2
0:Acetic Acid (80:19:1), Flow Rate 1.3 ml/min, 

Column - C-18 (reverse phase), UV Detector 254 nm (P . Sapienza, 

personal communication) . The residue was taken up in 0 . 1 mls of solvent 

and 20 ul were injected into the chromatograph . A standard containing 

both PCA and PCP was run immediately prior to the sample. 

Aniline Hydroxylation 

The para-hydroxylation of aniline was determined by measuring 

the formation of the product, p-aminophenol, according to the method 

of Imai et al . ( 1965) . Incubation conditions were identical to those 

for PCA demethylation except semicarbazide was omitted . Aniline-HCl, 

di s solved in 0 . 1 M Tris-HCl, was added to give a final concentration 

of 5.0 mM . Blanks received buffer alone . Reactions were terminated 

after 10 minutes by the addition of 1 . 5 mls 50/o TCA and the protein 

precipitated by centrifugation . To a 1 . 0 ml aliquot of the clear super-

natant, 0 . 5 mls of 10% Na
2
co

3 
was added to neutralize the acid . One ml 

of 2% phenol in 0 . 2 N NaOH was then added to each tube and the color 

allowed to develop at 37°c for 40 minutes. The resulting colored prod-

uct was read in an Abbott Bichromatic Analyzer using a 650 nm primary 

and 550 nm sideband wavelength filter . An internal calibration factor, 

previously determined from p-aminophenol standards was utilized and 
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results were obtained directly as nMoles pAP/ml . Activity was con­

verted to nMoles pAP/min/mg protein. 

p-Nitroanisole Demethylation 

The activity of p-Nitroanisole demethylase was determined by a 

modification of the procedure described by Netter and Seidel ( 1964) 

in which the production of p-nitrophenol is followed directly in the 

incubation mixture at 420 nm at pH 7 . 8 . 

The modified assay was performed in an Abbott Bichromatic 

Analyzer as follows : The reagent vial contained MgC1
2

, glucose-6-

phosphate and glucose-6-phosphate dehydrogenase in 50 mM Tris-HCl (pH 

7 . 6) . Sample cups contained microsomal suspension, and multicuvette 

compartments contained either buffer or NADP (20 ul) . The contents of 

the reagent vial and the multicuvette were maintained at 37°C . 

Reactions were initiated by an automated sampling system. At timed 

intervals, 10 ul aliquots of sample (microsomes) were drawn and 

dispensed together with 250 ul cofactor mix (reagent) into individual 

compartments of a multicuvette . The final concentrations in a total 

volume of 0 . 28 mls were: NADP (0 . 62 mM), glucose-6-phosphate (5 . 0 mM), 

glucose-6-phosphate dehydrogenase (0 . 9 Units), MgC1
2 

(5.0 mM) and 

P-nitroanisole ( 1. 2 mM) . The total amount of microsomal protein in 

each assay was approximately 40-60 ug. 

Each individual sample was run in the presence and absence of 

NADP and the absorbance differences recorded at 5 minute intervals at 
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415 nm and 450 nm. Activity was determined by subtracting the NADP 

blank value from its corresponding sample value and comparing that 

value to a p-nitrophenol standard curve generated along with the 

assay. Activity was converted to nMoles pNP/min/mg protein. 

Cytochromes P450 and B
5 

The content of Cytochrome P450 in microsomes was determined 

according to the method of Omura and Sato ( 1964). Microsomes were 

diluted in 0.1 M Potassium Phosphate Buffer (pH 7 .5) to a protein 

concentration of about 1-2 mg/ml. A few milligrams of solid sodium 

dithionite were added, the contents mixed and 3 mls of the microsomal 

suspension were pipetted into each of two cuvettes. The cuvettes were 

placed into a Beckman Acta CII Split-beam Spectrophotometer and a 

baseline of equal light absorbance was recorded by scanning from 500 to 

400 nm. The contents of the sample cuvette were then gently bubbled 

with carbon monoxide for 40 seconds and returned to the spectro-

photometer. The difference spectra was recorded after 3 minutes ( 500-

400 nm) and again after 5 minutes. The amount of Cytochrome P450 was 

calculated by using a millimolar extinction coefficient of 91 mM-l 

-1 
cm for the absorbance difference at 450-490 nm. 

The content of Cytochrome b
5 

was determined by the method outlined 

by Estabrook and Werringloer (1978). Fresh microsomes, at the same 

concentration used for P450 determinations, were placed into each 

of two cuvettes. After establishing a baseline, 10 ul of a 15 mM 
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solution of NADH were added to the sample cuvette and the contents 

mixed well. The reference cuvette received 10 ul of buffer. Cytochrome 

b was calculated from the absorbance difference between 426 nm and 
5 

409 nm using the millimolar extinction coefficient of 185 mM- 1
cm-

1
• 

NADPH - Cytochrome c - Reductase 

The rate of reduction of cytochrome c was measured, as outlined 

by Mazel (1969) by following the increase in absorbance at 550 nm 

due to the appearance of reduced cytochrome c . Cuvettes contained in 

a final volume of three mls ; 0 . 15 umoles cytochrome c, 3 . 0 umoles 

KCN, and approximately 0 . 2-0 . 4 mg microsomal protein in 0 . 1 M Potas-

sium Phosphate buffer (pH 7 . 6) . The reaction was initiated by the 

addition of 0.45 umoles NADPH to the sample cuvette and was followed 

for approximately 1 minute at room temperature in a Beckman Acta CII 

Spectrophotometer . Activity was calculated from the ch.::inge in absorp-

tance for 1 min using 
-1 -1 

the extinction coefficient of 18 . 5 mM cm of 

reduced cytochrome cat 550 nm (Gigon et~. , 1968) . 

Substrate Binding Spectra 

Microsomes, in 0.1 M potassium phosphate buffer, were pipetted 

into each of two cuvettes and placed into a Beckman Acta Cll Spectra-

photometer . PCA, dissolved in methanol (20 mg/ml) was added to the 

sample cuvette in 1 ul increments . Equal volumes of methanol were 

added to the reference cuvette. After each addition, the difference 
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spectra was recorded by scanning from 460 nm to 360 nm . The spectral 

dissociation constant (K ) and maximum absorbance . change were deter­
s 

mined from double-reciprical plots of l/S versus l/ABS (386-420 nm) . 

Determination of Kinetic Parameters 

Kinetic profiles for aniline hydroxylation and PCA demethylation 

were determined in control and phenobarbital treated pigs at 1, 4, 8, 

and 16 weeks of age . Piglets were treated with phenobarbital 

(10 mg/kg) for four days by gavage . Controls received equal volumes 

of saline . Within each age and treatment group, microsomes were de-

rived from a pool of three livers, with the exception of the 16 week 

old groups where microsomes were obtained from a pool of two pigs. 

Assays for PCA demethylation and aniline hydroxylation were con-

ducted as previously described, modified to be conducted in 16 x 

125 nm disposable test tubes in a final volume of 1.0 ml. Substrate 

concentrations ranged from 0 . 01 to 4 . 0 mM for PCA and 0.005 to 5 . 0 mM 

for aniline . Generally, 9- 11 different concentrations were run in 

duplicate in addition to pooled blanks . Assays were run for either 10 

minutes (control) or 5 minutes (phenobarbital) and contained approx-

imately 1 mg microsomal protein from either source . Further, at all 

ages, one high and one low substrate concentration were run concur-

rently to establish linearity with time. In all cases where substrate 

consumption exceeded 5%, average velocities were utilized (Segel, 

l975) . Reactions were terminated by the addition of 200 ul of 50% TCA 
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and determination of formaldehyde (PCA demethylation) and p-amino-

phenol (Aniline hydroxylation) was conducted as before. 

Kinetic parameters were determined using Eadie-Hofstee plots 

(V vs . V/S). After graphing the data, linear regression analysis was 

conducted using those points corresponding to low substrate concentra-

tion . The slope and intercept of the line represent the apparent K 
m 

and V , respectively, for the high affinity component . The veloci­
max 

ties due to the low affinity component were obtained by subtracting 

the V for the high-affinity component from the total velocity at 
max 

high substrate concentrations. Linear regression analysis for the new 

values gave the apparent 

affinity component . 

Protein Determination 

and V 
2 max 

for the low 

Protein content was determined by the method of Lowry et al . 

(1951) using bovine serum albumin as the protein standard. The inten-

sity of the characteristic blue color was read using an Abbott 

Bichromatic Analyzer with a primary wavelength of 650 nm . 

Electron Microscopy 

The effects of PCA, PCP, and phenobarbital on hepatic ultrastruc-

ture were determined by electron microscopy in 1 week old piglets . At 

the time of sacrifice, thin (approximately 4 mm) sections of liver 

were obtained from one animal in each treatment group . The liver 
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sections were blotted and placed into a formaldehyde-glutaraldehyde 

fixative (Karnovsky, 1965). Samples were immediately transferred to 

Dr. Werner Seibel of the Department of Anatomy, University of Maryland 

Dental School, Baltimore, MD . All further steps in the processing of 

tissue and electron microscopy were kindly done by Dr . Seibel. The 

methods utilized appear in Appendix B. 

Statistical Methods 

The statistical analyses for this study were performed using the 

Statistical Analysis System (SAS), of the SAS Institute, Inc . Cary, 

NC. The following analyses were performed: Levine's Test for 

Homogeneity of Variance, Analysis of Variance (one-way classification; 

balanced and unbalanced design), Duncan's Multiple Range test, Least 

Square Means, Wilcoxin Rank-Sums Analysis, Non-parametric Student's 

Newman-Keuls test, Students t test (balanced and unbalanced design -

Control vs . Phenobarbital). 

