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ABSTRACT

GNSS receivers convert the measured pseudoranges from the visible GNSS satellites into an estimate of the position
and clock offset of the receiver. For various reasons receivers might want to process only a subset of the visible
satellites; it would be desired, of course, to use the best subset. In general, selecting the best subset is a combinatorics
problem; selecting m objects from a choice of n allows for

(
n
m

)
potential subsets. And since the typical performance

criterion (e.g. Geometric Dilution of Precision) is nonlinear and non-separable in the satellites’ locations in the sky,
finding the best subset is a brute force procedure; hence, a number of authors have described sub-optimal algorithms
for choosing satellites.

This paper revisits this problem, especially in the context of multiple GNSS constellations. The paper begins with
a review of the existing subset selection algorithms. We note that all of these algorithms are what might be called
“snapshot” in nature, selecting a subset for a single, fixed skyview of satellites. Through an example with the GPS
constellation, we examine the time-sequential, or temporal, characteristics of the best subset selection noting:

• That the best subset at a particular point (snapshot) in time is also the best subset for a significant time
interval around that point (typically measured in minutes).

• That the changes in the best subset over time are primarily, but not always, due to the loss or gain of a satellite
crossing the horizon (or, more precisely, the receiver’s mask angle).

Based upon these observations this paper develops several time-sequential, or temporal, algorithms that attempt to
track the optimum subset of satellites over time at low computational cost. The accuracy and complexity of the
algorithms are assessed with GPS constellation data. On a larger scale, these algorithms are then tested on combined
GPS, GLONASS, and Galileo constellations with the resulting performance compared to optimal solutions found via
exhaustive search.



INTRODUCTION

GNSS receivers convert the measured pseudoranges from the visible GNSS satellites into an estimate of the position
and the clock offset of the receiver. The typical implementation of the solution algorithm is an iterative, linearized
least squares method [1]. Assuming that pseudoranges from m satellites are measured, the “direction cosines” matrix
is formed. Using an East, North, and Up coordinate frame this matrix is of the form

G =


e1 n1 u1 1
e2 n2 u2 1
...

...
em nm um 1

 (1)

in which (ek, nk, uk) is the unit vector pointing toward the kth satellite from the assumed receiver position. This
matrix is then used to form the pseudoinverse to solve the set of overdetermined, linearized pseudorange equations.
Since the pseudoranges themselves are noisy, the resulting solution is also noisy. The accuracy of the resulting
solution can be described statistically by its error covariance matrix, which is proportional to the inverse of GTG.
Rather than considering all of the individual elements of this covariance matrix, it is common to reduce it to a scalar
parameter. The most used reduction is the GDOP (Geometric Dilution of Precision), the square root of the trace of
this matrix

GDOP =

√
trace

{
(GTG)

−1
}

equivalently, proportional to the square root of the sum of the variances of the four estimates (three of position and
one of time). For multiple constellations the definition of G can be extended by appending additional columns to
account for different clock biases. Specifically, for L unsynchronized constellations, G is of the form

G =



e1,1 n1,1 u1,1 1 0 0 . . . 0
...

...
...

e1,m1
n1,m1

u1,m1
1 0 0 . . . 0

e2,1 n2,1 u2,1 0 1 0 . . . 0
e2,2 n2,2 u2,2 0 1 0 . . . 0

...
...

...
eL,mL

nL,mL
uL,mL

0 0 0 . . . 1


(the first of the two subscripts is the constellation number, 1 to L; the second is the satellite number within the kth

constellation, 1 to mk) and the GDOP is still as written above, but now includes the variances of L + 3 variables,
three for the receiver’s position and those of the L clock biases.

In some instances a GNSS receiver cannot process all of the visible satellites. For example, the issue might be:

• That the receiver physically cannot track all of the potential signals – this might be a hardware limitation (due
to a fixed number of channels) or the desire to minimize power usage [2, 3].

