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Constants of the Motion [mln10]

Consider a dynamical system with n degrees of freedom and described by
generalized coordinates q1, . . . , qn.

Definition: Any function f(q1, . . . , qn, q̇1, . . . , q̇n, t) with df/dt = 0 is a con-
stant of the motion.

The terms constant of the motion, conserved quantity, invariant, integral of
the motion are used interchangeably in the literature.

Fact: Any system with n degrees of freedom has 2n constants of the motion.

Obvious choices are the 2n initial conditions of the Lagrange equations
(2nd order ODEs): ck(q1, . . . , qn, q̇1, . . . , q̇n, t), k = 1, . . . , 2n derived from
qi(c1, . . . , c2n, t), q̇i(c1, . . . , c2n, t), i = 1, . . . , n.

Comments:

• Not all constants of the motion are equally important. Some have a
stronger impact on the time evolution of the system than others.

• Constants of the motion which are not known prior to the analytic
solution of the system are, in general, not useful.

• Integration constants in particular (initial conditions, boundary values)
are only meaningful constants of the motion if an analytic solution is
available.

• Meaningful constants of the motion may very well be identified in sys-
tems for which no analytic solution exists.

• Certain constants of the motion can be used to reduce the number of
degrees of freedom by factoring out single degrees of freedom (one per
invariant). These special constants of the motion are best described in
the context of Hamiltonian mechanics.

• The existence of n such constants of the motion preclude the dynamical
system from behaving chaotically. Such system are called integrable.

• Some constants of the motion can be derived from known symmetries
of the dynamical system, others point to obscure or hidden symmetries.



Conservation Laws and Symmetry [mln11]

Consider an isolated system described by generalized coordinates in an in-
ertial reference frame: L(q1, . . . , qn, q̇1, . . . , q̇n, t). The following conservation
laws can be derived from general properties of space and time.

• Homogeneity of time leads to conservation of energy.

∂L

∂t
= 0 ⇒ L = L(q1, . . . , qn, q̇1, . . . , q̇n).

dL

dt
=

∑
j

[
∂L

∂qj

q̇j +
∂L

∂q̇j

q̈j

]
=

∑
j

[
q̇j

d

dt

∂L

∂q̇j

+ q̈j
∂L

∂q̇j

]
=

∑
j

d

dt

[
q̇j

∂L

∂q̇j

]
.

d

dt

[
L−

∑
j

q̇j
∂L

∂q̇j

]
= 0 ⇒

∑
j

q̇j
∂L

∂q̇j

− L = E(qj, q̇j) = const.

L(qj, q̇j) = T (qj, q̇j)− V (qj),
∑

j

q̇j
∂L

∂q̇j

= 2T [mex155]

E(qj, q̇j) = T (qj, q̇j) + V (qj).

A generalized coordinate ql which does not appear in the Lagrangian L(qj, q̇j)
is called cyclic. The generalized momentum pl conjugate to a cyclic coordi-
nate is conserved:

∂L

∂ql

= 0 ⇒ d

dt

∂L

∂q̇l

= 0 ⇒ ∂L

∂q̇l

.
= pl = const.

• Homogeneity of space leads to conservation of linear momentum.

The Lagrangian is invariant under global translations.
Therefore, the center-of-mass coordinates are cyclic.
Therefore, the total linear momentum vector is conserved.

• Isotropy of space leads to conservation of angular momentum.

The Lagrangian is invariant under global rotations.
Therefore, the angle of a global rotation about any axis is cyclic.
Therefore, the total angular momentum vector is conserved.



[mex155] Kinetic energy in Lagrangian mechanics

Show that the kinetic energy of a dynamical system of N particles subject to k scleronomic con-
straints ri = ri(q1, . . . , qn), i = 1, . . . , N is a homogeneous quadratic function of the generalized
coordinates:

T =
1
2

N∑
i=1

mi|ṙi|2 =
n∑

j=1

n∑
k=1

ajkq̇kq̇k.

Identify the coefficients ajk and show that
∑

l q̇l(∂T/∂q̇l) = 2T .

Solution:



[mex156] Spherical pendulum: reduction to quadrature

A particle of mass m in a uniform gravitational field g is constrained to move on the surface of a
sphere of radius `.
(a) Find the Lagrangian L(θ, φ, θ̇, φ̇), where the range of the polar angle is 0 ≤ θ ≤ π and the
range of the azimuthal angle is 0 ≤ φ ≤ 2π.
(b) Derive the two Lagrange equations.
(c) Identify two conservation laws.
(d) Reduce the general solution for θ(t), φ(t) to quadrature.