The scheme depicted below was followed : 

Levine's Test 

homogeneous 

ANaVA 
(SAS 79:-:s;--procGLM) 

p < a.as 

Duncan's 
Multiple Range 

(balanced) 

Least Square 
Means 

(unbalanced) 

~n-homogenou' 
Wilcoxin Rank-Sum 

(SAS 79 . 5; procNPARlWAY) 

p < a.as 

Student's Newman-Keul (SNK) 



Additional statistical methods 

Simple Linear Regression 

1 
. 1 

Outlier Ana ysis 

1 
U. S . Pharmacopea XVI (pp . 873-874) . 

y = a + bx (regression equation) 

2 
r 

2 
(Exy) 

2 2 
Ex Ey 

(regression 
coefficient) 
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RESULTS 

In Vitro Metabolism of Pentachloroanisole 

Since pentachlorophenol has been detected in biological fluids 

of fish (Glickman et ~· , 1977) and of mice (Vodicnik et ~·, 1980) 

treated with pentachloroanisole, PCA was investigated as a substrate 

for the microsomal mixed-function monooxygenase system . The demethyla­

tion reaction, one of the many diverse pathways involved in xenobiotic 

metabolism, is easily measured since the by-product, formaldehyde, 

can be conveniently quantitated colorimetrically. In the case of PCA, 

the quantity of formaldehyde formed should represent the stoichiomet­

ric conversion of the substrate to PCP. 

In order to establish monooxygenase involvement, cofactor require­

ments were determined as well as the effects of various MFO inhibi­

tors . The results of these experiments are shown in Table 1. In the 

absence of NADPH, microsomes were totally incapable of demethylating 

PCA. Furthermore, the presence of carbon monoxide in the reaction 

mixture resulted in strong inhibition (95'7o) of activity. NADH as the 

sole electron donor was capable of supporting a low level of activity 

and produced a synergistic effect when added to the complete system. 

At equimolar concentrations, metyrapone produced the strongest inhibi­

tion (91'7o) while SKF 525A and 7 ,8-Benzoflavone (ANF) inhibited the 

reaction 70% and 20%, respectively . 
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TABLE 1. Characterization of PCA demethylation 
hepatic microsomal enzymes . a 

by miniature pig 

a 

b 

Reaction Mixture 

b 
Complete 

- NADPH 

- NADPH + NADH (0.5 mM) 

Complete + NADH 

Complete + Carbon Monoxide 

+ SKF 525Ac 

+ Metyrapone 

+ 7,8-Benzoflavone (ANF) 

% Total Activity 

lOO'Yo 

0 

8 . 2 

105 

4.6 

30 

9 

80 

Activity was measured as the rate of formaldehyde production in micro-
somes from phenobarbital induced minipigs as detailed in Materials 
and Methods. 

Activity in the complete system was 5.45 nmoles/min/mg protein . 

cThe final concentration of all inhibitors was 5 x l0-
5

M. 
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In order to verify that the formaldehyde produced in the assay 

was a result of the oxidative demethylation of PCA to PCP, some incu-

bation mixtures were subjected to organic extraction and the residues 

were analyzed by HPLC . Using the HPLC parameters described in the 

Methods section, PCA had a retention time of 5 . 2 minutes and PCP had 

a retention time of 3. 8 minutes . A typical chromatogram of a mixed 

PCA/PCP standard is shown in Figure l(a), while the results from an 

incubation extract are shown in Figure l(b) . An additional peak at 

2 . 3 minutes was not identified, however, it may represent additional 

metabolism of PCP . 

Preliminary kinetic analysis of PCA demethylation was conducted 

using microsomes from uninduced and phenobarbital treated, mature 

minipigs . Kinetic parameters were determined from Lineweaver-Burke 

plots shown in Figure 2(a & b) . The apparent K for both uninduced 
m 

and phenobarbital induced microsomes, 0.052 and 0 . 047 mM, respec-

tively, are relatively similar. The maximum velocities, however, 

differ by a factor of 10 . The V for phenobarbita 1 induced micro-
max 

somes is 4.9 nmoles/min/mg protein compared to 0 . 45 nmoles/min/mg 

protein in controls . 

In conjunction with catalysis of PCA, the interaction of the 

substrate with cytochrome P450 was investigated using difference spec-

troscopy. Pentachloroanisole when added to microsomal suspensions 

produced a typical Type I binding spectrum with a peak absorbance at 

385 nm and a trough at 419 nm (Figure 3). Of particular interest, 

however, is the inability of the compound to produce discernable 

spectral changes when added to uninduced microsomal preparations. 



FIGURE 1. High-Pressure Liquid Chromatograms for the Analysis of PCP and PCA. 
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FIGURE 2. Lineweaver-Burke Plots of PCA Demethylation in Hepatic 

Microsomes from Phenobarbital (a) and Uninduced (b) Minipigs . 

a) Incubation mixtures for PCA demethylase were identical to that 

described in Materials and Methods with the exception that PCA 

was solubilized in acetone prior to addition to the Tween 80 

mixture. Final PCA concentrations ranged from 0.05 to 1.0 mM. 

b) Microsomes were obtained from a pool of three livers from mature 

( 16-17 weeks old) miniature pigs. Phenobarbital was administered 

at 10 mg/kg P .O. for four consecutive days. 
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FIGURE 3 . Typical Substrate Binding Spectra Observed Following 
Addition of PCA to Miniature Pig Microsomal Suspensions. 
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Using phenobarbital induced microsomes, PCA was readily titrated to 

apparent saturation . Double reciprocal plots of l/{PCA} vs. l/t.Abs. 

(peak to trough) yielded values of 0 . 014 mM for the spectral dissocia-

tion constant (K ) and a maximum peak to trough absorbance change 
s 

(A ) of 0 . 035 per milligram of protein (Figure 4). 
max 

Development of the MFO System in Growing Miniature Pigs 

In order to assess the pattern of postnatal development of the 

hepatic MFO system, a variety of parameters were measured in 1, 4, 

and 8 week old minipigs. Two reaction pathways, the aromatic hydroxyla-

tion of aniline and the 0-demethylation of p-Nitroanisole were inves-

tigated since these pathways have well characterized in other labora-

tory species and are often used in assessments of MFO function . The 

0-demethylation of PCA was also used as a parameter for comparison . 

In all cases, optimal assay conditions were previously determined and 

the reactions we re within linear ranges with respect to time and 

protein concentrations used. 

The specific activities as a function of age are shown in 

Table 2. In all cases maximal levels are attained by four weeks of 

age . Furthermore, the activities in one week old piglets ranged from 

65 to 80% of the eight week old activity. 

The concentrations of cytochromes P450 and b
5 

and the activity 

of NADPH cytochrome-c Reductase were also determined in developing 

minipigs. The concentration of microsomal cytochrome P450 increased 

in linear manner from 0.57 nmoles/mg protein in one week old piglets 
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FIGURE 4 . Double-Reciprocal Plot for the Determination of the Spectral 
Dissociation Constant (K ) for PCA in Phenobarbital Induced 

s Microsomal Suspensions . 
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a) Each point represents the reciprocal of the peak- to-trough absor­
bance difference (as shown in Figure 3) as a function of PCA 
concentration. 
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TABLE 2 Postnatal development of three microsomal mixed-function monooxygenase activities in miniature 
pigs. 

Age 
(weeks) 

1 

4 

8 

N 

(6) 

( 3) 

(6) 

Aniline a 
Hydroxylation 

(ANOH) 

d 0.39 + 0.03 

0.48 + 0.04 

0.47 + 0.05 

anMoles p-aminophenol formed/min/mg protein. 

bnMoles p-nitrophenol formed/min/mg protein. 

cnMoles formaldehyde formed/min/mg protein. 
d 
Values are mean + S.E.M. 

N . . 1 b itroaniso e 
Demethylation 

(NADM) 

1.56 + 0.10 

2.24 + 0.55 

2.15 + 0.08 

Pentachloroanisolec 
Demethylation 

(PCADM) 

0.24 + 0.02 

0.37 + 0.04 

0.29 + 0.02 

\Jl 
0 
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to 1.00 nmoles/mg protein in eight week old piglets (Table 3). Cyto-

chrome b
5 

concentration was equal to P450 concentration in one week 

old piglets, however the concentration of cytochrome b
5 

reached maxi­

mum by four weeks of age and remained constant to eight weeks. The 

activity of NADPH cytochrome- c Reductase appears to follow a similar 

pattern as the activities shown in Table 2. There is an increase from 

one to four weeks of age, followed by a slight decrease in activity 

at eights weeks of age. 

Effects of PCA, PCP and Phenobarbital on 

MFO Parameters in Developing Miniature Pigs 

Since a vast number of compounds metabolized by the hepatic mixed­

function monooxygenase system are also capable of inducing the enzyme 

system, pentachloroanisole was investigated for its induction poten­

tial. Furthermore, since pentachlorophenol is the product of micro­

somal demethylation, this compound was also investigated in order to 

determine if the parent compound (PCA) or the metabolite (PCP) was 

responsible for induction. Phenobarbital was utilized in this study 

as a positive control. 

At the dose of 10 mg/kg/ day for four days, PCA and PCP produced 

no overt signs of toxicity in any of the age groups. Similarly, pheno­

barbital treated piglets remained alert and active . All piglets, 

during treatment situations, consumed their normal ration of milk 

diet and either maintained or gained weight. At the time of the 

sacrifice, livers from treated pigs were inspected grossly and 

appeared normal with respect to color and texture. 



TABLE 3 Postnatal development of cytochrome P450, cytochrome b
5 

and NADPH-cytochrome-c-Reductase in 
miniature pigs. 

Age 

1 

4 

8 

anMoles P450/mg protein. 

bnMoles b
5

/mg protein. 

N 

(6) 

(3) 

(6) 

a 
Cytochrome P450 

d 
0.57 + 0.04 

0.81 + 0.05 

LOO + 0.04 

cnMoles cytochrome-c reduced/min/mg protein. 
d 
Values are mean + S.E.M. 

b 
Cytochrome b

5 

0.56 + 0.04 

0.76 + 0.003 

0.74 + 0.01 

c 
NADPH-Cytochrome-c 

Reductase 

110.3 + 5.1 

165.5 + 1.8 

151.6 + 6.8 

lJl 
N 
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One Week Old Piglets 

The effects of PCA, PCP and phenobarbital on MFO activity in one 

week old piglets varied with respect to the parameter measured and 

the degree of induction. A comparison of the specific activities for 

aniline hydroxylase (ANOH), nitroanisole demethylase (NADM) and PCA 

demethylase (PCADM) is shown in Table 4. PCA produced a small, yet 

significant 41% increase in ANOH activity and a somewhat larger (67%) 

increase in NADM activity. Of particular interest, however, is the 

disproportionate three-fold increase in the activity of the enzyme 

catalyzing PCA's own metabolism. In contrast to PCA's effects, micro­

somes from PCP treated piglets showed no change in PCADM and ANOH 

activities. PCP treatment did have a minor effect on NADM (50% over 

controls). The effects of phenobarbital on the three enzyme activ­

ities were consistent with its strong comprehensive inductive effects. 