• That the receiver is using corrections from some augmentation system and that the bandwidth of the correction
channel is insufficient to provide information for all of the visible satellites (see, for example, [4]).

In such a case the question arises: “If only m of n (m < n) visible satellites can be processed, which m should they
be?” Consider the question for the GDOP criterion. Since the GDOP is nonlinear and non-separable in the satellites
locations in the sky, finding the best subset is a combinatorics problem; selecting m objects from a choice of n allows
for
(
n
m

)
possible subsets. If the receiver limits its attention to the 15 or so visible GPS satellites then a brute force

comparison of all subsets to find the optimal subset is possible (for n = 15,
(
15
m

)
< 6, 500 for all 3 < m < 15, well

within modern computational capability). The advent of other GNSS constellations exacerbates this problem. For
example, desiring to process 16 of 35 visible satellites (such as frequently occurs with GPS, GLONASS, and Galileo)
brute force comparison is no longer viable (e.g. with n = 35,

(
35
16

)
> 4 billion, impossible for real time usage).

This question of selecting a subset of the possible satellites is not new in the navigation literature; multiple authors
have described sub-optimal algorithms for choosing the satellite subset. (Note, however, that this question is still
timely; all three of the papers referenced above, [2–4], are from 2016.) Most of these sub-optimum methods are



greedy in nature (described below) and have been developed under the assumption of a single constellation. Further
all of these algorithms are what might be called “snapshot” in nature, selecting a subset for a single, fixed skyview
of satellites.

This paper revisits this problem, especially in the context of multiple GNSS constellations. The next section briefly
reviews the existing subset selection algorithms. This review is followed by a motivational example with the GPS
constellation, examining the time-sequential, or temporal, characteristics of the best subset. Based upon these ob-
servations, this paper develops several time-sequential, or temporal, algorithms that attempt to track the optimum
subset of satellites over time at low computational cost. The accuracy and complexity of the algorithms are assessed
with GPS constellation data. Finally, these algorithms are tested on combined GPS, GLONASS, and Galileo con-
stellations with the resulting performance compared to several optimal solutions found via full search (brute force)
computation.

PREVIOUS SUBSET SELECTION ALGORITHMS

Multiple authors have presented sub-optimum satellite selection procedures; a number of these employ alternative
performance measures beyond GDOP. These include volume of the polytope formed by the satellites [5, 6] and
cosines of the angles between pairs of satellites [7–9], as well as combinations of vertical and horizontal protection
limits [3].

The sub-optimum algorithms tend to be greedy algorithms, making optimum decisions on a sequence of smaller
problems. For example, to generate a subset of size m the authors of [10] suggest starting with the full set of n
satellites and iterating the following steps:

1. Assuming that the current subset consists of k satellites, compute k GDOPs, one for each proper subset of
k − 1 satellites.

2. Of these k values identify and remove that satellite which results in the smallest increase in GDOP; the result
is a subset of size k − 1.

3. Repeat steps 1 and 2 until k = m.

This algorithm is greedy in that it makes an optimum choice at each step in the iteration although the final result
might not be the global optimum. Specifically, a poor (but still locally optimum) choice at one step might lead to a
globally sub-optimum solution for future iterations. It is noted in [10] that the loss to the global optimum for small
constellations appears to be small; however, there is no guarantee that this is true for larger numbers of satellites.
In a similar way it is possible to grow the subset greedily from the best set of 4 [11].

Another sub-optimum algorithm suggests starting with a subset of size m (and one could discuss how to select this
initial subset!) and then iterate in a greedy fashion – growing the subset to m + 1 satellites by adding the most
helpful (with respect to GDOP) of the unused satellites and then shrinking back down to m by removing the least
helpful one, denoted a “revolving door” method [12] – until a equilibrium is reached.

Simulated annealing has also been proposed as a technique to implement a GDOP-based satellite selection algorithm
[13].