Solution:



Routhian Function [mln39]

Goal: systematic elimination of cyclic coordinates in the Lagrangian formu-
lation of mechanics.

Consider a system with n generalized coordinates of which the first k are
cyclic.

Lagrangian: L(qk+1, . . . , qn, q̇1, . . . , q̇n, t) ⇒ q1, . . . , qk are cyclic.

Routhian: R(qk+1, . . . , qn, q̇k+1, . . . , q̇n, β1, . . . , βk, t) = L−
k∑

i=1

βiq̇i.

where the relations βi =
∂L

∂q̇i
= const, i = 1, . . . , k are to be inverted into

q̇i = q̇i(qk+1, . . . , qn, q̇k+1, . . . , q̇n, β1, . . . , βk, t), i = 1, . . . , k.

Compare coefficients of the variations

δR =
n∑

i=k+1

∂R

∂qi
δqi +

n∑
i=k+1

∂R

∂q̇i
δq̇i +

k∑
i=1

∂R

∂βi
δβi +

∂R

∂t
δt,

δ

(
L−

k∑
i=1

βiq̇i

)
=

n∑
i=k+1

∂L

∂qi
δqi +

n∑
i=k+1

∂L

∂q̇i
δq̇i −

k∑
i=1

q̇iδβi +
∂L

∂t
δt.

Resulting relations between partial derivatives:

∂R

∂qi
=
∂L

∂qi
,

∂R

∂q̇i
=
∂L

∂q̇i
, i = k + 1, . . . , n,

∂R

∂t
=
∂L

∂t
; q̇i = −∂R

∂βi
, i = 1, . . . , k.

Lagrange equations for the noncyclic coordinates:

∂R

∂qi
− d

dt

∂R

∂q̇i
= 0, i = k + 1, . . . , n.

Time evolution of cyclic coordinates:

qi(t) = −
∫
dt
∂R

∂βi
, i = 1, . . . , k.



[mex157] Routhian function for heavy particle sliding inside cone

Consider a conical surface with vertical axis (z) and apex with angle 2α at the bottom in a uniform
gravitational field g. A particle of mass m is free to slide on the inside of the cone.
(a) Express the Lagrangian in the generalized coordinates r, φ.
(b) Identify the cyclic coordinate and identify the Routhian function which eliminates the cyclic
coordinate.
(c) Derive the equation of motion for the noncyclic coordinate and an integral expression for the
cyclic coordinate.

z

x

y

α

m

φ
r

Solution:



Noether’s Theorem I [mln12]

Symmetries indicated by cyclic variables in the Lagrangian lead to conserva-
tion laws. Some symmetries may be obscure or hidden. Noether’s theorem
derives conservation laws from a general class of continuous symmetries.

Consider a Lagrangian system L(q1, . . . , qn, q̇1, . . . , q̇n, t).

Theorem (restricted case):

If a transformation Qi(q1, . . . , qn, q̇1, . . . , q̇n, t, ε), i = 1, . . . , n with Qi = qi at
ε = 0 can be found such that

∂L′

∂ε

∣∣∣∣
ε=0

= 0

is satisfied, where

L′(Q1, . . . , Qn, Q̇1, . . . , Q̇n, t, ε)
.
= L(q1, . . . , qn, q̇1, . . . , q̇n, t),

then the following quantity is conserved:

I(q1, . . . , qn, q̇1, . . . , q̇n, t) =
∑

i

∂L

∂q̇i

∂qi

∂ε

∣∣∣∣
ε=0

.

Proof:

Use the inverse transformation qi(Q1, . . . , Qn, Q̇1, . . . , Q̇n, t, ε), i = 1, . . . , n
and keep the variables Qi, Q̇i fixed.

∂L′

∂ε
=

∑
i

[
∂L

∂qi

∂qi

∂ε
+

∂L

∂q̇i

∂q̇i

∂ε

]
=

∑
i

[(
d

dt

∂L

∂q̇i

)
∂qi

∂ε
+

∂L

∂q̇i

(
d

dt

∂qi

∂ε

)]
= 0.

⇒ ∂L′

∂ε
=

d

dt

[∑
i

∂L

∂q̇i

∂qi

∂ε

]
= 0.

Applications:

• translation in space [mex35]

• rotation in space [mex36]



[mex121] Routhian function of 2D harmonic oscillator

Consider the 2D harmonic oscillator with kinetic energy T = 1
2m(ẋ2 + ẏ2) and potential energy

V = 1
2k(x

2 + y2). (a) Express the Lagrangian of this system in polar coordinates r, θ. (b) Identify
the cyclic coordinate and construct the Routhian function which eliminates the cyclic coordinate.
(c) Derive the equation of motion for the noncyclic coordinate and an integral expression for the
cyclic coordinate.

