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Piezoresistive Properties of ITO Strain Sensors Prepared
with Controlled Nanoporosity
Otto J. Gregoryz and Tao You

Sensors and Surface Technology Partnership, Department of Chemical Engineering, University of Rhode
Island, Kingston, Rhode Island 02881, USA

A ceramic strain gage based on reactively sputtered indium-tinoxide~ITO! thin films is being developed to monitor the structural
integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500°C. The high-
temperature stability and piezoresistive properties depend to a large extent on the thickness of the active ITO strain elements
comprising these ceramic strain gages. Scanning electron microscopy of the thick ITO sensors revealed a partially sintered
microstructure consisting of a contiguous network of submicrometer ITO particles with well-defined necks and isolated nanopo-
rosity. It appeared that densification of the ITO particles was retarded during high-temperature exposure with nitrogen playing a
key role in stabilizing the nanoporosity. Based on these preliminary results, ITO strain sensors were also prepared by reactive
sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions,
sintering and densification of the ITO particles containing these nitrogen-rich grain boundaries was retarded and a contiguous
network of nanosized ITO particles was established. The influence of nitrogen in the sputtered and annealed ITO films on the
microstructure and the high-temperature piezoresistive properties was investigated, and the results are presented in this paper.
© 2004 The Electrochemical Society.@DOI: 10.1149/1.1767839# All rights reserved.
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As the operating temperature of gas turbine engines is increased
and new materials are developed to meet these new challenges, there
is a need to assess the structural behavior of components in these
harsh environments, so that structural models can be validated and
newly developed materials can be monitored during actual engine
operation. Thin film sensors are ideally suited to make measure-
ments of operational turbine conditions since they have negligible
mass and thus, minimal impact on vibration patterns. They are non-
intrusive in that the gage thickness is considerably less than the
gas-phase boundary layer thickness and thus the gas flow path
through the engine will not be adversely affected by these sensors.
Not only are these sensors ideally suited forin situ strain measure-
ment where high gas velocities are encountered, but these ceramic
strain gages have excellent adhesion and similar thermal expansion
coefficients to most oxides used for electrical isolation.1-8 In addi-
tion, ceramic sensors are refractory, nonintrusive, and robust enough
to withstand the high g loading associated with rotating components.
For these reasons, ceramic strain gages based on alloys of indium-
tin oxide ~ITO! were developed to monitor both the static and dy-
namic strain of components employed in advanced propulsion sys-
tems and active control surfaces.9-11

The active ITO strain elements in these ceramic sensors are oxi-
dation resistant and do not undergo any phase changes when ther-
mally cycled between room temperature and 1500°C.12 In addition,
the piezoresistive response of ITO-based strain sensors is one to two
orders of magnitude greater than those observed in metals and the
ITO sensors have superior electrical and chemical stability relative
to metals in these harsh environments.13-19 Consequently, improved
signal-to-noise ratios are possible with these ceramic strain gages
due to the inherently large piezoresistive responses. In operational
turbine measurements, the enhanced sensitivity and responsiveness
of the ceramic sensors are particularly important since the signals
are usually processed via slip ring technology or telemetry systems,
which are susceptible to excessive noise. A measure of the respon-
siveness or strain sensitivity of these ceramic sensors is given by the
gage factor~G!, which is defined according to Eq. 1
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where Rref is the resistance at a reference temperatureTref , DR
is the change in resistance, and« is the applied microstrain. How-
ever, also critical in these aerospace applications is the electrical

and chemical stability of the sensors, which must operate at tem-
peratures that can exceed 1500°C. The drift rate~DR! of these elec-
trical strain gages is a measure of the stability and is defined accord-
ing to Eq. 2
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The influence of sensor thickness on the piezoresistive response
and stability of ITO sensors was investigated. By systematically
varying thickness of ITO strain gages prepared by rf sputtering and
annealing in nitrogen at 800°C, a correlation between microstructure
and high-temperature properties was established. Very thick ITO
active strain elements exhibited a partially sintered microstructure
containing nanosized ITO particles. This microstructure was largely
responsible for the excellent high-temperature properties exhibited
by these materials.

