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SOME OPEN QUESTIONS ON MODULO CLASSES

FRANK J. PALLADINO

FACULTY SPONSOR: LUBOS THOMA

Department of Mathematics,
University of Rhode Island,
Kingston, RI 02881-0816, USA
fpalladino@mail.uri.edu

ABSTRACT. Modular arithmetic is a system of arithmetic for integers which most peo-
ple use on a daily basis. The 24-hour clock is based off of this system. The study of
modular arithmetic is a fundamental area of study in number theory. Many of the im-
portant theorems concerning modulo classes have been well understood for centuries,
however there still remains a number of difficult open questions concerning various
properties of modulo classes. Over the course of this project I have focused on several
of these conjectures with the intention of producing original work in the field of number
theory.

Although I have yet to fully resolve any of the open questions, I have obtained non-
trivial results for certain special cases of the general problems. It is my intention to
present several of the more prominent techniques I have used throughout the semester.
The focus of this study shall be the following conjectures:

Conjecture 1. Suppose we have k pairwise disjoint modulo classes a; mod M; i =
1,...,k then there exists My, M;, 1 < j <1 <k such that gcd(M;, M;) > k.

Conjecture 2. Given k > 0 there exists Ny modulo classes a; mod M; i =1,..., Ng,
such that M; > k for i =1,..., Ny, and these N, modulo classes cover the integers.

During the course of this project Conjecture 1 has been established for small finite
cases, namely for k& < 7. Furthermore the following theorem, a weakening of Conjec-
ture 1, has been established:

Theorem 1. Suppose we have k pairwise disjoint modulo classes a; mod M; i =
1,...,k then there exists M;, M;, 1 < j <1 <k such that gcd(M;, M;) > Vk.

My goal here is to present an explicit proof for each of the 7 special cases of Con-
jecture 1 which have been established over the course of this project. With this goal in
mind I will first present several techniques which allowed these special cases to be re-
solved. Once the 7 special cases have been addressed I will present a proof of Theorem
1.

Keywords: congruence class.
AMS Subject Classification: 11A07
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1. INTRODUCTION

The study of modular arithmetic is a fundamental area of study in number theory.
Many of the important theorems concerning modulo classes have been well understood
for centuries, however there still remains a number of difficult open questions concerning
various properties of modulo classes.

Definition 1. Given integers a, b, M with M > 0. We say that a is congruent to b
modulo M, and we write

a = b(modM) , (1)
of M divides the difference a —b. The number M is called the modulus of the congruence.
The congruence class a mod M s the set of integers C so that

a = b(modM) , (2)
for allb e C.

In this paper I study several conjectures relating to modulo classes. I present this
report as a summary of my year-long work and to document my partial findings in
support of the general conjectures. The main goal of this work is to demonstrate my
insights into the general conjectures and to present relevant background information.
In this way I hope to inspire interest regarding these open problems in the mind of the
reader. The conjectures studied are the following.

Conjecture 1. Suppose we have k pairuise disjoint modulo classes a; mod M; 1 =
1,...,k then there exists M, M;, 1 < j <1 <k such that gcd(M,;, M;) > k.

Conjecture 2. Given k > 0 there exists N, modulo classes a; mod M; i = 1,..., N,
such that M; > k fori=1,..., Ny, and these Ny modulo classes cover the integers.

In this paper I will include a proof of Conjecture 1 for k& < 7. Also a proof of the
following theorem, a weakening of Conjecture 1, will be presented.

Theorem 1. Suppose we have k pairwise disjoint modulo classes a; mod M; 1 =1,... k
then there exists M;, M;, 1 < j <1 < k such that gcd(M,;, M;) > VE.

It should be noted that these problems are highly non-trivial. In [3] Paul Erdés offers
$ 500.00 for proof or disproof of Conjecture 2. Conjecture 1 is proposed by Sun, cf. [2].

2. PRELIMINARY OBSERVATIONS

Before we attempt to prove the main results of the paper, we will introduce a number
of preliminary observations which help to simplify the results presented in the following
sections. First we shall present the Chinese remainder theorem. This theorem is a
standard textbook result, and shall play an important role in the following obeservations.

Theorem 2. The Chinese remainder theorem: Assume maq,...,m, are positive integers,
relatively prime in pairs:
ged(mi,my) = 1,1 # k. (3)
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Let by, ..., b, be arbitrary integers. Then the system of congruences

z = b; mod my

r = b, mod m, (4)
has exactly one solution modulo the product my ... m,.