Solution:



[mex35] Noether’s theorem I: translation in space

Consider the Lagrangian L = 1
2m

(
ẋ2 + ẏ2 + ż2

)
−V (y, z) of a particle with mass m moving in 3D

space under the influence of a scalar potential.
(a) Identify an infinitesimal symmetry transformation.
(b) Apply Noether’s theorem to determine the associated constant of the motion.

Solution:



[mex36] Noether’s theorem II: rotation in space

Consider the Lagrangian L = 1
2m

(
ẋ2 + ẏ2 + ż2

)
−V (x2 + y2, z) of a particle with mass m moving

in 3D space under the influence of a scalar potential.
Identify an infinitesimal symmetry transformation. Then apply Noether’s theorem to determine
the associated constant of the motion. Perform the calculation using (a) Cartesian coordinates
x, y, z, (b) cylindrical coordinates r, φ, z.

Solution:



Noether’s Theorem II [mln13]

A more general class of symmetry transformations leaves the Lagrange equa-
tions invariant but not the Lagrangian itself.

Consider again a Lagrangian system L(q1, . . . , qn, q̇1, . . . , q̇n, t).

Theorem (more general case):

If a transformation Qi(q1, . . . , qn, q̇1, . . . , q̇n, t, ε), i = 1, . . . , n with

Qi = qi at ε = 0 can be found such that

∂L′

∂ε

∣∣∣∣
ε=0

=
d

dt

∂F

∂ε

∣∣∣∣
ε=0

is satisfied, where

L′(Q1, . . . , Qn, Q̇1, . . . , Q̇n, t, ε)
.
= L(q1, . . . , qn, q̇1, . . . , q̇n, t)

and F (Q1, . . . , Qn, t, ε) is an arbitrary differentiable function, then the fol-
lowing quantity is conserved:

I(q1, . . . , qn, q̇1, . . . , q̇n, t) =
∑

i

∂L

∂q̇i

∂qi

∂ε

∣∣∣∣
ε=0

− ∂F

∂ε

∣∣∣∣
ε=0

.

Proof:

Use inverse transformation qi(Q1, . . . , Qn, Q̇1, . . . , Q̇n, t, ε), i = 1, . . . , n and
keep the variables Qi, Q̇i fixed. Then use gauge invariance (see [mex21]),

L′(Q1, . . . , Qn, Q̇1, . . . , Q̇n, t, ε) = L(Q1, . . . , Qn, Q̇1, . . . , Q̇n, t)+
d

dt
F (Q1, . . . , Qn, t, ε)

and the steps of the proof in [mln12].[
∂L′

∂ε
− d

dt

∂F

∂ε

]
ε=0

=
d

dt

[∑
i

∂L

∂qi

∂qi

∂ε
− ∂F

∂ε

]
ε=0

.

Applications:

• pure Galilei transformation [mex37]



[mex37] Noether’s theorem III: pure Galilei transformation

Consider the Lagrangian L(z, ż) = 1
2mż

2 − mgz of a particle with mass m moving vertically
in 3D space under the influence of a uniform gravitational field. Show that the transformation
X = x, Y = y, Z = z + εt is a symmetry transformation by establishing the relation

L′(Z, Ż, t, ε) = L(Z, Ż) +
d

dt
F (Z, t, ε).

Find the function F (Z, t, ε) and the conserved quantity I(z, ż, t) associated with this symmetry.

Solution:



Noether’s Theorem III [mln42]

The continuous symmetry transformation may also involve the time.

Consider again a Lagrangian system L(q1, . . . , qn, q̇1, . . . , q̇n, t).

Theorem (most general case):

If a transformation Qi(q1, . . . , qn, q̇1, . . . , q̇n, t, ε), T (q1, . . . , qn, q̇1, . . . , q̇n, t, ε),
i = 1, . . . , n with Qi = qi and T = t at ε = 0 can be found such that

∂

∂ε

[
L

(
Q1, . . . , Qn,

dQ1

dT
, . . . ,

dQn

dT
, T

)
dT

dt

]
ε=0

=
d

dt
G(q1, . . . , qn, q̇1, . . . , q̇n, t)

is satisfied (for an arbitrary function G), then the following quantity is con-
served:

I = L(q1, . . . , qn, q̇1, . . . , q̇n, t)

(
∂T

∂ε

)
ε=0

−G+
n∑

i=1

∂L

∂q̇i

[(
∂Qi

∂ε

)
ε=0

− q̇i

(
∂T

∂ε

)
ε=0

]
.

