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ABSTRACT

Agins, Alan P., Ph.D., University of Rhode Island, 1982. Age Related
Changes in the Induction of the Hepatic Mixed-Function Monooxygenase
System in Miniature Pigs: Effects of Pentachloroanisole, Pentachloro-
phenol and Phenobarbital. Major Professor: Dr. George C. Fuller.

Pentachloroanisole (PCA), an environmental degradation product of
the biocide pentachlorophenol (PCP), has been detected in the food
chain. The metabolic fate of PCA was examined in miniature pig
hepatic microsomes, in vitro. The compound was shown to be a substrate
for a cytochrome P&450-dependent demethylation reaction, which results
in the regeneration of the parent compound, PCP. A disproportionately
large increase in PCA demethylase activity (PCADM) following pretreat-—
ment with phenobarbital suggests that the compound is preferentially
metabolized by specific-inducible form(s) of cytochrome P450.

A comparison of the effects of PCA and purified PCP on the
hepatic MFO system of miniature pigs was conducted at various stages
of postnatal development. Phenobarbital was wutilized as a positive
control for induction. PCA, PCP and phenobarbital (10 mg/kg/day X &4
days, P.0.) were administered to piglets at 1, 4, and 8 weeks of age
and the levels of cytochromes P450 and b5, and the activities of
NADPH-Cytochrome ¢ reductase, aniline hydroxylase (ANOH), p-nitro-
anisole demethylase (NADM), and PCA demethylase were determined. In
one week old piglets, PCA produced significant increases 1in all
parameters measured, with the greatest effect (300% of control) on

its own in vitro metabolism. The pleiotropic response evoked by PCA



was similar to that of phenobarbital, but of lesser magnitude. PCP
produced small increases in only P450 and nitroanisole demethylase.
The qualitative differences in the induction patterns produced by PCA
and PCP suggests that the two compounds exert different effect on
MFO. By eight weeks of age, the magnitude of induction by PCA was
diminished. Furthermore, although specific activities for ANOH, NADM,
and PCADM in phenobarbital treated pigs were similar at 1 and 8 weeks
of age, examination of catalytic activity profiles suggested an age
dependent decrease in the induction of specific forms of cytochrome
P450. On further investigation, Eadie-Hofstee plots from kinetic
experiments with ANOH and PCADM exhibited biphasic patterns suggestive
of multiple forms of P450 catalyzing the same reaction. By integrating
the effects of age and treatment on the various kinetic species for
each substrate, a minimum of four forms of cytochrome P&450 are
suggested to exist in miniature pig hepatic microsomes. Of the four
forms, two are inducible by phenobarbital and one of these forms
appears to display age-dependency in the magnitude of induction.
These data indicate that MFO induction by exogenous chemicals varies

qualitatively as well as quantitatively with age.



ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to his
major professor, Dr. George C. Fuller, for his guidance and under-
standing over the 7years. Special thanks are equally extended to
Dr. Eugene Miller for providing me the opportunity to conduct this
investigation as a member of the Beltsville Research Facility of the
Food and Drug Administration. Dr. Miller's continued support and
encouragement throughout my incumbency are acknowledged with grati-
tude. The entire staff of the Beltsville Research Facility are to be
thanked for their intellectual, moral, and technical support during
this investigation. James 0. Peggins 1is gratefully thanked for his
invaluable assistance in the laboratory and for sharing his expertise
in statistical analysis. The contribution by Dr. Werner Seibel, in
electron microscopy, and Mr. Ronald Thomas, in analytical chemistry,
are also gratefully acknowledged.

Most 1importantly, however, I would like to express my deepest
gratitude and heartfelt thanks to my wife, Paula, for her love and

understanding, encouragement and sacrifice over the years.