ITO strain gages with controlled nanoprosity were prepared by
subjecting relatively thick ITO films to a postdeposition anneal at
800°C in nitrogen and exposure to high temperature, or by reactive
sputtering in various nitrogen/oxygen/argon partial pressures and
exposure to high temperature. The relationship between micro-
structure and the high-temperature stability of ITO strain sensors
prepared by these two techniques was investigated. Scanning elec-
tron microscopy~SEM! indicated that although the microstructures
of the nitrogen-sputtered films were similar in appearance to those
produced by a postdeposition anneal in nitrogen, the average pore
size and particle size were an order of magnitude smaller for
those sensors prepared by sputtering in nitrogen overpressures. It
appears that nitrogen was metastably retained in the individual ITO
grains during sputtering and diffused out of the bulk grains at el-
evated temperature, eventually becoming trapped at grain bound-
aries and triple junctions. Under these conditions, sintering and den-
sification of the ITO particles containing these nitrogen-rich grain
boundaries was retarded and a contiguous network of nanosized ITO
particles was established. The controlled microstructures in these
sensors are possible due to the decomposition of ITO in nitrogen-
bearing atmospheres which can occur at temperatures as low as
1100°C.20,21 By controlling the partial pressure of nitrogen in the
porosity during processing, a balance between the rate of decompo-
sition and the sintering rate could be achieved so that the desired
microstructure would persist for prolonged periods at elevated tem-
peratures. Static strain testing of the nitrogen-sputtered ITO sensors
indicated that a similarly stable and responsive strain gage could
be readily reproduced. Microstructural evidence to support thez E-mail: Gregory@egr.uri.edu
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hypothesis that partially sintered microstructures with controlled na-
noporosity could be stabilized to very high temperatures is presented
herein, as well as the results of static strain tests at temperatures up
to 1600°C.

Experimental

High purity aluminum oxide constant strain beams were used for
all high-temperature static strain tests, since they provide excellent
electrical isolation at high temperature. These constant strain beams
were laser-cut into the desired shape from rectangular plates of
99.9% pure alumina~Coors Ceramics!. Prior to deposition of ITO
thin films onto the alumina constant beams, approximately 5mm of
high purity alumina was sputtered onto these surfaces and heat-
treated at 1000°C in air. The sputtered alumina layer provided en-
hanced adhesion to the substrate while limiting impurity diffusion
from the substrate to the deposited ITO thin films. All substrates
were cleaned by rinsing in acetone, methanol, and distilled water,
followed by a nitrogen blow dry. Photolithography techniques were
used in conjunction with lift-off to fabricate all thin-film strain
gages. Etching tends to cause hot corrosion of the sensors at high
temperature due to residual chlorides on the surfaces of the coatings
and thus was avoided whenever possible. All lithography processes
employed a polyimide-based photoresist in conjunction with a modi-
fied lift-off process to transfer the desired sensor pattern. A polyim-
ide photoresist~LOR10B obtained from Microchem, Inc.! was ap-
plied to the constant strain beam by spin coating at a spin speed of
2000 rpm and subsequently baked at 150°C. High bake temperatures
are required with this photoresist due to its high glass transition
temperature. An imaging resist~Shipley SC1827! was applied di-
rectly onto the LOR10B surface by spin-casting, followed by soft
baking at 120°C for 4 min. A photomask containing the desired
artwork was placed over the resist-coat substrate and exposed to UV
light. After exposure and development, the unwanted photoresist
remaining on the alumina substrate was cleaned in an oxygen
plasma to remove all organics. The ITO films were deposited by rf
reactive sputtering using an MRC 822 sputtering system. Sputtered
ITO thicknesses were varied between 2.5 and 15mm. A high density
ITO target~12.7 cm in diameter! with a nominal composition of 90
wt% In2O3 and 10 wt% SnO2 was used for all ITO depositions and
a high purity~99.9999%! platinum target~10.7 cm in diameter! was
used for all platinum depositions. The sputtering chamber was
evacuated to a background pressure,1 3 1026 Torr prior to sput-
tering and semiconductor grade argon, oxygen, and nitrogen were
leaked into the chamber to establish a total gas pressure of 9 mTorr.
The oxygen, argon, and nitrogen partial pressures were maintained
in the deposition chamber using MKS mass flow controllers, and rf
power density of 2.4 W/cm2 was used for all ITO sputtering runs.
Platinum films~3-4 mm thick! were used to form ohmic contacts to
the active ITO strain elements and thin-film leads to make electrical
connection to the data acquisition system. A photograph of a typical
ceramic strain gage complete with the active ITO strain elements
and the platinum leads and bond pads is shown in Fig. 1.