Finally, an algorithm could try to mimic the minimum GDOP constellation from the known results on lower bounds
to GDOP. Specifically, in [14] it is shown that for m satellites the minimum GDOP is attained by a constellation
consisting of approximately 30% of the satellites at zenith and the remaining 70% at the horizon. An algorithm
could, then, choose high elevation satellites to match the number desired to be at zenith and then attempt to place
the remaining satellites near the horizon following “balance” [15,16].

A MOTIVATING EXAMPLE

To motivate the time sequential, or temporal, algorithms developed in this paper, consider the case of selecting a
subset of satellites from the GPS constellation. The data for the experiment consists of azimuth and elevation angles
of the GPS satellites visible at our location in New England for a 24 hour period; the data was decimated to one
minute snapshots (a total of 1440 snapshots). Figure 1 shows the number of satellites above the horizon over the
course of the day, ranging from 9 to 14.
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Figure 1: Number of GPS satellites visible versus time.
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Figure 2: GDOP for the best 7 satellites versus time.

Figure 3: Satellite inclusion versus time.

Next, the best 7 satellites for the GDOP criterion were found for each minute’s dataset by a brute force computation;
the resulting GDOP performance is shown in Figure 2.

To analyze these results Figure 3 shows, for each satellite, its inclusion in the best subset as a function of time.
Specifically, for each satellite (vertical value equal to the satellite number, 1 to 32) the satellites inclusion, exclusion,
or non-visibility is shown by a blue circle, red circle, or black dot, respectively. (For ease of interpretation this plot
shows only the first 300 minutes of the data; the rest is similar.) We notice that a satellite appears to be in the



best subset when rising or setting at the horizon (the colored segments appear to have blue at both ends). Further,
inclusion of a satellite in the best subset is clearly correlated in time (the blue symbols are clumped together); once
in the best subset, a satellite stays in the subset for some significant period of time.

A closer examination of the change in the best subsets from one minute to the next is also possible:

• Figure 4 shows what happens fully 95% of the time in this example: the next best subset either matches the
current best subset exactly (left subfigure) or is different by only one satellite (right subfigure, the swapping
pair is encircled in black). In these graphics the central portion is a close up of that portion of Figure 3 to
show the satellite numbers in the previous and next subsets; the left and right hand portions of each subfigure
show the corresponding before and after skyviews with filled red circles for satellites used in the solution and
blue open circles for unused satellites. In the test data set the full match of previous and next optimum subsets
occurred 88% of the time; the mismatch by one satellite was the additional 7%. This single mismatch example
shows a satellite rising from the horizon and displacing one in the previous subset. Other examples with a
single mismatch could show one of the satellites falling below the horizon (hence, needing to be replaced) or a
simple swap of two existing satellites.

• Figure 5 shows examples of what happens the remaining 5% of the time in the experiment; 5 matches across
the time interval (left subfigure, two swaps again circled in black) and only 3 matches (right subfigure). The
types of changes observed include simple swaps between satellites visible at both times – due to a change in
their precise spatial relationships – and gains/losses of satellites to the horizon.

These examples suggest that an algorithm that evolves the best subset over time might be simple in form; that
examining those subsets that are simple modifications of the previous subset will often include the new optimum
subset. We develop several such algorithms below.

2 3

1

32

match = 7

50 51

1

32

match = 6

Figure 4: A match of all 7 or 6 of the 7 satellites between the previous and next optimum subsets.

PROPOSED ALGORITHMS

The example above suggests that a time sequential algorithm that makes small modifications to the previous subset
selection could be an efficient way to generate the next optimum subset of satellites. In this section we describe
the implementation, discuss the complexity, and examine the performance of several such approaches; all of them
evolve the subset over time in a greedy fashion. In each case we assume that an initial subset of size m satellites
(the so called previous subset) is available and that we have a set of n (> m) satellites to choose from for the next
subset.