TABLE OF CONTENTS

ABSTRACT ..oeceeecenn. TR I TR § |
ACKNOWLEDGEMENTS ot eetiieieneeeenoeoeeoccssosssosssssoasnossensassnse 1V
TABLE OF CONTENTS ...... O ceeeecoean v
LIST OF TABLES .t .ttt eeiereoceececnsosocaooasassssencassansssanssenss VIii
LIST OF FIGURES .iceeeveencnnnnnnns R B ¢
INTRODUCTION tvevevencenocenecaaoossoosocssosssanassaancnsess ceceeeeens 1

LITERATURE SURVEY «.iceeervevenensncnnons et s eesessaecs s asenasens 3

Historical perspectives of microsomal metabolism ...eoeeeeeeans 3
Components of the microsomal MFO SYStem ....eeieesecesooacacsss 5
NADPH-cytochrome P450 reductase ...... it iere e ceteeaeas 5
Cytochrome b ciiiteiiiiieeesesssnesocesncetasssssnsonsansnsnosns 6
Cytochrome PZSO et iesecacscesssanssennns e eesease st etesens s . 8
Induction of monooxygenase activity ..oieieiuieiieenreaenns S 4
Developmental aspects of monooxygenase activity ....ceeeeeeeee.. 16
Heterogeneity of cytochrome P450 .....ciitiiiininenanennn e )
Pentachlorophenol and pentachloroanisole .......... ceeeeneeases 21
Miniature Pigs veieerieieeeeeenaeounsesonnssnaassoscsansnnaaanse 25

EXPERIMENTAL ¢ivevenocceann Geccccenasesenans Y

Materials ...eveeevinan... Ceeececas et cececasananannns 27
Preparation of PCP and PCA .....cevivuannn cheeseccenesnaanenes 27
Animals tuueiiiieierienoossioasscerosansasencscscassssennocncasase 29
Animal treatments .....ccoececees e staaese s O 10
Preparation Oof MiCrOSOMES .evessecesoncorccnososasacssos ceeeeness 31
Pentachloroanisole demethylation ...eoeeievescereessnesncaonass 32
Determination of PCP formation .......... e esessanesne ceeeeanse 33
Aniline hydroxylation ....eeeceseeseeessssaronsssannsscnnns ceee. 34
p-Nitroanisole demethylation ........... esee s ceeaseess 35
Cytochromes P450 and b5 1 &
NADPH-cytochrome ¢ redictase ...eeeeeses e
Substrate binding spectra .....cieveeiceann. O Y
Determination of kinetic parameters ......eeeeeessssoccesenssas 38
Protein determination .......eeieeeeeeerecesesssooansocsanss ... 39
Electron MiCroSCOPY .oeeesnsnnnsns ceeer i cheeeecreesseeeas 39
Statistical methods ....cieierenrenceersnnononanns ceeeeseans ... 4O



] 8 42

In vitro metabolism of pentachloroanisole .....iiieiiieeeerannns 42
Development of the MFO system in growing miniature pigs ....... 48
Effects of PCA, PCP and phenobarbital on MFO parameters in
developing miniatuUre PifS ..cveveeeeoesocesesnscsoncesssnsasns 51
One week 0ld piglets .coioiienniiiieiereirecnenonsosssonoonansnans 53
Treatment effects on hepatocellular morphology ................ 56
Biochemical effects in four week old piglets ....iiviivernnnnns 60
Biochemical effects in eight week old piglets ....ivvviivenesnns 65
Catalytic ACLiVIELIES tuiveuieensoeaansoanoncoensssosssacananoannos 65
Kinetic analyses ...iieieereeceennconanns et e sesenes e 68
DISCUSSION tutieeeeeeenoanseassssoosssssssocsasosassnssoncsanssosss 83
CONCLUSIONS 4 tiieeeieeeeooessoaossenssosossoeassoacscsssassssssssanssss 100
REFERENCES .. iiiiiiiiieorsoesvensnecoasnanas et ece sttt sanasene s 103
APPENDIX A tiiiieteeineoeeeoncssonsossoosssaassasasesaasoossscenasensss 115
APPENDIX B it eeeeiuieoseocsueeassosonsensnssnsnnsssssesananssnansncss 116

vi



LIST OF TABLES

Table

1. Characterization of PCA demethylation by miniature pig
hepatic microsomal enzymes .....iitiiiiiiiiernerrsnnnsensaaans

2. Postnatal development of three microsomal mixed-function
monooxygenase activities in miniature pigs .s.ciseeieevieeronnane