A Deltech tube furnace with a 7 in. hot zone was used for high-
temperature strain experiments. The furnace was ramped at 3°C/min
to the desired temperature in 50°C increments and held for at least 1
h to establish thermal equilibrium. Strain was induced by means of
a cantilever-bending fixture fabricated from a machinable zirconium
phosphate ceramic. A linear variable differential transducer~LVDT !
was attached to a solid alumina rod and connected to the alumina
constant strain beam to transfer strain to the active sensor element
~Fig. 2!. The corresponding resistance changes were monitored with
a 6 digit multimeter~Hewlett-Packard 34401A! and a programmable
constant current source~Keithley 224!. A Hewlett-Packard multim-
eter and Keithley constant current source were interfaced to an I/O
board and an IBM 488 GPIB card for continuous data acquisition
using Labwindows software. A type S thermocouple connected to a
second multimeter was used to measure the temperature inside the
Deltech furnace.

Results and Discussion

A number of ceramic strain gages having different ITO thick-
nesses comprising the active strain elements were deposited on high
purity aluminum oxide constant strain beams and tested under static
strain conditions at temperatures up to 1600°C. The piezoresistive
response of a typical ceramic strain gage at 1157°C is shown in Fig.
3. This ceramic sensor had a 2.5mm thick active ITO strain element
and exhibited a relatively small piezoresistive response and a rela-
tively large drift rate,i.e., a gage factor of 3.52 and a drift rate of
0.016%/h at 1157°C. It should be noted here that the piezoresistive
response is out of phase with the excitation signal and the positive
slope of the piezoresistive response is an indication of signal drift.
These results were very different from those obtained when thick
ITO films were employed as the active strain elements in these
ceramic strain gages. When relatively thin ITO films were used, the
piezoresistive response was comparable to metals at lower tempera-
tures~1157°C! as shown in Fig. 3a, but became unstable at tempera-
tures above 1225°C, as shown in Fig. 3b. It should be noted here
that the waveform associated with the piezoresistive response had
severely degraded and the baseline resistance has increased by sev-
eral orders of magnitude, which typically occurs just prior to failure.
In contrast to this behavior, ITO sensors prepared with 5mm thick
active strain elements and 8mm thick active strain elements were
very stable and responsive even at higher temperatures. For ex-
ample, ITO sensors prepared with 5mm thick active strain elements
exhibited a gage factor of 6.8 and drift rate of 0.08%/h at 1438°C
~Fig. 4! and sensors prepared with 8mm thick active strain elements
exhibited a gage factor of 20.9 and a drift rate of 0.00001%/h at
1441°C~Fig. 5a!. The latter strain sensor did not become unstable
until temperatures approached 1481°C~Fig. 5b!. Based on the re-
sults of the high-temperature static strain tests, we have determined
that the piezoresistive response and electrical stability of the ceramic
strain gages was very dependent on the thickness of ITO films com-
prising the active strain elements. A summary of the results from the

Figure 1. Photograph of an aluminum oxide constant strain beam with
deposited ITO thin film strain sensor and associated platinum thin film
leads.~A! ITO strain sensor,~B! platinum bond pads,~C! aluminum oxide
constant strain beam, and~D! platinum thin film leads are shown in detail.

Figure 2. Photograph of~A! the high temperature, cantilever bend fixture
with ~B! aluminum oxide constant strain beam clamped into position.~A!
The zirconium phosphate cantilever bend fixture with the external controls
are shown in detail, including~C! the LVDT-linear variable differential trans-
ducer, limit switches,~D! stepper motor, and cantilever rod.
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static strain tests are presented in Table I, including the thickness
dependence on stability, the temperature at which sensor failure oc-
curred, and the piezoresistive response.

When ceramic strain gages were prepared with very thick ITO
films ~10-15 mm! as the active strain elements, both the high tem-
perature stability and gage factor were significantly improved rela-
tive to ITO films prepared in the 2.5-8mm thickness range. Figure 6
shows the piezoresistive response of a ceramic strain gage employ-
ing a 10mm thick film of ITO as active strain element. This sensor
was extremely stable and responsive with a gage factor of 131 and a
drift rate of 0.00001%/h at 1528°C. Similarly, the piezoresistive
response of a ceramic strain gage employing a 15mm thick ITO film
as the active strain element is shown in Fig. 7. Here, an extremely
stable and responsive strain gage was achieved with this 15mm
thick ITO sensor at 1446°C. An average gage factor and drift rate
of 24.9 and 0.00001%/h, respectively, were established over the
course of several hours of strain testing. The high-temperature pi-
ezoresistive properties of these thick ITO films are significantly bet-
ter than those observed for ITO sensors prepared with very thin
active strain elements. The only difference between the 10 and the
15 mm thick strain ITO strain gages was the considerably lower
baseline resistance associated with the 15mm thick strain gages.
This marked improvement in the piezoresistive response and stabil-