The basic concept for each algorithm is to select the next subset to be the same or nearly the same as the previous
subset, the change in satellite selection being based on comparing the GDOP that results from simple possible
changes to the subset. For example, the simplest version might compare no changes to the satellite list with those
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Figure 5: Fewer matches across the time step: (left) 5 of the 7 and (right) 3 of the 7.

subsets formed by swapping one satellite in the previous subset with one of the unused satellites. From a complexity
of implementation perspective this would require computing the GDOP for 1 +m(n−m) subsets, one for no change
in the subset (but requiring recomputation since the m satellites have moved a small amount over the time step)
and m(n−m) additional GDOP computations since there are m choices for the satellite being replaced and n−m
potential replacements.

Unfortunately, as written this algorithm could fault if one or more of the current satellites falls below the horizon;
hence, we modify it as follows:

Algorithm 1:

1. If all m of the satellites in the previous subset are still available in the set of n currently visible satellites:

(a) Recompute the GDOP for the previous subset using the satellites’ new sky positions.

(b) For each of the m satellites in the previous subset compute the GDOPs that would result if that satellite
were dropped and one of the n−m unused satellites replaced it.

(c) Of these 1 + m(n−m) possibilities pick the subset with the smallest resulting GDOP.

2. If p (0 < p ≤ m) of the satellites in the previous subset are lost to the horizon:

(a) Compute the
(
n−m

p

)
GDOPs in which the p lost satellites are replaced by unused satellites.

(b) Pick the best of these subsets with replacement, using its GDOP as the benchmark for further swaps.

(c) For each of the m satellites in this replenished subset compute the GDOPs that would result if that
satellite were dropped and one of the n−m− p unused satellites replaced it.

(d) Pick the subset with the smallest resulting GDOP.

How well does this approach work? Figure 6 replots the best GDOP from Figure 2, overlaying the performance of
the subsets chosen by Algorithm 1 (the algorithm was started with the best subset found by the full search at time
zero). At a cursory level the performance is indistinguishable; perhaps just a few corners of blue are visible. Figure
7 shows the percentage increase in GDOP of the subsets found by Algorithm 1 as compared to the best GDOP; we
observe that the loss is often zero and at worst 6%! Figure 8 shows the number of GDOP computations per minute
for Algorithm 1 (this fluctuates with the number of visible satellites, n). Our observation is that this first algorithm
provides very good GDOP performance for very modest computational effort.
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Figure 6: GDOP for the best 7 satellites vs time: brute force and the Algorithm 1.
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Figure 7: The percentage increase in GDOP for Algorithm 1.
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Average is 38 GDOP computations per minute

Figure 8: The number of GDOP computations per time interval for Algorithm 1.

From the examples in the section above we expect that this algorithm should be able to track the best subset 95%
of the time for our data set (specifically, 88% of the time the previous and next subsets were seen to be identical
and in an additional 7% the subsets only differed by one satellite); however, the fraction of time that the GDOP
difference is non-zero is greater than the remaining 5% of the time. The difference is that when the next best subset
is significantly different than the previous one (as in Figure 5), Algorithm 1 takes several time intervals to get back
on track. Figures 9 attempts to document one such instance:
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Figure 9: Algorithm 1’s response to a significant subset change.

• The vertical scale is time in minutes, progressing downward; the horizontal scale is satellite number.

• Black dots and filled blue circles represent invisible and visible satellites, respectively.

• Filled red circles show the best subset of size 7 as computed via brute force (these overlay the blue circles).
Note that the best subset jumps from (4,6,16,20,23,30,32) at time 0 to (1,3,4,5,6,30,31) at time 1, a loss of one
to the horizon (SV 20), a gain of one from the horizon (SV 5), and overall a change 4 satellites.

• Algorithm 1’s subset is shown by open red circles; it has the best configuration at time 0. Algorithm 1 adapts
to this hiccup at time 1 over multiple time steps:

1. For time 1 it replaces SV 20 with SV 5 and then swaps SV 16 for SV 31.

2. For time 2 it swaps SV 23 for SV 3.

3. For time 3 it swaps SV 32 for SV 1, and is again tracking the optimum subset.

This delay in catching up to the optimum subset suggests two modifications of Algorithm 1:

Algorithm 2 – extending Algorithm 1 to pairs of satellite swaps (modify steps 1(b) and 2(c)):

1. If all m of the satellites in the previous subset are still available:

(a) Recompute the GDOP for the previous subset using the satellites’ new sky positions.