ANOH and NADM activities were increased 5.5- and 9-fold, respectively, 

over controls. A dramatic 14-fold increase in PCADM was observed. 

The observed increases in the different enzyme activities are 

paralleled by an increase in the concentration of cytochrome P450 in 

microsomes from treated pigs. Phenobarbital produced a three-fold 

increase in P450 (Table 5), while PCA and PCP produced much smaller, 

but significant increases in the concentration of the hemoprotein. 

The wavelength of maximum absorbance in all microsomal preparations 

was 450 nm. The microsomal concentration of cytochrome b
5 

and the 

activity of NADPH-cytochrome-c Reductase are also shown in Table 5. 



Table 4. Effects of PCA, b PCP, and phenobarbital on microsomal enzyme activities in one week old 
miniature pigs.a' 

Treatment Anilinec 
Hydroxy lase 

N . . 1 d itroan1so e 
Demethylase 

Pentachloroanisolee 
Demethylase 

Control (6) 0.39 + 0.03 1.56 + 0.10 0.24 + 0.02 - -

PCA (6) 0.55 + 0.03>'< 2.60 + 0.24>'< 0.72 + 0.09>'< -

PCP (5) 0.44 + 0.04 2.35 + 0.2l>'c 0.27 + 0.03 -
Phenobarbital (6) 2.15 + 0.23*"' 13.96 + 1.99""'' 3.37 + 0.28*"' -

aPCA, PCP, and phenobarbital were administered at 10 mg/kg/day P.O. for four consecutive days. 

bMiniature pigs were seven days of age at the onset of treatment. 

cnMoles p-aminophenol formed/min/mg protein. 

dnMoles p-nitrophenol formed/min/mg protein. 

enMoles formaldehyde formed/min/mg protein. 

Numbers in parentheses are the number of values used to calculate the mean + S.E.M. 

* Significantly different from control (p < 0.05) Duncan's Multiple Range Analysis. 

**Significantly different from control (p < 0.05) Student's t test. 
V1 
~ 



TABLE 5. Effects of PCA, PCP, and phenobarbital on cytochromes P450, b
5

, and cytochrome-c Reductase in 
one week old miniature pigs.a 

Treatment 

Control (6) 

PCA (6) 

PCP (6) 

Phenobarbital (6) 

b 
Cytochrome 

P450 

0.57 + 0.01 (450nm) -

0.76 + 0.04* (450nm) -
0. 85 + 0. 06;'< (450nm) -
1.67 + 0.12** (450nm) 

aTreatments were as described in legend of Table 4. 

bnMoles/mg protein. 

cnMoles/mg protein. 

dnMoles cytochrome-c reduced/min/mg protein. 

e 

c 
Cytochrome 

b5 

0.56 + 0.04 

0.75 + 0.05* -

0.70 + 0.03 -

o. 77 + 0.03~<>'< -

eObserved wavelength of maximum absorbance in the reduced-CO difference spectra. 

All values are the mean~ S.E.M. for the number of observations in parentheses. 

* Significantly different from control (p < 0.05) Duncan's Multiple Range Analysis. 

**Significantly different from control (p < 0.05) Student's t test. 

d 
Cytochrome-c 

Reductase 

110.3 + 5.1 

144 • 2 + 12 . 1 ;';--

120.6 + 4 .5 -

145.2 + 11. 7*;'< -

ln 
ln 
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Phenobarbital produced similar increases in b
5 

and the reductase (37% 

and 32/
0

, respectively) over controls. It is interesting to note that 

PCA produced almost identical increases in both parameters and these 

correlated with the increase in P450 concentration in that treatment 

group . 

Treatment Effects on Hepatocellular Morphology 

Since induction of cytochrome P450 and related metabolic activ­

ities by phenobarbital has been associated with hepatocellular changes 

in smooth endoplasmic reticulum content, electron microscopy was used 

in an attempt to correlate biochemical and morphological effects. 

Furthermore, qualitative similarities in the induction profiles of 

phenobarbital and PCA suggested that the latter compound may be a 

"phenobarbital type" of inducer. 

Figure 5 shows a low power electron micrograph of a liver paren­

chymal cell from a one week old control piglet . The liver cells are 

characterized by a round nucleus, rough endoplasmic reticulum and an 

abundance of glycogen. A high power micrograph (Figure 6) better 

illustrates that the endoplasmic reticulum in these cells is primarily 

RER although vesicles of smooth ER occur intermittantly (insert) . 

In contrast, phenobarbital results in a marked proliferation of 

smooth endoplasmic reticulum (Figure 7). Although RER is present, 

vesicles of agranular endoplasmic reticulum (SER) appear to predomi­

nate in the cytoplasm. Similarly, PCP and PCA appear to shift the 



FIGURE 5. Electron Photomicrograph of Hepatic Parenchymal Cells from 

a One Week Old Control Miniature Pig . 

Details of the fixation and staining procedures appear in 

Appendix B. 

Legend: Nucleus (N), Mitochondria (M), Rough Endoplasmic 

Reticulum (R), Smooth Endoplasmic Reticulum (S), Glycogen 

(G). 

Magnification X6,000. 
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FIGURE 6 . Higher Power Electron Photomicrograph of an Hepatic Ce ll 

from a One Week Old Control Miniature Pig . 

Legend : see Figure 5 . 

Magnification X22,500 (Insert : X15,000) . 
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FIGURE 7. Electron Photomicrograph of Hepatic Cells from a Phenobar­

bital Treated One Week Old Miniature Pig . 

Legend: see Figure 5. 

Magnification Xl2,500. 
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predominance of endoplasmic reticlum from rough to smooth (Figures 8 

& 9) . It should be noted that in the latter two cases, regions of RER 

appear more dispersed in the cytoplasm rather than arranged in 

parallel stacks as observed in controls and phenobarbital treated 

piglets. 

Biochemical Effects in Four Week Old Piglets 

The effects of the various treatments in four week old piglets 

are shown in Tables 6 and 7 . Due to the smaller number of animals 

used per treatment group and the occurrence of aberrant values in 

some parameters, stat istica 1 significance could not be demonstrated 

for the relatively small changes produced by either PCA or PCP . A 

similar trend in the induction patterns of the two compounds, however, 

is apparent, with PCA producing small increases in ANOH and NADM activ­

ity and its major effect on its own metabolism (Table 6). PCP, as in 

one week old piglets, appears to increase only NADM activity . 

Phenobarbital treatment in four week old piglets results in sig­

nificant increases in all six parameters measured . ANON, NADM, and 

PCADM were 4 . 5, 5.4 and 15-fold, respectively, greater than control 

activities (Table 6). 

The levels of cytochrome P450, b
5 

and cytochrome c Reductase 

were not significantly changed by PCA or PCP, however, phenobarbital 

again produced a 3-fold increase in P450 and significant, albeit 

smaller increases in the other two parameters (Table 7). 



FIGURE 8. Electron Photomicrograph of an Hepatic Cell from a PCP 

Treated One Week Old Miniature Pig. 

Legend: see Figure 5. 

Magnification Xll,250. 
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TABLE 6. Effects of PCA, PCP, and phenobarbital on microsomal enzyme activities in four week old 
. . . a miniature pigs. 

Treatment A ·1· b ni ine 
Hydroxy lase 

Control (3) 0.48 + 0.04 

PCA (3) 0.67 + 0.03 

PCP (3) 0.56 + 0.07 -
Phenobarbital (3) 2.16 + 0.32>'o'< -

Nitroanisole c 
Demethylase 

2.24 + 0.55 

3.09 + 0.28 

3.25 + 0.20 -

12.09 + 1.57>'0 '< -

aTreatments are described in Materials and Methods section. 

bnMoles p-aminophenol formed/min/mg protein. 

cnMoles p-nitrophenol formed/min/mg protein. 

dnMoles formaldehyde formed/min/mg protein. 

All values are the mean + S.E.M. for the number of observations in parentheses. 

**Significantly different from control (p < 0.05) Student's t test. 

Pentachloroanisoled 
Demethylase 

0.37 + 0.04 

0.80 + 0.16 -

0.46 + 0.14 -

5 .60 + 0.32>'<* 

"' (.;.) 



TABLE 7. Effects of PCA, PCP, and phenobarbital on cytochromes P450, b
5

, and cytochrome-c Reductase in 
four week old miniature pigs.a 

Treatment 

Control (3) 

PCA (3) 

PCP (3) 

Phenobarbital (3) 

b 
Cytochrome 

P450 

0.81 + 0.04 

0.92 + 0.05 -

1.10 + 0.02 -

2.63 + 0.06>'<>~ -

c 
Cytochrome 

b5 

0.76 + 0.003 

o. 74 + 0.03 -

0.85 + 0.04 

0.93 + 0.05>h~ -

aTreatments are described in the Materials and Methods section. 

bnMoles/mg protein. 

cnMole/mg protein. 

dnMoles cytochrome c reduced/min/mg protein. 

All values are the mean + S.E.M. for the number of observations in parentheses. 

**Significantly different from control (p < 0.05) Student's t test. 

d 
Cytochrome-c 

Reductase 

165.5 + 1.8 -
148.5 + 6.8 

152.7 + 4.7 

187.3 + 5.4-Jr·k -

a­
+-
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Biochemical Effects in Eight Week Old Piglets 

The results in eight week old piglets were for the most part 

similar to those in younger animals (Tables 8 & 9), however, the 

extent of induction by PCA appears to be less than that in one week 

old piglets. Although PCA produces a significant 35% increase in NADM 

activity, this is approximately half the increase (67%) observed in 

the younger animals . Similarly, PCA treatment produced only a 75% 

increase in its own metabolism (PCADM) as compared to a 3-fold 

increase in the one week old group . ANOH activity is no longer sig­

nificantly different from controls . PCP treatment, as with the earlier 

groups, had no significant effect on ANOH, however, unlike the 

younger animals the compound did produce a small increase in PCADM . 