Proof. Let M =my ... m, and let My = M/my. Then ged(My, my) = 1 so each M, has
a unique reciprocal M} modulo my. Now let

Consider each term in this sum modulo my. Since M; = 0 mod my, if i # k we have
x = by M. M|, = b mod my. (6)

Hence x satisfies every congruence in the system. But it is easy to show that the system
has only one solution mod M. In fact, if x and y are two solutions of the system we have
xr = y mod my, for each k and, since the m, are relatively prime in pairs, we also have
x =y mod M. This completes the proof. O

The first observation we shall discuss follows directly from the Chinese remainder
theorem.

Observation 1. Suppose the modulo classes a; mod M; and a; mod M; are disjoint,
then ged(M;, M;) > 2.

Proof. Suppose ged(M;, M;) < 2, then ged(M;, M;) = 1. Thus M; and M; are relatively
prime. By the Chinese remainder theorem the system of congruences has exactly one
solution modulo the product M;M;. Thus the modulo classes are not disjoint, however
this contradicts our original assumption. 0

Notice that by Observation 1 the special case k=2 of Conjecture 1 is established. The
following generalization of Observation 1 becomes a vital tool in verifying the further
cases of Conjecture 1.

Observation 2. The modulo classes a; mod M; and a; mod M; are not disjoint if and
only if a; = a; mod ged(M;, M;).

Proof. The modulo classes a; mod M; and a; mod M are not disjoint if and only if there
exist integers Ny, N, so that a; + N1 M, = a;+ NoM;. Which happens if and only if there
exist integers Ny, Ny so that a; + gNl—Migcd(Mi,Mj) = a; + &j)gcd(Mi,Mj).

Cd(Mi,Mj) ng(Mi,Mj
This is true if and only if there exist integers Ny, N so that —z-%  — Sl
1, 4¥2 ged(M;,Mj) ged(M;,Mj) *

Now we know from the properties of the greatest common divisor, or more specifically
from Theorem 1.2 in [1|, that ged(M;, M;)|(N2M; — Ny M;) this is true if and only if
ged(M;, M;)|(a; — aj). Thus a; mod M; and a; mod M; are not disjoint if and only if
a; = a; mod ged(M;, M;). O
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The next two observations follow quickly from the definition of the greatest common
divisor, however as they are needed for the proof of Observation 5, which is essential to
our study I will state them here.

Observation 3. Let S be a finite set of natural numbers, and let P(S) be a permutation

of S. Then gcd(S)=gcd(P(S)).
Proof. Obvious from the definition of the greatest common divisor. OJ

Observation 4. Let A,B,C be finite sets of natural numbers where A = B U C, then
ged(A)=gcd(ged(B),ged(C)).

Proof. By the definition of ged(A), ged(A)|ged(B), and ged(A)|ged(C),

thus ged(A)|ged(ged(B), ged(C')). By definition ged(ged(B), ged(C))|ged(B), and
ged(ged(B), ged(C))|ged(C). Thus ged(ged(B), ged(C))|x for x € B and

ged(ged(B), ged(C))|y for y € C. Thus for z € BUC = A, gcd(ged(B), ged(C))|z.
Therefore ged(ged(B), ged(C))|ged(A), thus ged(A)=ged(ged(B),ged(C)). O

Now I will present Observation 5. This observation is useful when attempting a proof
by contradiction for sufficiently small special cases of Conjecture 1.

Observation 5. Suppose we have k pairuise disjoint modulo classes a; mod M; 1 =
1,...,k such that for every pair M;,M;, 1 < j < 1 < k gcd(M;,M;) < 6, then
ged(My, ..., M) > 2.

Proof. From Observation 1 since the modulo classes are pairwise disjoint we have that for
every pair M;, M;, 1 < j <1 <k, ged(M;, M;) > 2. Suppose thereexists 1 < j <d <i <
| < ksuch that ged(M;, M;, M;, M) = 1, then by Observations 3 and 4 along with our as-
sumptions, the integers ged(M;, M;),gcd(M;, My),gcd( My, M;),gcd(My, My,),gcd(Mg, M;),
and ged(M;, My) must all be in the range 2 < n < 6 and must be pairwise relatively
prime. However this is impossible since there are only 3 primes in this region. Thus
for every foursome M;, M;, M;, My, 1 < j < d < i <1 <k, ged(M;, M;, M;, My) > 2.
Now suppose gcd(M;,, Mj,, ..., M;, ,) > 2, and there exists 1 < j; < jo <--- <j, <k
such that ged(Mj,, M,,,...,M;,) = 1, then by Observations 3 and 4 along with our
assumptions, the integers ged(M,, , M;, | ),gcd(M;,, M;, ,),gcd(M;, ,, M;, ),
ng(Mjm QCd(MjN MjQ’ R MJ'L73))= ng(Mijmgc‘j(MjN Mjw R MjL73 )

and ged(M;, ,,gcd(Mj,, M,,, ..., M;, ,)) must all be in the range 2 < n < 6 and must be
pairwise relatively prime. However this is impossible since there are only 3 primes in this
interval. Thus by induction for every set M, , M;,, ..., M;,, ged(M;,, Mj,, ..., M;, ) > 2,
thus ged(My, ..., My) > 2. O

This concludes the preliminary observations required.