ity associated with these very thick ITO gages leads us to believe
that significant changes in the microstructure of the ITO films had
occurred either as a result of processing the films or postdeposition
heat-treatment.

Initially, the extremely stable and responsive ITO strain sensors
were prepared by sputtering very thick ITO films in oxygen:argon
atmospheres and subsequently annealing them in nitrogen at 800°C.
As suspected, a marked change in microstructure had occurred in
the thick ITO strain gages relative to the thin ITO strain gages pre-
pared in this manner. The ITO sensors were examined prior to and
after strain testing by SEM. An SEM micrograph of a thick ITO
sensor~10 mm! subjected to a postdeposition heat-treatment in ni-
trogen ~Fig. 8! showed that a porous network with considerable
surface roughness had developed after high-temperature exposure.
Examination at higher magnifications of the same surface indicated
that the microstructure consisted of an aggregate of partially sintered
particles,i.e., a contiguous network of nanosized ITO particles with
well-defined necks and isolated nanopores. A fractured surface of a
thick ITO sensor subjected to a postdeposition heat-treatment in
nitrogen and heated to 1530°C is shown in Fig. 9. This cross-
sectional view of the sensor at low magnification reveal that the
interior regions of the thick ITO film contain a large number of
isolated nanopores while the surface layers consisted of a higher
density, coarser grain material where appreciable sintering and den-
sification had occurred. Similar microstructures had been reported
during the rapid heating and sintering of nanocrystalline ITO ce-
ramic particles.22 There, Kimet al.22 reported that once a densified
outer region had formed, the interior regions of the powder compact
were not able to densify because the outer layer constrains the den-
sification geometrically. In our case, the densified or sintered outer
layer of the ITO film prevented oxygen from diffusion into the bulk
film, which further stabilized the ITO at elevated temperature. When
the as-deposited and nitrogen-annealed ITO film~Fig. 10! was com-
pared to the same film after high-temperature exposure~Fig. 8!, it
was evident that the nanoporous microstructure had developed after
high-temperature exposure,i.e., the microstructure was developed
after the temperature exceeded 1500°C. This finding was consistent
with that of Kim et al.22 who observed sluggish densification behav-
ior in nanocrystalline ITO particles when sintered at temperatures
approaching 1600°C.

In an attempt to metastably retain more nitrogen into the ITO
films, a series of ITO films were sputtered in nitrogen overpressures
using different argon/oxygen/nitrogen partial pressures. Not only did
this process permit us to incorporate more nitrogen into the film but

Figure 3. ~a! Piezoresistive response of a 2.5mm thick ITO strain sensor at
1157°C. The strain sensor was subjected to a postdeposition heat-treatment
in nitrogen and had a gage factor of 3.52 and a drift rate of 0.016%/h. Note
the piezoresistive response is out of phase with the excitation signal. The
positive slope associated with the waveform is an indication of signal drift.
~b! Piezoresistive response of a 2.5mm thick ITO strain sensor at 1225°C,
just prior to failure. The strain sensor was subjected to a postdeposition
heat-treatment in nitrogen. Note that the waveform associated with the pi-
ezoresistive response had severely degraded and the baseline resistance had
increased by several orders of magnitude.

Figure 4. Piezoresistive response of a 5mm thick ITO strain sensor at
1438°C, just prior to failure. The strain sensor was subjected to a postdepo-
sition heat-treatment in nitrogen and had a gage factor of 6.8 and a drift rate
of 0.08%/h. Note positive slope of the waveform which is an indication of
signal drift. Also note the degradation of the waveform that typically occurs
just before failure.
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also allowed us to produce similar microstructures in more control-
lable manner. The SEM micrograph in Fig. 11 confirmed our hy-
pothesis that by sputtering in a nitrogen-rich atmosphere we could
produce a similar microstructure,i.e., a microstructure similar to
those associated with the thick ITO films subjected to a postdeposi-
tion heat-treatment~Fig. 8!. However, even though the same par-
tially sintered microstructure with extensive neck formation was ob-