Proof:

Ġ =

{[∑
i

∂L

∂Qi

∂Qi

∂ε
+

∑
i

∂L

∂(dQi/dT )

∂(dQi/dT )

∂ε
+

∂L

∂T

∂T

∂ε

]
Ṫ + L

∂Ṫ

∂ε

}
ε=0

.

Define: Ai ≡
(

∂Qi

∂ε

)
ε=0

, B ≡
(

∂T

∂ε

)
ε=0

.

Expand Qi = qi + Aiε + . . ., T = t + Bε + . . ..

⇒ Q̇i = q̇i + Ȧiε + . . . , Ṫ = 1 + Ḃε + . . . ,
dQi

dT
=

Q̇i

Ṫ
=

q̇i + Ȧiε + . . .

ṫ + Ḃε + . . .
.

At ε = 0: Q̇i = q̇i, Ṫ = 1,
dQi

dT
= q̇i,

∂Ṫ

∂ε
= Ḃ,

∂

∂ε

dQi

dT
= Ȧi − q̇iḂ.

Use
∂L

∂qi

=
d

dt

∂L

∂q̇i

,
dL

dt
=

∂L

∂t
+

∂L

∂qi

q̇i +
∂L

∂q̇i

q̈i.

⇒ d

dt

[
LB −G +

∑
i

∂L

∂q̇i

(Ai − q̇iB)

]
= 0 ⇒ I = const.



Dissipative forces in Lagrangian mechanics [mln9]

A dissipative force counteracts motion. Its direction is opposite to the direc-
tion of the velocity vector. Hence any dissipative force depends on velocity,
be it on its direction only or also on its magnitude.

Dissipative forces are (by definition) non-conservative; they cannot be derived
from a potential, not even from a velocity-dependent potential. However, La-
grangian mechanics allows the derivation of purely velocity dependent dissi-
pative forces from a dissipation function.

Dissipative forces in Cartesian coordinates: Ri
.
= −hi(vi)

vi

vi

, i = 1, . . . , N

Transformation to generalized coordinates q1, . . . , qn:

Rj = −
N∑

i=1

hi(vi)
vi

vi

· ∂ri

∂qj

= −
N∑

i=1

hi(vi)
vi

vi

· ∂vi

∂q̇j

= −
N∑

i=1

hi(vi)
∂vi

∂q̇j

.

We have used:
∂ri

∂qj

=
∂vi

∂q̇j

, vi ·
∂vi

∂q̇j

=
1

2

∂vi · vi

∂q̇j

=
1

2

∂v2
i

∂q̇j

= vi
∂vi

∂q̇j

.

Dissipation function: P
.
=

N∑
i=1

∫ vi

0

dvi hi(vi).

⇒ Rj = −
N∑

i=1

hi(vi)
∂vi

∂q̇j

= − ∂

∂q̇j

N∑
i=1

∫ vi

0

dvi hi(vi) = −∂P

∂q̇j

, j = 1, . . . , n

Lagrange equations:
d

dt

∂L

∂q̇j

− ∂L

∂qj

+
∂P

∂q̇j

= 0, j = 1, . . . , n.

Common dissipative forces:

• kinetic friction (Coulomb damping): R = −µN
v

v
.

• linear damping (more common at low velocity): R = −βv
v

v
.

• quadratic damping (more common at high velocity): R = −γv2 v

v
.

Examples:

• Motion with friction on inclined plane [mex151]

• Linearly damped spherical pendulum [mex158]



[mex151] Motion with friction on inclined plane

Consider a particle moving on an inclined plane as shown. The motion is impeded by kinetic
friction. Find the Lagrangian L(x, y, ẋ, ẏ) and the dissipation function P (ẋ, ẏ) and derive the
Lagrange equations for the variables x, y from these functions.

v

y

x

m

α

Solution:



[mex158] Linearly damped spherical pendulum

Consider the spherical pendulum with Lagrangian L(θ, φ, θ̇, φ̇) as analyzed in [mex156]. Now we
assume that the motion is subject to a linear damping force R = −βv(v/v). Find the dissipation
function P (θ, φ, θ̇, φ̇) representing this kind of attenuation and derive from it the damping torques
Rθ = −∂P/∂θ̇, Rφ = −∂P/∂φ̇ acting on the angular coordinates θ, φ, respectively.

Solution:



Generalized Forces of Constraint
in Lagrangian Mechanics [mln15]

Lagrangian: L(q1, . . . , qn, q̇1, . . . , q̇n, t).