(b) For each of the
(
m
2

)
pairs of satellites in the previous subset compute the GDOPs that would result if that

satellite were dropped and any of the
(
n−m

2

)
pairs of the n−m unused satellites replaced them.

(c) Pick the subset with the smallest resulting GDOP.

2. If p (0 < p ≤ m) of the satellites in the previous subset are lost to the horizon:

(a) Compute the
(
n−m

p

)
GDOPs in which the p lost satellites are replaced by unused satellites.

(b) Pick the best of these subsets with replacement, using its GDOP as the benchmark for further swaps.

(c) For each of the
(
m
2

)
pairs of satellites in the subset with replacements compute the GDOPs that would

result if those two satellites were dropped and any of the
(
n−m−p

2

)
pairs of the n − m unused satellites

replaced them.

(d) Pick the subset with the smallest resulting GDOP.

and

Algorithm 3 – an iterative version of Algorithm 1 (add step 3):

1. If all m of the satellites in the previous subset are still available:

(a) Recompute the GDOP for the previous subset using the satellites’ new sky positions.
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Figure 10: The percentage increase in GDOP for Algorithms 2 and 3.

(b) For each of the m satellites in the previous subset compute the GDOPs that would result if that satellite
were dropped and one of the n−m unused satellites replaced it.

(c) Pick the subset with the smallest resulting GDOP.

2. If p (0 < p ≤ m) of the satellites in the previous subset are lost to the horizon:

(a) Compute the
(
n−m

p

)
GDOPs in which the p lost satellites are replaced by unused satellites.

(b) Pick the best of these subsets with replacement, using its GDOP as the benchmark for further swaps.

(c) For each of the m satellites in this replenished subset compute the GDOPs that would result if that
satellite were dropped and one of the n−m− p unused satellites replaced it.

(d) Pick the subset with the smallest resulting GDOP.

3. Iterate the following steps until an equilibrium is reached:

(a) For each of the m satellites in the subset compute the GDOPs that would result if that satellite were
dropped and one of the n−m unused satellites replaced it.

(b) Pick the subset with the smallest resulting GDOP.

Clearly we could also extend Algorithm 2 to larger swap sets (although at a cost of a significant increase in complexity)
and could iterate Algorithm 2.

Both Algorithms 2 and 3 are expected to have higher performance, but also higher complexity. With respect to
complexity, recall that Algorithm 1 required 1 + m(n − m) computations of GDOP per time step. For the two
modifications:

• Algorithm 2 requires 1 +
(
m
2

)(
n−m

2

)
GDOP calculations per time step.

• The complexity of Algorithm 3 depends upon how many cycles of iteration are required until two swapping
converges; we can think of this as s(1 + m(n−m)) in which s is that number of repetitions.

Figure 10 shows the resulting improvement in GDOP for these two extensions; both reduced the maximum percentage
increase in GDOP to about 2%. Most notable when comparing these results back to Figure 7 is now much sparser the
increases are; more of the points match exactly. Figure 11 shows the required computation in multiple of GDOPs;
not surprisingly, both Algorithms 2 and 3 require more work than the simplicity of Algorithm 1. Algorithm 2 is worse
since it requires additional computation at every time step; Algorithm 3 is more parsimonious at spending extra
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Figure 11: The number of GDOP computations per time step for Algorithms 2 and 3.

computation effort only when needed (the average number of iterations per time step is only 1.15 for this data set).
One can, of course, debate the value of the increase in performance versus the penalty in computational load.

