The Effects of Rhein and Thymoquinone on Obesity and Diabetes in Diet-induced Obese Mice.

Emily Martell
University of Rhode Island, 21saraemma@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Follow this and additional works at: http://digitalcommons.uri.edu/srhonorsprog

Part of the Natural Products Chemistry and Pharmacognosy Commons, Other Pharmacy and Pharmaceutical Sciences Commons, and the Pharmaceutics and Drug Design Commons

Recommended Citation
http://digitalcommons.uri.edu/srhonorsprog/444http://digitalcommons.uri.edu/srhonorsprog/444
The effects of Rhein and Thymoquinone on obesity and diabetes in diet-induced obese mice.

Emily Martell, Cameron Picard, and Dr. Angela Slitt

Department of Biomedical and Pharmaceutical Sciences, College Of Pharmacy
University of Rhode Island, Kingston, RI 02881

Introduction

Natural product extracts and chemicals isolated from natural products (e.g. plants, berries, seeds) have been commonly used in various types of traditional medicines. In addition, some drugs on the market today have been derived from natural product sources. The purpose of our study was to evaluate two natural products, Rhein and Thymoquinone, as potential anti-diabetic and anti-obesity agents. According to the Center for Disease Control (CDC), the number of people in the US diagnosed with diabetes has increased from 11.8 million people in the year 2000 to 20.8 million people in the year 2011. Rhein is a natural compound and a major component of Rheum palmatum, or Rhubarb. It has been used in Chinese medicine to treat constipation, gastrointestinal hemorrhage, ulcers as well as metabolic disorders such as diabetes. Recently, Rhein had been shown to improve non-alcoholic fatty liver disease (NAFLD) at doses of 150 mg/kg/day in diet induced obese mice through reducing body fat, improving serum lipid and glucose metabolism, and decreasing liver lipids, and reversing hepatic steatosis (Sheng et al., 2011). Rhein has also been shown to improve the Liver X receptors (LXRs) which play important roles in regulating cholesterol homeostasis, and lipid and energy metabolism. (Sheng et al., 2012). Thymoquinone (TQ) is a compound found in the plant Nigella sativa, or black cumin and has been documented to exhibit anti-diabetic, anti-obesity, hypotensive and hypo-lipidemic properties in human and animal studies. (Razavi and Hosseinzadeh, 2014). Extracts from Nigella sativa significantly increased hepatic and intestinal apolipoprotein A-I which is a major protein component of high density lipoprotein (HDL) secretion. The extract also induced peroxisome proliferator-activated receptor alpha (PPARα) expression by 9-fold and retinoic X receptor alpha (RXRα) expression by 2.5-fold. (Haas et al., 2014). The PPARα and RXRα nuclear receptors play and important role in regulating major lipid metabolism proteins. The purpose of our study was to evaluate whether daily administration of Rhein or TQ could improve obesity-induced diabetes in mice. First, male C57BL/6 mice that were 6 weeks of age were fed a low fat diet (10% kcal, LFD) or a high fat diet (60% kcal, HFD) for 12 weeks. Over the twelve-week period, body weight, fasting blood glucose and glucose tolerance were determined to assess whether the high fat diet could induce a diabetic condition. Starting from week 12, mice were administered canola oil vehicle (CO, 5 ml/kg), Rhein (20 mg/kg, 5 ml/kg in CO), or TQ (1 mg/kg, 5 ml/kg) daily. After three weeks of dosing the Rhein and TQ doses were increased to Rhein (50 mg/kg, 2.5 ml/kg) and TQ (10 mg/kg, 2.5 ml/kg). There were six groups of mice in this study, with the following groups: i) LFD + CO, ii) LFD + Rhein, iii) LFD + TQ, iv) HFD + CO, v) HFD + Rhein, vi) HFD + TQ. Body weight and food consumption were measured daily. At periodic points throughout the study, fasting blood glucose (FBG) and glucose tolerance (GTT) measured in the mice.

Materials and Methods

Introduction

Analysis

Conclusions

Figure 1. Changes in average body weights in grams throughout the 69 days of dosing within the treatment groups.

Figure 2. Fasting blood glucose (mg/dL) of different treatment groups measured at day 23 of dosing.

Future Studies

• Blood, liver, kidneys, skeletal muscle, adipose tissue, small intestine, and colon tissues were collected a further analysis should be conducted in these tissues such as a Glycated hemoglobin (A1c or HbA1c) measurement from the blood tissue which would identify the average plasma glucose concentration over a prolonged period of time.

• Further analysis of the tissues after homogenization, which will break apart cells so protein expression can be analyzed would be helpful to determine if the natural products had an effect on mechanisms of obesity and diabetes.

• Western blotting of LXR, PPARα, PPARy and RXR would be useful to see if Rhein or TQ had an effect on these nuclear receptor that control energy metabolism.

• Western blotting of IRS-1, GLUT2, GLUT4 and SREBP-1c would be useful to see other mechanisms of glucose and lipid regulation by transporters and transcription receptors.

References

CDC - Number of Adults - Diagnosed Diabetes - Data & Trends - Diabetes DTT.
Male C57BL/6 mice that were 6 weeks of age were given a LFD or HFD for 12 weeks.

- Low fat diet (10% kcal, LFD)
- High fat diet (60% kCal, HFD)

During the 12 week period, body weight, FBG and GTT were determined to assess whether the HFD could induce a diabetic condition.

Mice dosed daily by oral gavage:

- Dosed with Canola oil Vehicle (CO, 5 ml/kg),
- Dosed with Rhein (20 mg/kg in 5 ml/kg CO)
- Dosed with TQ (1 mg/kg, in 5 ml/kg CO)

Body weight and food consumption were measured daily. At periodic points throughout the study, fasting FBG and GTT were measured.

After 3 weeks, doses were increased and continued for 69 days:

- Dosed with CO (2.5 ml/kg),
- Dosed with Rhein (50 mg/kg in 2.5 ml/kg CO)
- Dosed with TQ (10 mg/kg, in 2.5 ml/kg CO)

Preformed necropsy and collected tissue samples:

- Collected: Blood, Liver, Kidneys, Skeletal muscle, Adipose tissue, Small intestine, and colon

Fasting Blood Glucose (FBG) and Glucose Tolerance Testing (GTT)

- Mice were fasted overnight.
- The end of the mouse’s tail was pricked and blood was collected and measured with a glucometer twice.
- Mice were given a dose of glucose (1g/kg) by oral gavage.
- Average of the two values were recorded at initial blood glucose and FBG.
- At 15, 30, 60, and 90 minutes after the dose of glucose, mouse tail blood was collected and measured with the glucometer twice and the average of the two values were recorded.