The effects of phenobarbital compared relatively well with those 

seen in the two previous age groups . PCADM activity was approximately 

13- fold greater and ANOH 4 . 6- fold greater than controls (Table 8) . 

NADM activity, however, was increased 4 . 7-fold by phenobarbital which 

is approximately half the 9-fold increase observed in one week old 

piglets . 

As with the four week old piglets, the only significant increases 

in cytochrome P450, b
5 

and Reductase in eight week old piglets were 

produced by phenobarbital (Table 9) . 

Catalytic Activities 

The relative ease by which cytochrome P450 can be quantitated in 

microsomal suspensions imparts the ability to analyze data from 



TABLE 8. Effects of PCA, PCP, and phenobarbital on microsomal enzyme activities in eight week old 
. . . a miniature pigs. 

Treatment 

Control (6) 

PCA (6) 

PCP (6) 

Phenobarbital (6) 

A ·1· b ni ine 
Hydroxy lase 

0.47 + 0.05 -
0.60 + 0.03 

0.53 + 0.07 -

2 . 14 + 0. 18 >'<*"'' 

Nitroanisolec 
Demethylase 

2.15 + 0.08 -

2.94 + 0.24"'' -

2.92 + 0.31>'< -

10 . 13 + 0 . 43 "'*"' 

aTreatments are described in Materials and Methods section. 

bnMoles p-aminophenol formed/min/mg protein. 

cnMoles p-nitrophenol formed/min/mg protein. 

dnMoles formaldehyde formed/min/mg protein. 

All values are the mean + S.E.M. for the number of observations in parentheses. 

* Significantly different from control (p < 0.05) Student Newrnan-Keuls test. 

Pentachloroanisoled 
Demethylase 

0.29 + 0.02 

0.51 + 0.03>'<>': 

0.41 + 0.02>'<>': -

3.85 + 0.40>'<>'o': -

** Significantly different from control (p < 0.05) Duncan's Multiple Range test. 

***Significantly different from control (p < 0.05) Student's t test. 
~ 
~ 



TABLE 9. Effects of PCA, PCP, and phenobarbital on cytochromes P450, b
5

, and cytochrome-c Reductase in 
eight week old miniature pigs.a 

Treatment 

Control (6) 

PCA (6) 

PCP (6) 

Phenobarbital (6) 

b 
Cytochrome 

P450 

1.00 + 0.04 

1.08 + 0.06 

1.15 + 0.06 -

3 .71 + 0.24>'c -

aTreatments are described in Materials and Methods section . 

bnMoles/mg protein. 

cnMoles/mg protein. 

dnMoles cytochrome c reduced/min/mg protein. 

c 
Cytochrome 

bs 

0.74 + 0.01 

0.83 + 0.03 

0.75 + 0.04 -
1.04 + 0.05* -

All values are the mean~ S.E.M. for the number of observations in parentheses. 

*Significantly different from control (p < 0.05) Student's t test. 

d 
Cytochrome-c 

Reductase 

151.6 + 6.8 -

163.9 + 8.3 -

142.9 + 5.0 -

201. 7 + 7 .O'" -

°' -...J 
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enzyme assays in terms of "molecular" or "catalytic" activity. This 

method is particularly useful for determining changes in the specific­

ity of induced form(s) of cytochrome P450. Catalytic activities, 

expressed as nmoles product/min/nmole P450, for PCADM as a function 

of age and treatment are shown in Table 10 . Consistent with its rela­

tively large effect on PCA metabolism, phenobarbital produced a 

5 . 2-fold increase in catalytic activity in one week old piglets . PCA 

treatment also produced a significant 2-fold increase in catalytic 

activity in the youngest age group. Although there are no significant 

changes in controls as a function of age, an age related decrease in 

catalytic activity was observed in PCA and phenobarbital induced 

pigs . Catalytic activity in eight week old piglets is less than half 

the one week old activity for each respective group . 

Similar, yet less pronounced alterations in catalytic activity 

were observed for ANOH (Table 11) and NADM (Table 12) . In both cases, 

however, only phenobarbital produced any significant effects. 

Kinetic Analysis 

Changes in various catalytic activity profiles following chemical 

induction of the MFO system have generally been associated with 

either an increase in the concentration of a substance specific form 

of cytochrome P450 or alterations in the relative proportions of 

various subpopulations of the hemoprotein. To further investigate the 

age related changes in catalytic activities as well as the nature of 

the large effect produced by phenobarbital on PCA metabolism, kinetic 
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TABLE 10. Catalytic activity of PCA demethylase as a function of age 
and treatment.a 

AGE 

Treatment 1 Week 4 Week 8 Week 

Control 0.41 + 0.04 (5) 0.46 + 0.06 (3) 0.29 + 0.01 (6) - - -
PCA 0.94 + 0.08 (6)t 0.88 + 0.20 (3) 0.48 + 0.03 (6) tf 

- - -
PCP 0.32 + 0.05 (5) 0.42 + 0.12 (3) 0.35 + 0.02 (6) - - -
Phenobarbita 1 2.15 + 0.28 (5)§ 2.12 + 0.10 (3) § 0.91 + 0.04 (5) §f 

- - -

aCatalytic activity is expresse d as nMoles formaldehyde formed/min/ 
nMole cytochrome P450. 

Values are the mean + S.E.M. for the number of observations in -
parentheses. 

tp < 0.05 vs. age matched controls (Duncan's Multiple Range). 

§p < 0.05 vs. age matched controls (Student's t test). 

fp < 0.05 VS treatment matched one week olds (Least Square Means). 



TABLE 11. 

7a 

Catalytic activity of aniline hydroxylase as a function of 
a 

age and treatment. 

AGE 

Treatment 1 Week 4 Week 8 Week 

Control a . 66 + a.a6 (S) a.S9 + a.a9 (3) a . 48 + a.a6 (6) - - -

PCA a.7S + a.a3 (6) a. 74 + a.a7 (3) a.S6 + a.a3 (6) - - -

PCP a.S4 + a.as (S) a.Sl + a.as (3) a . 46 + a.as (6) - - -

Phenobarbita 1 1. 28 + a.a6 (6)t a . 82 + a.a6 (3) § a.6a + a.a7 (6) §f 
- - -

aCatalytic activity is expressed as nMoles p-aminophenol formed/min/ 
nMole cytochrome P4Sa . 

Values are the mean + S . E . M. for the number of observations in 
parentheses. 

tp <a .as vs . age matched control (Student's t test). 

§p < a.as 
,.P < a.as 

vs . 

vs. 

treatment matched one week olds (Least Square Means). 

treatment matched four week olds (Least Square Means) . 



TABLE 12. 
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Catalytic activity of nitroanisole demethylase as a func­
tion of age and treatment . a 

AGE 

Treatment 1 Week 4 Week 8 Week 

Control 2 . 79 + 0 . 27 (5) 2 . 74 + 0 . 55 (3) 2 . 17 + 0 . 14 (6) - - -

PCA 3 . 42 + 0 . 25 (6) 3 . 39 + 0 . 46 (3) 2 . 75 + o. 26 (6) - - -

PCP 2 . 87 + 0 . 16 (5) 2 . 96 + 0.15 (3) 2.52 + 0.20 (6) - - -
Phenobarbital 8 . 29 + 1.05 (6)t 4 . 57 + 0 . 55 ( 3) § 2 . 78 + 0 . 21 ( 6 ) tH 

- - -

aCatalytic activity is expressed as nMoles p-nitrophenol formed/min/ 
nMole cytochrome P450 . 

Values are the mean + S . E . M. for the number of observations in 
parentheses. 

tp < 0 . 05 vs . age matched controls (Student's t test) . 

§p < 0.05 

VP < 0 . 05 

vs . 

vs . 

treatment matched one week olds (Least Square Means) . 

treatment matched four week olds (Least Square Means) . 
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analyses were conducted . Based on the assumption that there are 

multiple forms of cytochrome P450, which may differ in their affin-

ities toward a particular substrate, it should be possible to detect 

the activities of different forms by kinetic anaylsis providing the 

affinity differences are large enough. 

When aniline concentrations were varied from 5 uM to 5 mM, a 

biphasic pattern was observed when plotted by the Eadie-Hofstee 

method (Figure 10) . Kinetic constants for the two phases were deter-

mined as described in the Methods section . In adult (4 month old) 

uninduced pigs, the high affinity component had an apparent K of 6 . 8 
m 

uM and a V of 0 . 39 nmoles/min/mg protein. The low affinity 
max 

component had an apparent K of 0 . 74 mM and a V of 1.17 nmoles/-
m max 

min/mg protein . Using these four kinetic parameters, theoretical 

values for velocity were calculated for the substrate concentrations 

utilized • The calculated velocities correlated extremely well 
2 

(r = 

. 99) with the experimentally derived velocities (Figure 11) . 

Similar analyses were conducted with microsomes from 1, 4, and 8 

week old uninduced piglets . A summary of the kinetic constants are 

listed in Table 13 . In uninduced microsomes, the high affinity compo-

nent, designated Form I, remains relatively constant with respect to 

affinity and maximum velocity over the four ages . In contrast, the 

low affinity component, Form II, appears to undergo age dependent 

changes in both parameters. 

The developmental profiles of the two forms of ANOH are depicted 

in Figure 12 . In one week old piglets, Form I constitutes 

approximately 65i'o of the total activity . Between one and four weeks 
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FIGURE 10. Eadie-Hofstee Plot of Aniline Hydroxylase Activity in 
Microsomes from Uninduced, Adult Miniature Pigs. 