Differential constraints:
n∑

i=1

ajidqi + ajtdt = 0, j = 1, . . . ,m.

Relations between virtual displacements:
n∑

i=1

ajiδqi = 0, j = 1, . . . ,m.

The generalized forces of constraint, Qi, do not perform any work.

D’Alembert’s principle ⇒
n∑

i=1

Qiδqi = 0.

⇒
n∑

i=1

(
Qi −

m∑
j=1

λjaji

)
δqi = 0 for arbitrary values of λj.

Choose the Lagrange multipliers λj to satisfy Qi =
m∑

j=1

λjaji, i = 1, . . . , n.

The δqi can now be chosen independently because the constraints are enforced
by the generalized forces Qi.

The solution of the dynamical problem is then determined by the follow-
ing n + m equations for the n dynamical variables qi and the m Lagrange
multipliers λj:

∂L

∂qi

− d

dt

∂L

∂q̇i

+
m∑

j=1

λjaji = 0, i = 1, . . . , n.

n∑
i=1

ajiq̇i + ajt = 0, j = 1, . . . ,m.

For holonomic constraints, fj(q1, . . . , qn, t) = 0, j = 1, . . . ,m, we have

aji =
∂fj

∂qi

, ajt =
∂fj

∂t
, Qi =

m∑
j=1

λj
∂fj

∂qi

.

Whereas holonomic constraints can be handled kinematically, i.e. via the
elimination of redundant coordinates, nonholonomic constraints must be han-
dled dynamically, i.e. via the explicit use of constraint forces.

In some cases, the generalized forces of constraint Qj can be determined
without integrating the equations of motion.



[mex34] Particle sliding down sphere (revisited)

A tiny particle of mass m slides without friction down a spherical surface of radius R. The
particle starts at the top with negligible speed. (a) Determine the Lagrangian in polar coordinates,
L(r, θ, ṙ, θ̇), and the holonomic constraint f(r, θ) = 0 of the sliding motion for as long as it lasts. (b)
Use the results of (a) and the conservation of energy to determine the force of constraint (normal
force) during the sliding part of the motion. (c) Determine the angle at which the particle leaves
the sphere from the criterion that the force of constraint vanishes.

θ

R

m

Solution:



[mex32] Static frictional force of constraint

Consider a hoop of mass m and radius r rolling without slipping down an incline. (a) Determine
the Lagrangian L(x, ẋ) of this one-degree-of-freedom system. Derive from it the Lagrange equa-
tion and its solution for initial condition x0 = 0, ẋ0 = 0. (b) Determine the alternative Lagrangian
L(x, θ, ẋ, θ̇) and the holonomic constraint f(x, θ) = 0 that must accompany it. Derive the associ-
ated three equations of motion for the two unknown dynamical variables x, θ and the undetermined
Lagrange multiplier λ. Solve these equations for the same initial conditions as in (a) and determine
the static frictional force of constraint between the hoop and the incline.

mθ

x

r

φ

Solution:



[mex33] Normal force of constraint

A particle of mass m1 slides without friction on a wedge of angle α and mass m2. The wedge in
turn is free to slide without friction on a smooth horizontal surface. (a) Determine the Lagrangian
L(x1, y1, x2, ẋ1, ẏ1, ẋ2) and the holonomic constraint f(x1, y1, x2) = 0 that goes with it. (b) Derive
the associated four equations of motion for the three dynamical variables x1, y1, x2 and the Lagrange
multiplier λ. (c) Find the solutions and the forces of constraint acting on the particle and on the
wedge. (d) Discuss the solutions in the limits m2 → 0 and m2 → ∞.

1

y

x

α

m2

m

Solution:



[mex159] Particle sliding inside cone: normal force of constraint

Consider a conical surface with vertical axis (z) and apex with angle 2α at the bottom in a uniform
gravitational field g. A particle of mass m is free to slide on the inside of the cone.
(a) Write the equation of holonomic constraint f(z, r, φ) = 0 between the cylindrical coordinates
and the Lagrangian L(z, r, φ)
(b) Derive the three Lagrange equations. Along with the equation f = 0, they determine the
generalized coordinates z, r, φ and the Lagrange multiplier λ.
(c) By using the conservation law pφ = mr2φ̇ = const, solve the equations of motion (without
integrating z̈ and r̈) for the Lagrange multiplier λ(pφ, r) and infer from it the three components
Qz = λ∂f/∂z, Qr = λ∂f/∂r, Qφ = λ∂f/∂φ of the normal force of constraint.

r

z

x

y

α

m

φ

Solution:
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