3. Postnatal development of cytochrome P450, cytochrome b_,
and NADPH-cytochrome ¢ reductase in miniature pigs ...veeescess

4. Effects of PCA, PCP, and phenobarbital on microsomal
enzyme activities in one week old miniature pigs .....ieiian.

5. Effects of PCA, PCP, and phenobarbital on cytochrome P450,
b., and cytochrome c¢ reductase in one week old miniature

PlES soveveeeeroneeeonessasssassssnansonsssonessacansasssaansns

6. Effects of PCA, PCP, and phenobarbital on microsomal enzyme
activities in four week old miniature pigs ....cveeeiieenneenns

7. Effects of PCA, PCP, and phenobarbital on cytochromes P450,
b., and cytochrome ¢ reductase in four week old miniature

PLES «cceeceocaaoaaeaasasonsasassosasossosasosasaseaesensnssasass

8. Effects of PCA, PCP, and phenobarbital on microsomal enzyme
activities in eight week old miniature pigs ...ciiveeennenenns

9. Effects of PCA, PCP, and phenobarbital on cytochromes P450,
b., and cytochrome ¢ reductase in eight week old miniature

=

10. Catalytic activity of PCA demethylase as a function of age
and CreatmMeNt o eeeeeeseeossotsssoosssssesssssososssassssssssssse

1. Catalytic activity of aniline hydroxylase as a funcion of
age and treatment ... eeeeoesoosesocssossssssssssssssscssosoesaes

12. Catalytic activity of nitroanisole demethylase as a function
of age and ELreatment ... ieeeeeeeosaaesassosssasoasnessonsoanas

13. Summary of the kinetic parameters for the two forms of
aniline hydroxylase in developing minipigs ...,

14. Summary of the kinetic parameters of the two forms of aniline
hydroxylase in phenobarbital induced, developing minipigs .....

vii

Page



Table Page

15.

16.

Comparison of the kinetic parameters for the two forms of
aniline hydroxylase in uninduced, PCA, and phenobarbital
treated minipigs at four weeks of age cieiverrrinereenrecannnnn 79

Comparison of the kinetic parameters for the two forms of
PCA demythylase in uninduced and phenobarbital induced
developing miniature pigs

viii



LIST OF FIGURES

Figure Page

1.

10.

11.

12.

13.

High-pressure liquid chromatograms for the analysis of
PCP and PCA .. e ittt tineiesensosensesscsnssosesssssanasacans 45

Lineweaver-Burke plots of PCA demethylation in hepatic
microsomes from phenobarbital and uninduced minipigs .e.ceeeve. 46

Typical substrate binding spectra observed following addition
of PCA to miniature pig microsomal susSpensions ......cieeecoess 47

Double-reciprocal plot for the determination of the spectral
dissociation constant (K ) for PCA in phenobarbital induced

microsomal suUSpPeNSioNsS «i.i.iieiiiet ittt tensnaarsaannns 49

Electron photomicrograph of hepatic parenchymal cells from
a one week old control miniature pig .e.iiivinieiieeennnanacnas 57

Higher power electron photomicrograph of an hepatic cell from
a one week 0ld miniature pig cveieceirerieneiiieeecnsesonnanconas 58

Electron photomicrograph of hepatic cells from a phenobarbital
treated one week 0ld miniature pig eeeeesceneieceeencooancnnnns 59

Electron photomicrograph of hepatic cells from a PCP treated
one week 0ld miniature pPig ..veveeiireiiieiiieerierracnnnronnoans 61

Electron photomicrograph of hepatic cells from PCA treated
one week 0ld miniature pPig .ceveveeeeecenecereceesosnncosonansoa 62

Eadie-Hofstee plot of aniline hydroxylase activity in microsomes
from uninduced, adult miniature pPigs ...cuiveeeiereranrrannannns 73