served in Fig. 11, the average ITO particle size was considerably
smaller and the ITO particles had a more angular and faceted mor-
phology. In the case of the nitrogen-sputtered ITO films, it appears
that nitrogen was metastably retained in the individual ITO grains
during sputtering and diffused out of the bulk grains at elevated
temperatures, eventually becoming trapped at grain boundaries
and triple junctions. Under these conditions, sintering and den-
sification of the ITO particles containing these nitrogen-rich grain
boundaries was further retarded and a contiguous network of
nanosized ITO particles was established. In either case, the con-
trolled microstrucutres developed in these sensors were achieved by
controlling the partial pressure of nitrogen in the interconnected
porosity during processing, such that a balance between the rate
of decomposition and the sintering rate was maintained so that
the desired microstructure would persist for prolonged periods at

Figure 5. ~a! Piezoresistive response of an 8mm thick ITO strain sensor at
1441°C. The strain sensor was subjected to a postdeposition heat-treatment
in nitrogen and had a gage factor of 20.9 and a drift rate of 0.00001%/h. Note
the excellent stability of the signal as evidenced by the nearly flat response of
the waveform.~b! Piezoresistive response of an 8mm thick ITO strain sensor
at 1481°C, just prior to failure. The strain sensor was subjected to a post-
deposition heat treatment in nitrogen and had a gage factor of 13.79 and a
drift rate of 0.028%/hr. Note the negative slope of the piezoresistive re-
sponse.

Table I. Piezoresistive responses and drift rates for various ITO
sensors after postdeposition heat-treatment in nitrogen and expo-
sure.

ITO
thickness

Temperature
°C Gage factor

Drift rate
~%/h!

Failure
Temperature

°C

2.5 1157 3.52 0.0160 1157
5 1438 6.8 0.0800 1438
8 1441 20.9 0.0001 1481
8 1481 13.79 0.0280 1481

10 1528 131 0.00001 1544
15 1446 24.9 0.00001 1450

Figure 6. Piezoresistive response of a 10mm thick ITO strain sensor at
1528°C. The strain sensor was subjected to a postdeposition heat-treatment
in nitrogen and had a gage factor of 131 and a drift rate of 0.00001%/h. Note
the excellent stability of the signal as evidenced by the small slope of the
piezoresistive response.

Figure 7. Piezoresistive response of a 15mm thick ITO strain sensor at
1446°C. The strain sensor was subjected to a postdeposition heat-treatment
in nitrogen and had a gage factor of 24.9 and a drift rate of 0.0001%/h. Note
the considerably smaller baseline resistance shown here relative to the base-
line resistance of the 10mm strain sensor shown in Fig. 6. Also note the
excellent stability of the signal as evidenced by the small slope associated
with the piezoresistive response.
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elevated temperatures. Since the decomposition of ITO alloys
in pure nitrogen can occur at temperatures as low as 1100°C,20,21the
decomposition kinetics at higher temperatures can be controlled to a
large extent by the nitrogen partial pressure maintained in the inter-
nal porosity.

Static strain testing further confirmed that sensors prepared with
microstructures containing isolated nanporoes had improved stabil-
ity and piezoresistive responses compared to ITO strain gages with a
typical densified microstructure. The piezoresistive response of a
ceramic strain gage prepared with only 6mm of a nitrogen-sputtered
ITO film ~Fig. 12! demonstrates the critical role that nitrogen plays
in producing these stable nanoporous microstructures. This ITO
thin-film sensor was prepared in a nitrogen-rich atmosphere and
survived tens of hours of strain testing at 1553°C with a gage factor
of 11.4 and a drift rate of 0.0001%/h. These results were signifi-
cantly better than those obtained from thicker ceramic strain gages
prepared in argon/oxygen ambients. For example, the piezoresistive
response of an 8mm thick ITO sensor at 1441°C, was reasonably
good but became unstable at temperatures beyond 1481°C. Thin
nitrogen-sputtered films, however, were stable at temperatures of
1562°C and exhibited a reasonably large piezoresistive response and
low drift rate ~0.0001%/h! at this temperature. When the thin
nitrogen-sputtered films were compared to thick ITO sensors, the
same excellent electrical stability was observed as indicated by the
very low drift rates. Both types of nanoporous ITO films proved to

be effective oxygen diffusion barriers and slowed the migration of
oxygen into the bulk film. This increased the stability of the ITO
films, since the diffusion of oxygen through the nonstoichiometric
indium-tin-oxide can lead to compensation of the doubly charged
oxygen vacancies that are responsible for conduction in these mate-
rials. Since the higher density surface layers of the thicker ITO films
make oxygen diffusion more difficult, the conductivity of the active
sensor elements was much less affected by compensation and the
electrical stability was significantly improved.13