3. SPECIAL CASES

Here I will present the explicit proof for each of the special cases of Conjecture 1 where
kE<T.

Special Case k = 1. Suppose we have a modulo class a; mod My then ged(M;) > 1.
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Proof. Obvious. 0

Special Case k = 2. Suppose the modulo classes a; mod My and ay mod My are dis-
joint, then gced(My, M) > 2.

Proof. Suppose gcd(My, My) < 2, then ged(My, My) = 1. Thus M; and M, are relatively
prime. By the Chinese remainder theorem the system of congruences has exactly one
solution modulo the product M;Ms. Thus the modulo classes are not disjoint, however
this contradicts our original assumption. U

Special Case k = 3. Suppose we have 3 pairwise disjoint modulo classes a; mod M;
i=1,...,3 then there exists M;, M;, 1 < j <1 <3 such that ged(M,;, M;) > 3.

Proof. Suppose not, then we have 3 pairwise disjoint modulo classes a; mod M; ¢ =
1,...,3 such that for every pair M;,M;, 1 < j <1 < 3 ged(M;, M;) < 2. Also by
Observation 1, we have 3 pairwise disjoint modulo classes a; mod M; ¢ = 1,...,3 such
that for every pair M;, M;, 1 < j <1 < 3 ged(M,;, M;) > 2. Thus we have 3 pairwise
disjoint modulo classes a; mod M; ¢ = 1,...,3 such that for every pair M;, M;, 1 <
Jj <1< 3 ged(M;, M;) = 2. This means that by the pidgeon hole principle there exists
aj,aj, 1 < j <1< 3such that ¢, = a; mod ged(M;, M;). Thus by Observation 2 the 3
modulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions. O

Special Case k = 4. Suppose we have 4 pairwise disjoint modulo classes a; mod M;
i=1,...,4 then there exists M;, M;, 1 < j <1 <4 such that ged(M,;, M;) > 4.

Proof. Suppose not, then we have 4 pairwise disjoint modulo classes a; mod M; ¢ =
1,...,4 such that for every pair M;, M;, 1 < j <1 <4 ged(M,;, M;) < 3. By Observa-
tion 5, ged(My, My, M3, My) > 2, thus either 2 or 3 divides M; i =1,... 4.

Suppose 3 divides M; ¢« = 1,...,4, then for every pair M;,M;, 1 < 7 < [ < 4
ged(M;, M;) = 3. This means that by the pidgeon hole principle there exists a;,a;,
1 < j <1 <4 such that ¢, = a; mod ged(M;, M;). Thus by Observation 2 the 4 mod-
ulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions.

Suppose 2 divides M; ¢ = 1,...,4, then for every pair M;,M;, 1 < j < [ < 4
ged(M;, M;) = 2. This means that by the pidgeon hole principle there exists a;, aj,
1 < j <l <4 such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 4 mod-
ulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions.

Thus in either case we arrive at a contradiction. O

Special Case k = 5. Suppose we have 5 pairwise disjoint modulo classes a; mod M;
i=1,...,5 then there exists M;, M;, 1 < j <1 <5 such that ged(M;, M;) > 5.

Proof. Suppose not, then we have 5 pairwise disjoint modulo classes a; mod M; ¢ =
1,...,5 such that for every pair M;, M;, 1 < j <1 <5 ged(M;, M;) < 4. By Observa-
tion 5, ged(My, Ma, M3, My, Ms) > 2, thus either 2 or 3 divides M; i =1,...,5.

Suppose 3 divides M; ¢ = 1,...,5, then for every pair M;,M;, 1 < j <1 <5
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ged(M;, M;) = 3. This means that by the pidgeon hole principle there exists a;,a;,
1 < j <1 <5 such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 5 mod-
ulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions.

Suppose 2 divides M; ¢ = 1,...,5, then for every pair M;,M;, 1 < j <1 <5
ged(M;, M;)|4. This means that by the pidgeon hole principle there exists a;,a;, 1 < j <
[ <5 such that ¢; = a; mod ged(M;, M;). Thus by Observation 2 the 5 modulo classes
in question are not pairwise disjoint, however this contradicts our original assumptions.
Thus in either case we arrive at a contradiction. U

Special Case k = 6. Suppose we have 6 pairwise disjoint modulo classes a; mod M;
i=1,...,6 then there exists M;, M;, 1 < j <1 <6 such that ged(M,;, M;) > 6.