1.4 

v 
max2 = 1.17 nmoles/min/mg protein 

1.2 
K = m2 

o. 74 mM 

1.0 

0.8 

0.6 v 0.39 nmoles/min/mg maxl 
protein 

0.4 
Krol 6.8 uM 

0.2 t 
5 10 15 20 25 30 35 

b) Details of the assay conditions and derivation of kinetic constants 
are described in Materials & Methods. 

b) Miniature pigs were 16 weeks old at the time of sacrifice. Micro­
somes were obtained from a pool of two livers. 

c) Each point represents the average of duplicate determinations for 
the substrate concentration utilized. 
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FIGURE 11. Plot of v (observed) Against v (calculated) Based on 
Biphasic Kinetic Analysis of Aniline Hydroxylase Activity . 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

v (observed) 

a) The observed velocity represents the total velocity (vT) at each 
aniline concentration from the experimental data shown in Figure 10. 

b) Theoretical values of vT and vT/S were calculated using the 
estimates for the apparent K and V of each component 
(Figure 10) and the substrate c'8ncentratirg,~~ used in the assay . 
The values were substituted into the equation: 

v s 
maxl 

Kml + S 

v s 
max2 

+ 
Km2 + S 
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TABLE 13. Summary of the kinetic parameters for the two forms of 
aniline hydroxylase in developing minipigs.a 

Age 

1 Week 

4 Week 

8 Week 

16 Week 

FORM I 

Apparent 
K (uM) 

m 

8.2 

3.6 

5 . 4 

6.8 

v 
max 

0.36 

0.29 

0.41 

0 . 39 

FORM II 

Apparent 
K (mM) 

m 

0.52 

0 . 56 

o. 74 

v 
max 

0.16 

a.so 

0.47 

1.17 

aKinetic parameters were determined as detailed in Materials and 
Methods. Experimental data was obtained from duplicate determinations 
on pooled microsomes from three pigs (1, 4 and 8 weeks) or two pigs 
(16 weeks). 

bV is expressed as nMoles p-aminophenol formed/min/mg protein. 
max 

cThe predominance of the high-affinity activity in one week old 
piglets precluded accurate analysis of the K value for Form II . The 
V of Form II was obtained by subtracting mthe V of Form I from 

max . max 
the total observed velocity (V 

2 
= VT - V 

1
). 

max max 
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FIGURE 12. Developmental Profiles for the Two Forms of Aniline 
Hydroxylase in Uninduced Miniature Pigs. 

1.4 

0 0 Form I 

1.2 x x Form II 

6 /J. Total Activity 
,...... 
i: LO •r-l 
<l) 
µ 
0 
~ 
0.. 

00 o.B 
e --i: 

•r-l 
e -- o.6 Ul 
<l) 

....... 
0 

~ .._, 

>< 
o.4 

co e 
> 

0.2 

1 4 8 

Age (weeks) 

a) Points represent the V values shown in Table 13. 
b) Total aniline hydroxyflt~e activity is the sum of 

for Form I and Form II. 

16 
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of age, the maximum velocity of Form II approximately triples while 

Form I remains relatively constant . At this point, Form II contributes 

to 65/o of the total activity . There appears to be a leveling off in 

both components to eight weeks followed by a further 2.5-fold increase 

in the activity of Form II by sixteen weeks of age . 

The effects of phenobarbital on the two forms of aniline hydroxyl-

ase are shown in Table 14. At all ages, phenobarbital has little or 

no effect on the activity of the high-affinity component, Form I . The 

low-affinity component, Form II, is increased at all ages . Of particu-

lar interest is the inverse relationship between age and the total 

increase in activity. In one week old piglets, phenobarbital produced 

a 12.8-fold increase in the activity of the low-affinity component . 

By eight weeks of age, the increase is approximately half that value 

(6 . 4-fold) and by sixteen weeks phenobarbital produces only a three-

fold increase in this component . 

In addition to phenobarbital, the effects of PCA on the two 

forms of aniline hydroxylase were investigated in four week old 

piglets . A comparison of the kinetic parameters are shown in Table 

15 . As with phenobarbita 1, the high-affinity component was unchanged 

while the low-affinity component was slightly increased in PCA treated 

piglets . Furthermore, while phenobarbital does not appear to alter 

the apparent K 
m 

of the low-affinity component, PCA treatment reduced 

the apparent K by approximately 50/o • 
m 

Similar kinetic analyses were conducted using PCA demethylase . 

As with aniline hydroxylase, Eadie-Hofstee plots appeared biphasic 



TABLE 14. Summary of the kinetic parameters of the two forms of aniline hydroxylase in phenobarbital 
induced, developing minipigs.a 

Age 

1 Week 

4 Week 

8 Week 

16 Week 

Apparent 
K (uM) 

m 

11. 3 

6.9 

6.2 

19.S 

FORM I 

v 
max 

0.3S 

0.24 

0.29 

0.3S 

V b/V p c 

.97 

.83 

. 71 

.90 

Apparent 
K (mM) 

m 

0.93 

O.S8 

O.SS 

0.94 

FORM II 

v 
max 

2.04 

2.26 

2.99 

3.40 

V b/V p c 

12.8 

4.S 

6.4 

2.9 

aKinetic parameters were determined as detailed in Materials and Methods. Experimental data was obtained 
from duplicate determinations on pooled microsomes from three pigs (1, 4, and 8 weeks) or two pigs (16 
weeks). 

bPhenobarbital was administered at 10 mg/kg P.O. for four consecutive days. 

cV b/V is the ratio of the V for phenobarbital induced pigs to the V for uninduced pigs (Table 13). 
p c max max 

'--1 
CX> 
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TABLE 15. Comparison of the kinetic parameters for the two forms of 
aniline hydroxylase in uninduced, PCA and phenobarbital 
treated minipigs at four weeks of age . a 

Treatment 

Control 

Phenobarbital b 

FORM I 

Apparent 
K (uM) 

m 

3 . 6 

3.0 

6.9 

v 
max 

0.29 

0 . 30 

0.24 

FORM II 

Apparent 
K (mM) 

m 

0 . 52 

0.27 

0.58 

v 
max 

0 . 50 

0 . 78 

2 . 26 

aKinetic parameters were determined as detailed in Materials and 
Methods. Experimental data was obtained from duplicate determinations 
on pooled microsomes from three piglets in each treatment group . 

bPhenobarbital was administered at 10 mg/kg P . O. for four consecutive 
days . 

cPCA was administered at 10 mg/kg P.O . for four consecutive days. 
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(Figure 13). In sixteen week old uninduced pigs, the high affinity 

component had an apparent K of 
m 

40 . l uM and a V of 0 . 38 
max 

nmoles/min/mg protein . The low affinity component had an apparent K 
m 

of 3.1 mM and a V of 1.32 nmoles/min/mg protein . A summary of the 
max 

kinetic constants for uninduced and phenobarbital induced microsomes 

at various ages is shown in Table In the case of PCA demethyla-

tion, both the high and low-affinity components are increased by 

phenobarbital. Furthermore, while the apparent K of the high-affinity 
m 

component appears relatively unchanged by treatment, 

of the low-affinity form is markedly reduced. 

the apparent K 
m 

When the data are arranged to illustrate age related increases 

in the two components as a result of phenobarbital induction (Table 

16), it is interesting to note that while the low-affinity form is 

increased to a greater extent over bas a 1 levels, the magnitude of 

this increase remains relatively constant with age . In contrast, the 

magnitude of the increases in the high-affinity component produced by 

phenobarbital appears to decrease with age . In this respect, an 

interesting correlation exists between these data and that seen in 

Table 10 for catalytic activity of PCA demethylase . In Table 16, 

there appears to be a greater than SOI. decrease in the magnitude of 

phenobarbitals effect between one and eight weeks of age (5 . 4-fold 

vs . 2 . 5-fold) . Similarly, the catalytic activity of PCADM (Table 10) 

decreases from 2 . 15 to O. 91 between one and eight weeks of age in 

phenobarbital treated pigs . 



FIGURE 13 . Eadie-Hofstee Plot of PCA Demethylase Activity in Microsomes from Uninduced, Adult Miniature Pigs. 

1.2 

1.0 

0.8 

0.6 

v 

0.4 

0.2 

V 
2 

= 1. 32 nmole s/min/mg protein 
max 

Km2 3.1 mM 

1 2 3 4 
v/s 

5 

V 
1 

= 0.38 nmoles/min/mg pr ote in 
max 

Kml = 40. l uM 

6 7 

a) Details of the assay conditions and derivation of kinetic parameters are described in Materials & Methods . 
b) Miniature Pigs were 16 weeks old at the time of sacrifice . Microsomes were obtained from a pool of two livers. 
c) Each point represents the average of duplicate determinations for the substrate concentration utilized. ()0 

!-' 
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TABLE 16. Comparison of the kinetic parameters for the two forms of 
PCA demethylase in uninduced and phenobarbital induced 
developing miniature pigs.a 

Age 

1 Week 

8 Week 

16 Week 

1 Week 

8 Week 

16 Week 

High Affinity 
Component 

Apparent 
K (uM) 

m 

Uninduced Phenobarbita 1 

25.5 17 .6 

18.0 12.9 

40.l 25.6 

v c 
max 

0.14 0.75 (5.4)d 

0.22 0.55 (2.5) 

0.38 0.57 ( 1. 5) 

Low Affinity 
Component 

Apparent 
K 

m 
(mM) 

Un induced Phenobarbital 

1.9 0.66 

2.6 0.65 

3.1 1.01 

v 
max 

0.64 5.26 (8.2) 

0.55 4.92 (8.9) 

1.32 9.63 (7. 3) 

aKinetic parameters were determined as detailed in Materials and 
Methods. Experimental data was obtained from duplicate determination 
on pooled microsomes from three pigs in each treatment ( 1 and 8 
weeks) or two pigs (16 weeks). 

b 
Phenobarbital induction was as described in previous experiments. 

c 
V is nMoles formaldehyde formed/min/mg protein. 

d max 
Values in parenthesis are the ratio of phenobarbital induced activity 
(V ) to uninduced activity. max 
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DISCUSSION 

In support of those studies reporting the detection of penta­

chlorophenol in biological fluids following treatment with pentachloro­

anisol e (Glickman et ~· , 1977; Vodicnik et ~·, 1980), the present 

investigation has shown that PCA is indeed a substrate for microsomal 

mixed-function oxidation. As evidenced by the requirement for NADPH 

and the inhibition by carbon monoxide and other documented inhibitors 

of MFO (Table 1), PCA is metabolized via a cytochrome P450-dependent 

demethylation reaction resulting in the formation of PCP (Figur~ 1) . 