Conclusions

ITO thin-film strain gages prepared with controlled nanoporosity
were demonstrated at temperatures approaching 1600°C. High-
temperature static strain tests indicated that the piezoresistive re-
sponse and electrical stability of these ceramic strain sensors de-

Figure 8. SEM micrographs of a 10mm thick ITO strain element after
postdeposition heat-treatment in nitrogen and testing at 1528°C. The micro-
graphs show a partially sintered microstructure with extensive neck forma-
tion. Note the size and uniformity of the ITO particles and the associated
porosity.

Figure 9. SEM micrograph of a fracture surface of a 10mm thick ITO strain
element after postdeposition heat-treatment in nitrogen and 1500°C expo-
sure.~A! A densified surface layer,~B! a partially sintered ceramic micro-
structure with controlled nanoporosity, and~C! a polycrystalline aluminum
oxide substrate are clearly shown in the fractograph.

Figure 10. SEM micrograph of an as-deposited and annealed ITO strain
sensor~10 mm thick!. The micrograph shows that a relatively dense surface
layer had developed in the ceramic after the postdeposition heat-treatment at
800°C in nitrogen.
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pended on the thickness of ITO films comprising the active strain
elements. When thick ITO gages were heat-treated in nitrogen am-

bients, a partially sintered microstructure consisting of a contiguous
network of submicrometer ITO particles with well-defined necks
and isolated nanoporosity was established. It appeared that densifi-
cation of the ITO particles was retarded during high-temperature
exposure with nitrogen playing a key role in stabilizing the nanopo-
rosity. Based on these findings, ITO strain sensors were also sput-
tered in various nitrogen partial pressures and annealed to produce
sensors with similar characteristics. SEM confirmed that similar mi-
crostructures with controlled nanoporosity could be prepared by this
method as well, but the average particle size was reduced by an
order of magnitude. The electrical properties of relatively thin
nitrogen-sputtered films were superior to those that were prepared
from much thicker, annealed ITO films in terms of baseline resistiv-
ity, stability, and piezoresistive response. Static strain testing indi-
cated that the ITO thin-film strain gages prepared with controlled
nanoporosity survived repeated cyclic loading at temperatures as
high as 1581°C for tens of hours. The microstructure of these ITO
sensors consisted of a sintered or densified outer surface that pro-
tected the interior regions of the sensors from oxygen exposure. The
detailed mechanism for stabilizing the ITO films to these high tem-
peratures is not completely understood at this time and will require
further investigation. However, there are considerable implications
here for other types of ceramic gas sensors where microstructures
with controlled nanoporosity are desired.
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Figure 11. SEM micrograph of a 6mm ITO strain element that was prepared
by sputtering in a nitrogen-rich atmosphere, heat-treated in nitrogen and
tested at 1550°C. Here a partially sintered microstructure with extensive
neck formation similar to the sensor shown in Fig. 8 was observed, however,
the morphology and size of the ITO particles are noticeably different.

Figure 12. Piezoresistive response of a 6mm thick ITO strain sensor at
1553°C. The strain sensor was sputtered in a nitrogen-rich environment and
subjected to a postdeposition heat-treatment in nitrogen. It had a gage factor
of 11.4 and a drift rate of 0.0001%/h. Note the excellent stability of the
signal as evidenced by the relatively small slope of the piezoresistive re-
sponse. The degradation of the waveform is due to warpage and deformation
of the high purity alumina substrate and not the performance of the ITO
sensor.

Journal of The Electrochemical Society, 151 ~8! H198-H203~2004! H203

Downloaded 22 Jun 2012 to 131.128.70.27. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp


	University of Rhode Island
	DigitalCommons@URI
	2004

	Piezoresistive Properties of ITO Strain Sensors Prepared with Controlled Nanoporosity
	Otto J. Gregory
	Tao You
	Terms of Use
	Citation/Publisher Attribution


	tmp.1340997078.pdf.jy7Rl