Proof. Suppose not, then we have 6 pairwise disjoint modulo classes a; mod M; ¢ =
1,...,6 such that for every pair M;, M;, 1 < j <1 <6 ged(M;, M;) < 5. By Observa-
tion 5, ged(My, Ma, M3, My, My, Mg) > 2, thus either 2, 3, or 5 divides M; i =1,...,6.
Suppose 3 divides M; ¢ = 1,...,6, then for every pair M;,M;, 1 < j <[ < 6
ged(M;, M;) = 3. This means that by the pidgeon hole principle there exists a;, a;,
1 < j <1 <6 such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 6 mod-
ulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions.

Suppose 2 divides M; ¢ = 1,...,6, then for every pair M;,M;, 1 < 7 <[ < 6
ged(M;, M;)|4. This means that by the pidgeon hole principle there exists a;,a;, 1 < j <
[ < 6 such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 6 modulo classes
in question are not pairwise disjoint, however this contradicts our original assumptions.
Suppose 5 divides M; ¢ = 1,...,6, then for every pair M;,M;, 1 < j <[ < 6
ged(M;, M;) = 5. This means that by the pidgeon hole principle there exists a;, a;,
1 < j <1 <6 such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 6 mod-
ulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions.

Thus in any of the three cases we arrive at a contradiction. ([l

Special Case k = 7. Suppose we have 7 pairwise disjoint modulo classes a; mod M;
i=1,...,7 then there exists M;, M;, 1 < j <1 <7 such that ged(M;, M;) > 7.

Proof. Suppose not, then we have 7 pairwise disjoint modulo classes a; mod M; i =
1,...,7 such that for every pair M;,M;, 1 < j <1 < 7 ged(M;,M;) < 6. By Ob-
servation 5, gcd(My, Ma, M3, My, Ms, Mg, M7) > 2, thus either 2, 3, or 5 divides M;
1=1,...,7.

Suppose 5 divides M; ¢ = 1,...,7, then for every pair M;,M;, 1 < j <1 <7
ged(M;, M;) = 5. This means that by the pidgeon hole principle there exists a;,a;,
1 <j <1< 7such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 7 mod-
ulo classes in question are not pairwise disjoint, however this contradicts our original
assumptions.

Suppose 3 divides M; ¢« = 1,...,7, then for every pair M;,;M;, 1 < j <[ < 7
ged(M;, M;)|6. This means that by the pidgeon hole principle there exists a;,a;, 1 < j <
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[ < 7 such that a; = a; mod ged(M;, M;). Thus by Observation 2 the 7 modulo classes
in question are not pairwise disjoint, however this contradicts our original assumptions.
Suppose 2 divides M; ¢ = 1,...,7, then we can partition the set M; i = 1,...,7 in the
following way.

M; € Aif and only if 2| M;, but 4 does not divide M;, and 6 does not divide M;; M; € B
if and only if 4|M;, but 6 does not divide M;; M; € C' if and only if 4 does not divide
M;, and 6|M;; and M; € D if and only if 12|M;.

Notice that taking arbitrary = € A, y € B, and z € C then gcd(x,y) = 2, gcd(z, 2) = 2,
and ged(y, z) = 2, thus the cardinality of AU B U C is no greater than 3 lest we have
a contradiction. Thus the cardinality of D is greater than or equal to 4. However this
contradicts our original assumptions.

Hence we arrive at a contradiction in all cases. U

Thus Conjecture 1 has been established for £ < 7.

4. A WEAKER RESULT

Here I will present a proof of Theorem 1, which is similar to Conjecture 1, however
rather than proving ged(M;, M;) > k we will prove that ged(M;, M;) > Vk.

Theorem 1. Suppose we have k pairwise disjoint modulo classes a; mod M; i =1,... k
then there exists M;, M;, 1 < j <1 <k such that ged(M,;, M;) > Vk.

Proof. Suppose not, then we have k pairwise disjoint modulo classes a; mod M; ¢ =
1,...,k such that for every pair M;,M;, 1 < j < | < k gcd(M;, M;) < Vk. Since
there are at most & — 1 possible distinct modulo classes whose modulus is less than
V'k. We have that by the pidgeon hole principle there exists a;, a;, 1 < j <1< ksuch
that a; = a; mod ged(M;, M;). Thus by Observation 2 the k modulo classes in question
are not pairwise disjoint, however this contradicts our original assumptions. Thus the
theorem is proved. O

5. CONCLUSION

To conclude, the field of number theory is a field of mathematics with many rich,
diverse, and difficult open problems. These preliminary results barely scratch the surface
of what remains to be known regarding modulo classes. I believe that these problems
are of paramount importance, and that this area requires further study.
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