Since PCP has been shown to be metabolized to lower chlorinated 

compounds such as tetrachlorohydroquinone and trichlorophenol (Ahlborg 

and Thunberg, 1978), the peak at 2 . 3 minutes in Figure l(b) may 

represent one of these metabo 1 it es, although further characterization 

is required . 

Th e se results present an interesting and ironic situation . 

Whereas it is often assumed that biodegradation of pesticides and 

other environmental contaminants renders them inactive, PCA represents 

one biodegraded product that can be reactivated to its parent com­

pound, PCP, in species possessing the proper metabolic capacity . 

Furthermore, as indicated by Glickman et al. (1977), PCP exhibits a 

higher degree of bioaccumulation and is more persistent than PCP in 

fish. Thus, the compound may present a more difficult assessment with 

respect to contamination of the food chain . 
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Initial kinetic analysis of PCA demethylation provided some 

interesting results . The activity in uninduced microsomes (< 0 . 5 

nmoles/min/mg protein) is much lower than that reported in the 

literature for other 0-demethylated substrates such as nitroanisole 

in various laboratory species. The possibility of species differences, 

however, has been discounted since a similarly low rate of PCA 

metabolism has been observed in uninduced rat liver (Agins et ~· , 

1982) . An unusually large increase in activity following phenobarbital 

induction, in this case greater than ten-fold, suggested the existence 

of a specific-inducible form of cytochrome P450 that preferentially 

metabolized PCA. In support of this assumption are the sensitivity of 

PCA demethylat ion in phenobarbita 1 induced microsomes to metyrapone 

inhibition (Table 1) and the results from substrate binding spectra 

(Figure 3). The inability to detect discernable spectral changes in 

uninduced microsomes is most likely a function of the low concentra-

tion or absence of the PCA specific form of cytochrome P450 . Following 

phenobarbital induction, a binding spectra becomes readily apparent, 

which correlates with the increase in demethylase activity . Further-

more, the spectral dissociation constant (K ) of approximately 15 uM 
s 

indicates that PCA has a relatively high affinity for the inducible 

form of cytochrome P450 (Figure 4). 

In conjunction with these findings, it is interesting to note 

that Hultmark and coworkers (1979) reported a similar situation for 

the metabolism of dichloro-p-nitroanisole in rats . Their results 

indicated that this chlorinated analogue of nitroanisole was demeth-

ylated quite poorly by uninduced microsomes and that phenobarbital 
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induction resulted in a 24-fold increase in activity as well as 

increased sensitivity to metyrapone inhibition . Using the selectivity 

of various MFO inhibitors, the authors concluded that the forms of 

cytochrome P450 metabolizing dichloro-p-nitroanisole in uninduced and 

phenobarbital induced microsomes were different. It would appear 

then, that the presence of chlorine atoms or the degree of chlorina­

tion alters the physio-chemical properties of these anisole in such a 

way that changes their interactions with various cytochrome P450 

subpopulations. 

The finding that PCA was a substrate for cytochrome P450-

dependent metabolism prompted an investigation of the compound as a 

potential inducer of the MFO system . Furthermo"re, since it has been 

reported that younger animals, in many cases, respond to a greater 

extent than their adult counterparts (Basu ~ ~· , 1971; Klinger et 

~. , 1981) the present investigation attempted to focus on age 

related differences in induction. 

The choice of the miniature pig for this study was based on a 

number of factors . The minipig is the largest, non-altricious animal 

giving multiple births . As such it is well suited for perinatal 

studies, because unlike the rat and most laboratory species, the 

neonate is mobile minutes after birth . This imparts the ability to 

wean and raise piglets with minimal effort and handling . Furthermore, 

the size of the neonate permits easy, direct oral administration of 

test compounds, thereby avoiding indirect maternal influences . 

Although a large number of studies have been conducted on the 

postnatal development of the hepatic MFO system in various laboratory 
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species, similar studies in the miniature pig have not appeared in 

the literature. Short and Davis (1970) reported that in the domestic 

Duroc pig, MFO activity rises rapidly and in a linear fashion from 

birth to approximately four weeks of age . From this poiTLt, activity 

either plateaus or continues to increase at a much reduced rate. 

Similar patterns have been reported for rabbits, rats and mice (Gram 

and Fouts, 1966) . As seen in Tables 3 and 4, · the developmental 

pattern of MFO in miniature pigs is consistent with those in other 

laboratory animals . Oxidative metabolism appears to reach maximum at 

four weeks of age. Furthermore, activities in the one week old piglet 

range from 65% to 80% of activity in eight week old pigs . Although 

the present investigation did not include newborns, values of 

0.14 nmoles/mg protein for cytochrome P450 and 0 . 22 nmoles/min/mg 

protein for aniline hydroxylase were obtained from piglets less than 

24 hours old in a previous study (Agins, unpublished results) . Thus 

when compared to the respective values in Tables 3 and 4, it appears 

that the most rapid rate of development probably occurs between birth 

and one week of age. 

Although early postnatal studies in minipigs are lacking, the 

results in eight week old pigs were able to be compared to two 

studies on MFO in Hanford Miniature pigs of similar age . Cytochrome 

P450 levels and aniline hydroxylase activity compared almost iden-

tically to values reported by Freudenthal ~ al. (1976) and Litterst 

et al. (1976) . Furthermore, as reported in both studies, no sex 

differences in MFO activity were demonstrated . 



87 

In one week old piglets, PCA produced significant increases in 

all parameters measured . The greatest increase, a three-fold increase 

in PCADM, suggests that as with phenobarbital, PCA induces a specific 

form a cytochrome P450 . The smaller increases observed for ANOH and 

NADM suggest that the induced form of P450 displays over-lapping 

substrate specificity in agreement with the literature . In this 

respect, it is generally accepted that some substrates are metabolized 

most efficiently by one form of cytochrome P450, yet can also be 

metabolized by other forms at much lower rates. 

Although differing in magnitude, the qua lit at ive nature of PCA' s 

induction is quite similar to that of phenobarbital. In both cases, 

the greatest effect was seen in PCADM followed by NADM and then ANOH 

(Table 4) . Similarly, PCA increased the microsomal concentration of 

cytochromes P450 and b
5 

and the activity of cytochrome c reductase 

(Table 5) . Interestingly, the increases in the latter two parameters 

were identical in both phenobarbital and PCA treated pigs. The 

increase in cytochrome P450 concentration in phenobarbital treated 

pigs, however, was much greater than in PCA treated animals . In 

explaining this apparent disparity (i.e . similar effects of the two 

compounds on some microsomal components and differences in others) an 

important issue requires clarification. 

The increased concentration of microsomal proteins following 

treatment may be a result of an increased rate of synthesis, a 

decreased rate of degradation or a combination of both . In this 

respect, Kuriyama et al. (1969) showed that the net increase in 

cytochrome c reductase following phenobarbital treatment was a 
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function of both increased synthesis and decreased degradation . In 

contrast, the increased concentration of cytochrome b
5 

seen after 

treatment was only due to a decrease in the rate of decay of this 

protein . The authors additionally showed that after a short lag, 

cytochrome P450 synthesis followed that of reductase . 

Thus, it is 1 ikely that phenobarbita 1 and PCA produce a true 

induction of reductase and P450 . That differences exist in the 

magnitude of P450 induction would suggest that phenobarbital is a 

more efficient or stronger inducer . In view of the proposed hetero­

geneity of cytochrome P450 populations (Lu and West, 1980), however, 

the greater effect of phenobarbital may be a result of more than one 

form of cytochrome P450 induced . 

In favor of this assumption, at least two forms of cytochrome 

P450 have been shown to be induced by phenobarbital in mice (Huang et 

~·, 1976), rats (Bornheim and Franklin, 1982) and more closely 

related to the present study, pigs (Tsuji et ~·, 1980). In the 

latter study, the authors reported that at least two and possibly 

three forms of P450 were induced by phenobarbital in adult male pigs . 

From the present results, it may be speculated that one form of 

phenobarbital inducible P450 may be intimately coupled with cytochrome 

c reductase (i . e . within the same genetic locus) while additional 

form(s) are not linked directly with this microsomal protein. Further­

more, the almost identical increases in P450 and reductase (33/o and 

31%, respectively) produced by PCA, coupled with the qualitative 

similarities in relation to phenobarbital's effects, suggests that 

PCA induces one of the phenobarbital inducible forms. 
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In addition to the biochemical effects produced by PCA and 

phenobarbital, morphological changes in hepatic ultrastructure were 

also comparable. While in the one week old control piglet, the major 

portion of endoplasmic reticulum is associated with ribosomes (Figures 

5 and 6), both PCA and phenobarbital produced a substantial prolifera­

tion of smooth endoplasmic reticulum (Figures 7 and 8), consistent 

with the documented effect of phenobarbital on this organelle (Fouts 

and Rogers, 1965). 

The effects of PCP are more difficult to explain. A significant 

increase in the cytochrome P450 content in one week old piglets is 

coupled only with a small increase in the activity of nitroanisole 

demethylase. A number of possibilities exist. Tsuji and coworkers 

(1980), in addition to demonstrating various phenobarbital forms of 

P450, reported that ethanol induced a form of P450 similar to a 

constitutive form. Furthermore, both forms exhibited the lowest activ­

ities toward the three substrates used in their study. In this 

respect, PCP may induce a similar form of P450 displaying limited 

activity towards the substrates used in this study. 

A second possibility is that PCP, in view of its known membrane 

binding effects 

association of 

(Danner 

newly 

and Resnick, 1980), may 

synthesized P450 within 

interfer with the 

the endoplasmic 

reticulum, rendering it relatively inactive. Whatever the mechanism, 

the present results confirm earlier studies which indicated that 

purified PCP is relatively devoid of hepatic MFO effects (Goldstein 

et~., 1977). 
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On a morphological basis, PCP did produce an increase in the 

cellular content of smooth ER (Figure 9) . This finding while consis­

tent with a study by Kimbrough and Linder (1975), would not appear to 

be consistent in view of the correlation between the biochemical and 

morphological data for PCA and phenobarbital . 