Plot of v (observed) against v (calculated) based on biphasic
kinetic analysis of aniline hydroxylase activity ....eeeeeeesns 74

Developmental profiles for the two forms of aniline hydroxylase
in uninduced miniature Pigs «.vevi it eieroneronssoancacnans 76

Eadie-Hofstee plot of PCA demethylase activity in microsomes
from uninduced, adult miniature pPigs «..euieeeeneceivnenannaanans 81

ix






































































































































































































































































































92

The finding that PCP does not significantly alter catalytic
activities in any of the parameters, especially 1in nitroanisole
demethylase where 1increases were observed 1in specific activities,
lends some support to the suggestion that the compound may induce a
constitutive form of P450.

The most striking effects, upon further examination of catalytic
activity results, are the age related changes observed in induced
pigs. While the catalytic activities for control animals remained
relatively constant from one to eight weeks of age, the effects of
PCA and phenobarbital appear to decrease in an age dependent manner.
The eight week old values in all three parameters are less than 50%
of the corresponding one week o0ld catalytic activities in pheno-
barbital treated pigs. This would imply that the inducible, substrate
specific form(s) of cytochrome P450 represent a smaller percentage of
the total P450 concentration in microsomes of eight week old pigs.
This may be the result of either a decrease in the synthesis of a
particular form or a diluting effect of 1increased synthesis of
non-specific forms.

In support of this proposal, Thomas and coworkers (1980) reported
that the major phenobarbital inducible form of P450 (P450-b) in rats
accounted for 70% of the total P450 in immature animals, while only
35% in adult microsomes. Furthermore, a minor form of P450 (P450-a)
present in uninduced microsomes, was 1induced by both phenobarbital
and 3-MC in immature, but not adult rats.

Since a number of investigations have suggested that biphasic

Michaelis-Menten kinetics are indicative of more than one species of
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P450 catalyzing the same reaction (Greenlee and Poland, 1978; Boobis
et al., 1981; McCoy, 1980), attempts were made to further investigate
the possibility of age dependent changes 1in the induction of P450
subpopulations utilizing kinetic experiments. Based on the assumption
that sufficiently large differences in affinities toward a particular
substrate may enable detection of the activities of different P450
forms, aniline concentrations were varied over three orders of magni-
tude. When plotted by the Eadie-Hofstee method, aniline hydroxylase
activity could, 1in fact, be resolved into two kinetic components
(Figure 10). While the affinities of the two forms differed by
greater than 100-fold, the differences in maximum velocities varied
by only three-fold. Furthermore, although the absolute values for the
kinetic constants differ slightly, these results are 1in agreement
with those reported by McCoy (1980) for aniline hydroxylase activity
in hamster liver microsomes.

By conducting similar kinetic analyses at wvarious ages, a
developmental profile was obtained for the two forms of aniline
hydroxylase activity (Figure 12). While the high-affinity component
(Form 1) remained relatively constant during development, the low
affinity component (Form II) exhibited a biphasic nature, increasing
from 1 to 4 weeks and then again between 8 and 16 weeks of age.
Interestingly, between 1 and 4 weeks of age, there is a cross-over
in the developmental pattern. Thus, there is an age dependent change
in the contribution of the two forms to the total aniline hydroxylase

activity. The high-affinity component constitutes 70% of total
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activity in one week old piglets while the low-affinity component
contribute to 75% in the sixteen week old animal.