As a final comment, we note that the above example started Algorithm 1 (and actually the others) with the best
subset at time 0. To investigate the convergence of this algorithm to the best subset we reran it starting in all
possible subsets (since at time 0 there were 12 satellites visible, there are

(
12
7

)
= 792 initial subsets). Figure 12 shows

the GDOP for all of these trials (in red) versus the number of time steps; the best performance is shown in blue. We
note that Algorithm 1 converges quite quickly to the best subset.

EXAMPLES WITH MULTI-CONSTELLATIONS

To test the temporal algorithms developed in this paper, consider the case of selecting a subset of satellites from
the combination of the GPS, GLONASS, and Galileo constellations. As above, the data consists of azimuth and
elevation angles every minute at our location in New England for a 24 hour period. Figure 13 shows the number of
satellites above the horizon over the course of the day, ranging from 23 to 35.

Referring to the Introduction, the inclusion of the variances of the L clock biases makes GDOP a less than ideal
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Figure 12: Convergence of Algorithm 1 from a random starting subset.
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choice when comparing subsets of satellites from multiple constellations; for example, the best subset for GDOP
might limit itself to a poorer geometric choice of satellite locations just to eliminate the estimation of an extra clock
bias. A similar performance metric that resolves this problem is Position DOP (PDOP), dependent only on the
position variances. Defining

H =
(
GTG

)−1

then PDOP is a function of the first three diagonal terms

PDOP ≡
√

trace
{
H[1,1] + H[2,2] + H[3,3]

}
a combination of the variances of the three position variables of the estimate.

Algorithm 1 was updated to optimize the PDOP for multiple constellations and run on this data set; the resulting
performance is shown in Figure 14 as the red line. For comparison, brute force computation was implemented for
this data set as well; these minimum PDOP values are shown as blue dots. As in the GPS example above, Algorithm
1 seems to produce excellent results. Figure 15 examines the percentage increase in PDOP; at worst 2% across this
24-hour data set.

The computational load for Algorithm 1 is shown in Figure 16. There is considerable computational load difference
between Algorithm 1 and brute force computation. Specifically, on a current day laptop running the computation
in MatLab, the CPU time required to generate all 1440 subsets by Algorithm 1 was less than 10 seconds; the brute
force computation required approximately 1.5 CPU years (!!!).



0 360 720 1080 1440

Time in minutes

0

0.5

1

1.5

2

%
 i
n

c
re

a
s
e

 i
n

 P
D

O
P

Figure 15: Close ups of the PDOP comparison.
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Average is 330 DOP computations per minute

Figure 16: The number of PDOP computations per time step for Algorithm 1 with 3 constellations.

CONCLUSIONS/FUTURE WORK

The sections above make several points:

• That the problem of selecting a subset of the visible GNSS satellites is still an important problem.

• That with multiple constellations and the GDOP/PDOP performance criterion, a brute force approach to
selecting the best subset is infeasible from a complexity perspective.

• The proposed time sequential, or temporal, algorithms shows great promise; contrary to other greedy algo-
rithms, they appear to be able to pull out of local minima. Our conjecture is that the changing locations of
the satellites act like methods in simulated annealing.

Our future work is to combine the understanding of optimum constellations to improve suboptimum subset selection
algorithms for multiple constellations. Specifically, the algorithms herein searched overall all available satellites for
the swaps. Clearly we could improve on this by identifying selected candidate satellites.

For example Figure 17 shows the elevation angles of the visible GPS satellites versus time (limited to the first 300
minutes to allow for interpretation; the rest of the data is similar) for the motivational example above; the blue and
red colors identify those satellites in the best 7 and not, respectively. Several observations are apparent:

• The highest and lowest elevation satellites appear to be always within the best 7 (at least to the resolution of
this graphic); mid-elevation satellites are usually not chosen, although that varies with the total set of visible



satellites.

• A satellite near the horizon appears to always be in the subset.

One goal would be to exploit these observations to further reduce the computational load of the subset selection
algorithms.

Figure 17: Elevation angles versus time of the GPS motivating example.
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