Cresteil et al. (1980), however, proposed three effects of 

exogenous chemicals on endoplasmic reticulum: (1) induction of 

metabolic activities without proliferation of membranes as produced 

by polycyclic hydrocarbons, (2) simultaneous induction of enzyme 

activities and proliferation of membranes as produced by the total 

sequence of events involving phenobarbital, and (3) proliferation of 

membranes without apparent enzyme induction as produced by the para­

hydroxylated metabolite of phenobarbital. Therefore, the possibility 

exists that PCP produces the latter effect or some combination of the 

three . Caution should, however, be observed concerning the morpholog­

ical results since the electron photomicrographs shown in Figures 5 

through 9 are representative of only one animal per treatment group. 

By eight weeks of age, the inductive effects of PCA were greatly 

diminished. However, in the absence of a significant increase in 

cytochrome P450, PCA demethylase activity continues to be signifi­

cantly greater than controls . Although this would appear to be 

inconsistent with the necessary requirement for P450, Bornheim and 

Franklin (1982) warned that compo unds might cause subtle changes 

within the subpopulations of cytochrome P450 not necessarily evidenced 

by increases in microsomal cytochrome P450 concentrations . Further­

more, it is 1 ike ly that synthesis of one form of cytochrome P450 may 
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occur at the expense of others (Atlas et ~· , 1977) . Thus, in eight 

week old pigs the rate of degradation of a constitutive form of P450 

may be offset by a similar rate in the synthesis of an inducible form 

such that the overall concentration of P450 appears unchanged in PCA 

treated animals . Furthermore, if the induced form were specific for 

PCA demethylation it would explain the significant increase observed 

in this parameter . 

In view of the concept of various " isoenzymatic " forms of 

cytochrome P450, each differing in substrate specificity, the expres­

sion of results in terms of catalytic activities is finding increasing 

popularity in the literature . 

When the specific activities for PCADM, ANOH, and NADM were 

recalculated to reflect catalytic activities, a n umber of interesting 

effects were observed with respect to age and treatment . PCA and 

phenobarbital increased the catalytic activity of PCA demethylase to 

the greatest extent . Thus, as suggested earlier, these compounds 

induce one or more forms of cytochrome P450 that preferentially 

catalyze PCA . Phenobarbital also i ncreased the catalytic activity of 

nitroanisole demethylase, but to a lesser extent than in PCADM . 

Furthermore, while statistical significance could not be demonstrated, 

PCA treatment tended to increase catalytic activity for this sub­

strate . These results would suggest that while PCA may be most 

efficiently metabolized by phenobarbital inducible forms of P450, 

nitroanisole is probably metabolized by a combination of constitutive 

and inducible forms . 
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The finding that PCP does not significantly alter catalytic 

activities in any of the parameters, especially in nitroanisole 

demethylase where increases were observed in specific activities, 

lends some support to the suggestion that the compound may induce a 

constitutive form of P450. 

The most striking effects, upon further examination of catalytic 

activity results, are the age related changes observed in induced 

pigs. While the catalytic activities for control animals remained 

relatively constant from one to eight weeks of age, the effects of 

PCA and phenobarbita 1 appear to decrease in an age dependent manner. 

The eight week old values in all three parameters are less than SOio 

of the corre sponding one week old catalytic activities in pheno­

barbital treated pigs . This would imply that the inducible, substrate 

specific form(s) of cytochrome P450 represent a smaller percentage of 

the total P450 concentration in microsomes of eight week old pigs. 

This may be the result of either a decrease in the synthesis of a 

particular form or a diluting effect of increased synthesis of 

non-specific forms . 

In support of this proposal, Thomas and coworkers (1980) reported 

that the major phenobarbita 1 inducible form of P450 (P450-b) in rats 

accounted for 70°/o of the total P450 in immature animals, while only 

3Slo in adult microsomes. Furthermore, a minor form of P450 (P450-a) 

present in uninduced microsomes, was induced by both phenobarbital 

and 3-MC in immature, but not adult rats. 

Since a number of investigations have suggested that biphasic 

Michaelis-Menten kinetics are indicative of more than one species of 
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P450 catalyzing the same reaction (Greenlee and Poland, 1978; Boobis 

~ ~. , 1981; McCoy, 1980), attempts were made to further investigate 

the possibility of age dependent changes in the induction of P450 

subpopulations utilizing kinetic experiments . Based on the assumption 

that sufficiently large differences in affinities toward a particular 

substrate may enable detection of the activities of different P450 

forms, aniline concentrations were varied over three orders of magni­

tude . When plotted by the Eadie-Hofstee method, aniline hydroxylase 

activity could, in fact, be resolved into two kinetic components 

(Figure 10) . While the affinities of the two forms differed by 

greater than 100-fold, the differences in maximum velocities varied 

by only three-fold . Furthermore, although the absolute values for the 

kinetic constants differ slightly, these results are in agreement 

with those reported by McCoy (1980) for aniline hydroxylase activity 

in hamster liver microsomes. 

By conducting similar kinetic analyses at various ages, a 

developmental profile was obtained for the two forms of aniline 

hydroxylase activity (Figure 12) . While the high-affinity component 

(Form I) remained relatively constant during development, the low 

affinity component (Form II) exhibited a biphasic nature, increasing 

from 1 to 4 weeks and then again between 8 and 16 weeks of age . 

Interestingly, between 1 and 4 weeks of age, there is a cross-over 

in the developmental pattern . Thus, there is an age dependent change 

in the contribution of the two forms to the total aniline hydroxylase 

activity . The high-affinity component constitutes 70% of total 
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activity in one week old piglets while the low-affinity component 

contribute to 75% in the sixteen week old animal . 

Based strictly on the kinetic data from uninduced pigs, it would 

be impossible to establish the relationships between the two compo-

nents of aniline hydroxylase and various, well characterized forms of 

cytochrome P450. The selective induction of only one component of 

aniline hydroxylase activity by phenobarbital (Table 14), however, 

provided some basis for comparisons . That the high-affinity component 

was es sent ia l ly unaffected by phenobarbita 1 treatment suggested that 

this form may be cytochrome P448. Indeed, this 3-methylcholanthrene 

inducible form, synonomous with arylhydrocarbon hydroxylase (AHH), is 

not induced by phenobarbital . Furthermore, studies with various puri-

fied forms of cytochrome P450 (448), isolated from both rat (Ryan et 

~· , 1979) and pig (Tsuji ~ ~· , 1980) have shown that aniline is 

most efficiently metabolized by cytochrome P448 . 

In contrast to its lack of effect on the high-affinity component, 

phenobarbi ta 1 does increase the low- affinity activity . In comparing 

the apparent K values observed in uninduced and induced microsomes 
m 

(Tables 13 and 14), it would appear that phenobarbital's effect was 

strictly quantitative . In otherwords, phenobarbital induces the synthe-

sis of a constitutive form of cytochrome P450 . This, however, is 

contrary to the overwhelming evidence in the literature that phenobar-

bital induces forms of cytochrome P450 distinctly different from the 

major form in uninduced animals. Therefore, a more tenable explanation 

is that the phenobarbital induced form is in fact qualitatively 

different from the constitutive form, but exhibits a similar affinity 
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towards aniline. In this respect, Tsuji and coworkers (1980) reported 

that the major phenobarbital inducible form (P450 B) purified from 

pig liver displayed identical catalytic activity as the form isolated 

from uninduced animals (P450 Cent) . The two forms, however, were 

determined to be uniquely different proteins by a variety of o ther 

criteria . Additionally, the authors reported that one minor form of 

P450 (P450 A), induced by phenobarbita 1, exhibited a two-fold greater 

catalytic activity towards aniline than the major inducible form . 

At this point, it is important to mention that while two aniline 

hydroxylase activities could be resolved in control and i n duced 

animals in this study, the possibility exists that the detection of 

additional kinetic species may be obscured by the predominance of a 

low-affinity/high-capacity enzyme or similarities in enzyme affinity 

towards a particular substrate . Thus, the observed activity of the 

low-affinity component in phenobarbital induced pigs may be the 

cumulative activities of more than one form of cytochrome P450. This 

possibility may help to explain the changes in the magnitude of 

phenobarbital ' s effect as a function of age (Table 14) . As previously 

discussed, Thomas and coworkers (1980) described a minor form of 

cytochrome P450 (P450a) which was induced by phenobarbital in imma­

ture, but not adult rats . If the minor inducible form in pig liver 

(P450 A) (Tsuji et~ . , 1980), which was more active towards aniline, 

is under similar temporal control, it could explain the greater 

effect of phenobarbital on one week versus older animals . Furthermore, 

the age-dependent induction of a more highly active form of aniline 
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hydroxylase would explain the significant increase in catalytic 

activity in one week old piglets (Table 11) and the absence of a 

significant effect in older animals. 

In view of the qualitative similarities between PCA and phenobar-

bital induction, an attempt was made to further characterize the PCA 

inducible form using similar kinetic analysis. As with phenobarbital, 

PCA had no effect on the high-affinity component of aniline hydroxyl-

ase (Table 15). PCA did however appear to increase the activity of 

the low-affinity component slightly as well as decrease the apparent 

K • Based on the earlier suggestion that the low-affinity component 
m 

in phenobarbital induced microsomes probably represents more than one 

form of P450, it is tempting to speculate that the difference in 

apparent K 's reflects the induction of only one of these forms by PCA. 
m 

The proposal by Hultmark et al. ( 1979) of at least three dif-

ferent forms of cytochrome P450 active in the demethylation of 

dichloro-p-nitroanisole in rat liver microsomes prompted an investiga-

tion to determine if PCA demethylation could also be resolved into 

kinetic components. Thus, while the Lineweaver-Burke plots of PCADM 

(Figure 2) appeared linear, two factors should be considered. First, 

the substrate concentration range used for these experiments varied 

by only twenty-fold. Secondly, in these early experiments, acetone 

was incorporated as a vehicle for PCA. Although the transition to 

Tween 80 alone, as substrate carrier followed shortly thereafter, it 

was later learned that acetone produced inhibitory effects similar to 

ethanol in uninduced microsomes (Hultmark ~ ~·, 1979). By widening 

the substrate concentration range and avoiding organic solvent 



97 

vehicles, PCA demethylase activity did in fact display a biphasic 

nature (Figure 13). The summary of the kinetic data for the two forms 

of PCA demethylase as a function of age and treatment (Table 16) 

provided some interesting correlations with a number of results 

throughout the entire study. 