Based strictly on the kinetic data from uninduced pigs, it would
be impossible to establish the relationships between the two compo-
nents of aniline hydroxylase and various, well characterized forms of
cytochrome P&450. The selective induction of only one component of
aniline hydroxylase activity by phenobarbital (Table 14), however,
provided some basis for comparisons. That the high-affinity component
was essentially unaffected by phenobarbital treatment suggested that
this form may be cytochrome P448. Indeed, this 3-methylcholanthrene
inducible form, synonomous with arylhydrocarbon hydroxylase (AHH), is
not induced by phenobarbital. Furthermore, studies with various puri-
fied forms of cytochrome P450 (448), isolated from both rat (Ryan et
al., 1979) and pig (Tsuji et al., 1980) have shown that aniline is
most efficiently metabolized by cytochrome P448,

In contrast to its lack of effect on the high-affinity component,
phenobarbital does increase the low-affinity activity. In comparing
the apparent Km values observed in uninduced and induced microsomes
(Tables 13 and 14), it would appear that phenobarbital's effect was
strictly quantitative. In otherwords, phenobarbital induces the synthe-
sis of a constitutive form of cytochrome P450. This, however, is
contrary to the overwhelming evidence in the literature that phenobar-
bital induces forms of cytochrome P450 distinctly different from the
major form in uninduced animals. Therefore, a more tenable explanation
is that the phenobarbital 1induced form 1is in fact qualitatively

different from the constitutive form, but exhibits a similar affinity



95

towards aniline. In this respect, Tsuji and coworkers (1980) reported
that the major phenobarbital inducible form (P450 B) purified from
pig liver displayed identical catalytic activity as the form isolated
from uninduced animals (P450 Cent). The two forms, however, were
determined to be uniquely different proteins by a variety of other
criteria. Additionally, the authors reported that one minor form of
P450 (P450 A), induced by phenobarbital, exhibited a two-fold greater
catalytic activity towards aniline than the major inducible form.

At this point, it is important to mention that while two aniline
hydroxylase activities could be resolved 1in control and induced
animals in this study, the possibility exists that the detection of
additional kinetic species may be obscured by the predominance of a
low-affinity/high-capacity enzyme or similarities in enzyme affinity
towards a particular substrate. Thus, the observed activity of the
low-affinity component in phenobarbital induced pigs may be the
cumulative activities of more than one form of cytochrome P450. This
possibility may help to explain the changes 1in the magnitude of
phenobarbital's effect as a function of age (Table 14). As previously
discussed, Thomas and coworkers (1980) described a minor form of
cytochrome P450 (P450a) which was induced by phenobarbital in imma-
ture, but not adult rats. If the minor inducible form in pig liver
(P450 A) (Tsuji et al., 1980), which was more active towards aniline,
is under similar temporal control, it could explain the greater
effect of phenobarbital on one week versus older animals. Furthermore,

the age-dependent induction of a more highly active form of aniline
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hydroxylase would explain the significant 1increase in catalytic
activity in one week old piglets (Table 11) and the absence of a
significant effect in older animals.

In view of the qualitative similarities between PCA and phenobar-
bital induction, an attempt was made to further characterize the PCA
inducible form using similar kinetic analysis. As with phenobarbital,
PCA had no effect on the high-affinity component of aniline hydroxyl-
ase (Table 15). PCA did however appear to increase the activity of
the low-affinity component slightly as well as decrease the apparent
Km. Based on the earlier suggestion that the low-affinity component
in phenobarbital induced microsomes probably represents more than one
form of P450, it 1is tempting to speculate that the difference in
apparent Km's reflects the induction of only one of these forms by PCA.

The proposal by Hultmark et al. (1979) of at least three dif-
ferent forms of cytochrome P450 active in the demethylation of
dichloro-p-nitroanisole in rat liver microsomes prompted an investiga-
tion to determine if PCA demethylation could also be resolved into
kinetic components. Thus, while the Lineweaver-Burke plots of PCADM
(Figure 2) appeared linear, two factors should be considered. First,
the substrate concentration range used for these experiments varied
by only twenty-fold. Secondly, in these early experiments, acetone
was incorporated as a vehicle for PCA. Although the transition to
Tween 80 alone, as substrate carrier followed shortly thereafter, it
was later learned that acetone produced inhibitory effects similar to
ethanol in uninduced microsomes (Hultmark et al., 1979). By widening

the substrate <concentration range and avoiding organic solvent
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vehicles, PCA demethylase activity did in fact display a biphasic
nature (Figure 13). The summary of the kinetic data for the two forms
of PCA demethylase as a function of age and treatment (Table 16)
provided some interesting correlations with a number of results
throughout the entire study.

The close similarity 1in the apparent Km values for the high-
affinity component 1in uninduced and induced pigs would suggest that
the same form of cytochrome P450 exists in both sources. Unlike the
high~affinity form of aniline hydroxylase, however, this component is
induced by phenobarbital. The small contribution of the high-affinity
component to the total phenobarbital induced activity would further
indicate that this form 1is a minor inducible form. Collectively,
these assumptions compare favorably with the report by Thomas and
coworkers (1980) of an identical form of cytochrome P450 (P450a)
present in uninduced, phenobarbital and 3-methylcholanthrene induced
rat liver microsomes. In all cases, this form accounted for a small
fraction (3-7%) of the total cytochrome P450 concentration.

In contrast to the high-affinity component, the marked differ-
ences in the apparent Km values of the low-affinity component would
indicate that the induced and uninduced forms of cytochrome P450 are
different. Hence, the predominance of the low-affinity component in
the total phenobarbital induced PCADM activity would suggest that
this form may be the major phenobarbital inducible form described by
Tsuji et al. (1980).

The low-affinity component in uninduced microsomes represents,

most likely, the P&450-control form 1in pigs (Tsuji et al., 1980).
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Whether this form is similar to the "ethanol sensitive' constitutive
form in rats (Hultmark et al., 1979) remains to be determined. It may
be worth noting, however, that the kinetic parameters in uninduced
adult pigs from earlier experiments (Figure 2) are remarkably similar
to those for wuninduced adult pigs' high-affinity component (Table
16). Thus, the presence of acetone in the early PCA demethylase assay
may have 1inhibited the expression of the low-affinity constitutive
form.

In agreement with the age-dependent changes in the degree of
phenobarbital's effect on aniline hydroxylase activity, a similar
phenomenon was observed for PCA demethylase. The magnitude of pheno-
barbital's effect on the low affinity component of PCADM remains
relatively constant with age. However, since the constitutive and
phenobarbital inducible forms of P450 responsible for the low-affinity
activity are probably different, these results may be misleading.
Although wuninduced microsomes may contain a small amount of the
phenobarbital inducible form of P450 (Thomas et al., 1980; Tsuji et
al., 1980), kinetic analysis was not able to separate out the
contribution of the component in wuninduced pigs. Therefore, the
magnitude of phenobarbital's effect 1is most likely underestimated.
For the same reasons above, age-dependent changes in the inducibility
of this particular form would not be detectable.

In contrast, the high-affinity component does undergo age related
changes in the degree of induction. The 1increase 1in activity over
basal level in eight week old pigs is approximately 50% of the effect

observed in one week old animals. This effect is consistent with that
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CONCLUSIONS

(1) Pentachloroanisole is metabolized in vitro to pentachloro-
phenol by hepatic microsomes from miniature pigs. The requirement for
NADPH, inhibition by carbon monoxide, and production of a substrate
binding spectrum indicate that the compound 1is catalyzed via a

cytochrome P450-dependent demethylation reaction.

(2) The relatively large increase in the rate of PCA demethyla-
tion following phenobarbital induction strongly suggests that PCA is
preferentially <catalyzed by a phenobarbital inducible form(s) of
cytochrome P450. The very low levels of activity, coupled with the
inability to detect a substrate binding spectrum in uninduced micro-
somes suggests that the substrate-specific form of P450 is absent or

present in very low concentration in uninduced microsomes.

(3) The postnatal developmental pattern of hepatic mixed-
function monooxygenase activity in miniature pigs is similar to that
in other laboratory species. In most parameters measured, an increase
between one and four weeks of age is followed by a plateau to eight
weeks of age. The additional rise in activity for aniline hydroxylase
and PCA demethylase between eight and sixteen weeks of age, observed
in kinetic experiments, may be associated with the attainment of

sexual maturity in miniature pigs.
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(4) Pentachloroanisole treatment produced increases in all MFO
parameters measured in one week old minipigs. The qualitative nature
of PCA's induction is similar to that of phenobarbital. The greatest
effect, a three-fold increase in 1its own metabolism, suggests that
the compound induces a specific form of cytochrome P450, similar to

that induced by phenobarbital.