The close similarity in the apparent K values 
m 

for the high-

affinity component in uninduced and induced pigs would suggest that 

the same form of cytochrome P450 exists in both sources. Unlike the 

high-affinity form of aniline hydroxylase, however, this component is 

induced by phenobarbital. The small contribution of the high-affinity 

component to the total phenobarbital induced activity would further 

indicate that this form is a minor inducible form. Collectively, 

these assumptions compare favorably with the report by Thomas and 

coworkers (1980) of an identical form of cytochrome P450 (P450a) 

present in uninduced, phenobarbital and 3-methylcholanthrene induced 

rat liver microsomes. In all cases, this form accounted for a small 

fraction (3-7%) of the total cytochrome P450 concentration. 

In contrast to the high-affinity component, the marked differ-

ences in the apparent K values of the low-affinity component would 
m 

indicate that the induced and uninduced forms of cytochrome P450 are 

different. Hence, the predominance of the low-affinity component in 

the total phenobarbital induced PCADM activity would suggest that 

this form may be the major phenobarbital inducible form described by 

Tsuji et al. (1980). 

The low-affinity component in uninduced microsomes represents, 

most likely, the P450-control form in pigs (Tsuji et ~·, 1980). 
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Whether this form is similar to the "ethanol sensitive" constitutive 

form in rats (Hultmark ~ ~·, 1979) remains to be determined . It may 

be worth noting, however, that the kinetic parameters in uninduced 

adult pigs from earlier experiments (Figure 2) are remarkably similar 

to those for uninduced adult pigs ' high-affinity component (Table 

16) . Thus, the presence of acetone in the early PCA demethylase assay 

may have inhibited the expression of the low-affinity constitutive 

form . 

In agreement with the age-dependent changes in the degree of 

phenobarbital's effect on aniline hydroxylase activity, a similar 

phenomenon was observed for PCA demethylase . The magnitude of pheno­

barbital ' s effect on the low affinity component of PCADM remains 

relatively constant with age . However, since the constitutive and 

phenobarbital inducible forms of P450 responsible for the low-affinity 

activity are probably different, these results may be misleading. 

Although uninduced microsomes may contain a small amount of the 

phenobarbital inducible form of P450 (Thomas et ~· , 1980; Tsuji et 

~. , 1980), kinetic analysis was not able to separate out the 

contribution of the component in uninduced pigs . Therefore, the 

magnitude of phenobarbital's effect is most likely underestimated. 

For the same reasons above, age-dependent changes in the inducibility 

of this particular form would not be detectable. 

In contrast, the high-affinity component does undergo age related 

changes in the degree of induction . The increase in activity over 

basal level in eight week old pigs is approximately 50% of the effect 

observed in one week old animals . This effect is consistent with that 
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seen in aniline hydroxylase activity where a similar 50'7o decrease in 

the inducibility of the low-affinity component was observed between 

one and eight weeks of age . 

In summary, based on the biphasic kinetic characteristics of two 

substrates, as a function of age and treatment, it would appear that 

at least four forms of cytochrome P450 exist in hepatic microsomes of 

miniature pig. They are: (1) the high-affinity component of aniline 

hydroxylase, present in uninduced and induced microsomes, but not 

altered by phenobarbital or PCA induction, (2) the low-affinity 

components of aniline hydroxylase and PCA demethylase in uninduced 

microsomes, (3) the high-affinity component of PCA demethylase, which 

displays age dependency in phenobarbital induction and most likely 

contributes to the phenobarbital induced, low-affinity activity of 

aniline hydroxylase . Furthermore, this is probably the form induced 

by PCA, and ( 4) the low-affinity components of PCA demethylase and 

aniline hydroxylase in phenobarbital induced microsomes . 

The mechanism(s) by which temporal alterations are manifested in 

the induction of specific cytochrome P450 subpopulations are presently 

not known. However, in view of the intimate relationship between 

endogenous substances, particularly steroid hormones, and the mixed­

function monooxygenase system, it is quite possible that these agents 

may play a role in cellular regulation of P450 subtypes . 
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CONCLUSIONS 

(1) Pentachloroanisole is metabolized in vitro to pentachloro­

phenol by hepatic microsomes from miniature pigs . The requirement for 

NADPH, inhibition by carbon monoxide, and production of a substrate 

binding spectrum indicate that the compound is catalyzed via a 

cytochrome P450-dependent demethylation reaction. 

(2) The relatively large increase in the rate of PCA deme thyla­

tion following phenobarbital induction strongly suggests that PCA is 

preferentially catalyzed by a phenobarbital inducible form(s) of 

cytochrome P450 . The very low levels of activity, co upled with the 

inability to detect a substrate binding spectrum in uninduced micro­

somes suggests that the substrate-specific form of P450 is absent or 

present in very low concentration in uninduced microsomes . 

(3) The postnatal developmental pattern of hepatic mixed-

function monooxygenase activity in miniature pigs is similar to that 

in other laboratory species . In most parameters measured, an increase 

between one and four weeks of age is followed by a plateau to eight 

weeks of age . The additional rise in activity for aniline hydroxylase 

and PCA demethylase between eight and sixteen weeks of age, observed 

in kinetic experiments, may be associated with the attainment of 

sexual maturity in miniature pigs . 
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(4) Pentachloroanisole treatment produced increases in all MFO 

parameters measured in one week old minipigs . The qua 1 itative nature 

of PCA ' s induction is similar to that of phenobarbital . The greatest 

effect, a three-fold increase in its own metabolism, suggests that 

the compound induces a specific form of cytochrome P450, similar to 

that induced by phenobarbital . 

(5) Pentachlorophenol treatme nt produced increases in some, but 

not all MFO parameters in one week old piglets. The overall qualita­

tive differences produced by PCA and PCP suggests that the two 

compounds induce different species of cytochrome P450 which exhibit 

overlapping substrate specificity in some cases . 

(6) The proliferation of smooth endoplasmic reticulum observed 

following treatment with all three compounds indicates that the 

magnitude of the biochemical effects in MFO induction does not 

necessarily correlate with alterations in the cellular content of 

this organelle . 

(7) The age related decrease in catalytic activities observed 

in phenobarbital and PCA treated pigs is suggestive of changes in the 

relative contribution of different subpopulations of cytochrome P450 

to the observed overall specific activity . The almost identical 

decreases in PCA demethylase, aniline hydroxylase and nitroanisole 

demethylase catalytic activities between one and eight weeks of age 

suggests that the contribution of a particular form of P450, active 

to varying degrees on all three substrates, decreases with development . 
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(8) The biphasic kinetic profiles observed for aniline hydroxyl­

ase and PCA demethylase activities indicates that multiple forms of 

cytochrome P450 are active in the metabolism of both substrates . By 

integrating the effects of age and phenobarbital treatment on the 

various kinetic species, it is suggested that at least four forms of 

cytochrome P450 exist in miniature pig microsomes . The inducibility 

of at least one form by phenobarbita 1 appears to decrease with age 

and the magnitude of this change correlates well with the effects 

seen in catalytic activity profiles. 
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APPENDIX A 

Analysis of Pentachlorophenol and Pentac11_1.oroanisole for 
Non-Phenolic Contaminants. 

Source 

Dibenzo-p-dioxins 
Hexachloro-
Heptachloro-
Octachloro-

Dibenzof urans 
Hexachloro-
Heptachloro-
Octachloro-

PCP
2 

(Aldrich 99%) 

<0 .01 ppm 
<0 .01 

<150 .0 

<0 .01 
<0 .01 
<0 .01 

PCP PCA 

<0.01 <0.01 
<0.01 <0 .01 
<l .50 <0 .01 

<0 .01 <0 .01 
<0 .01 <0.01 
<0 .01 <0 .01 

115 

ppm 

Samples were analyzed by Gas Chromatography by the Analytical 
Chemistry section, Office of Pesticides, U.S. EPA, Beltsville, MD. 
Sensitivity of methods was between 1-10 ppb. 

2
Aldrich 997. PCP was utilized as source for further purification of 
PCP and synthesis of PCA for the study. 
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APPENDIX B 

Electron Microscopy Procedures
1 

At the time of piglet sacrifice, 
placed immediately into Karnovsky ' s 
Tissues were refrigerated for one 
Dr. Seibel. 

liver sections were blotted an2 
fixative containing sucrose . 

week and then transferred to 

Tissues were removed, cut into smaller slices and returned to 
fresh fixative for 10 days . At that time, slices were washed with 
cacodylate buffer (pH 7 . 4) with 7% sucrose, and allowed to stand 
overnight in clean buffer. Tissue was next post fixed for 2 hours in 
Os0 4 and then subjected to graded alcohol dehydration (30'ro - 100':0, 
followed by 2 changes of propylene oxide and a propylene oxide : Epon 
mixture ( 1: 1) . Tissues were next placed in 100% Epon mixture at room 
temperature overnight and then embedded for 4 days in Epon mixture at 
60°. 

Blocks of tissue were thin sectioned with a Porter-Blum MT2 
ultramicrotome fnd double stained with lead citrate and alcoholic 
uranyl acetate. An AEI-6B Transmission Electron Microscope was used 
for this study . 

1 
Dr . Werner Seibel, Department of Anatomy, University of Maryland 
School of Dentistry, Baltimore, MD (personal communication) . 

2 
Karnovsky, M. J .: A formaldehyde-glutaraldehyde fixative 

for use in electron microscopy . J. Cell Biol. 
of 

27 : 
high 

137A, 

3 

oxmolality 
1965. 

Reynolds, E . S .: The use of lead citrate at high pH as an electron 
opaque stain in electron microscopy . J . Cell Biol . 17: 208-212, 1963. 
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