(5) Pentachlorophenol treatment produced increases in some, but
not all MFO parameters in one week old piglets. The overall qualita-
tive differences produced by PCA and PCP suggests that the two
compounds induce different species of cytochrome P450 which exhibit

overlapping substrate specificity in some cases.

(6) The proliferation of smooth endoplasmic reticulum observed
following treatment with all three compounds indicates that the
magnitude of the biochemical effects in MFO induction does not
necessarily correlate with alterations in the <cellular content of

this organelle.

(7) The age related decrease in catalytic activities observed
in phenobarbital and PCA treated pigs is suggestive of changes in the
relative contribution of different subpopulations of cytochrome P450
to the observed overall specific activity. The almost identical
decreases in PCA demethylase, aniline hydroxylase and nitroanisole
demethylase catalytic activities between one and eight weeks of age
suggests that the contribution of a particular form of P450, active

to varying degrees on all three substrates, decreases with development.
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(8) The biphasic kinetic profiles observed for aniline hydroxyl-
ase and PCA demethylase activities indicates that multiple forms of
cytochrome P450 are active in the metabolism of both substrates. By
integrating the effects of age and phenobarbital treatment on the
various kinetic species, it 1is suggested that at least four forms of
cytochrome P450 exist in miniature pig microsomes. The inducibility
of at least one form by phenobarbital appears to decrease with age
and the magnitude of this change correlates well with the effects

seen in catalytic activity profiles.
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APPENDIX A

Analysis of Pentachlorophenol and Pentachﬂoroanisole for
Non-Phenolic Contaminants.

Source PCP2 PCP PCA

(Aldrich 99%)

Dibenzo-p-dioxins

Hexachloro- <0.01 ppm <0.01 <0.01 ppm

Heptachloro- <0.01 <0.01 <0.01

Octachloro- <150.0 <1.50 <0.01
Dibenzofurans

Hexachloro- <0.01 <0.01 <0.01

Heptachloro- <0.01 <0.01 <0.01

Octachloro- <0.01 <0.01 <0.01

1

Samples were analyzed by Gas Chromatography by the Analytical
Chemistry section, Office of Pesticides, U.S. EPA, Beltsville, MD.
Sensitivity of methods was between 1-10 ppb.

2A1drich 99% PCP was utilized as source for further purification of
PCP and synthesis of PCA for the study.
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APPENDIX B
Electron Microscopy Procedures

At the time of piglet sacrifice, liver sections were blotted an
placed immediately 1into Karnovsky's fixative containing sucrose.
Tissues were refrigerated for one week and then transferred to
Dr. Seibel.

Tissues were removed, cut 1into smaller slices and returned to
fresh fixative for 10 days. At that time, slices were washed with
cacodylate buffer (pH 7.4) with 7% sucrose, and allowed to stand
overnight in clean buffer. Tissue was next post fixed for 2 hours in
0sO, and then subjected to graded alcohol dehydration (30% - 100%),
fol?owed by 2 changes of propylene oxide and a propylene oxide:Epon
mixture (1l:1). Tissues were mnext placed in 100% Epon mixture at room
tegperature overnight and then embedded for 4 days in Epon mixture at
60" .

Blocks of tissue were thin sectioned with a Porter-Blum MT2
ultramicrotome nd double stained with 1lead citrate and alcoholic
uranyl acetate.” An AEI-6B Transmission Electron Microscope was used
for this study.

Dr. Werner Seibel, Department of Anatomy, University of Maryland
School of Dentistry, Baltimore, MD (personal communication).

2Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high
oxmolality for use in electron microscopy. J. Cell Biol. 27: 137A,
1965.

3Reynolds, E.S.: The use of lead citrate at high pH as an electron
opaque stain in electron microscopy. J. Cell Biol. 17: 208-212, 1963.
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