Document Type

Article

Date of Original Version

2015

DOI

10.1093/ee/nvu012

Abstract

Eastern hemlock (Tsuga canadensis (L.) Carriere) is a dominant shade-tolerant tree in northeastern United States that has been declining since the arrival of the hemlock woolly adelgid (Adelges tsugae Annand). Determining where A. tsugae settles under different abiotic conditions is important in understanding the insect’s expansion. Resource availability such as light and water can affect herbivore selectivity and damage. We examined how A. tsugae settlement and survival were affected by differences in light intensity and water availability, and how adelgid affected tree performance growing in these different abiotic treatments. In a greenhouse at the University of Rhode Island, we conducted an experiment in which the factors light (full-sun, shaded), water (water-stressed, watered), and adelgid (infested, insect-free) were fully crossed for a total of eight treatments (20 two-year-old hemlock saplings per treatment). We measured photosynthesis, transpiration, water potential, relative water content, adelgid density, and survival throughout the experiment. Adelgid settlement was higher on the old-growth foliage of shaded and water-stressed trees, but their survival was not altered by foliage age or either abiotic factor. The trees responded more to the light treatments than the water treatments. Light treatments caused a difference in relative water content, photosynthetic rate, transpiration, and water potential; however, water availability did not alter these variables. Adelgid did not enhance the impact of these abiotic treatments. Further studies are needed to get a better understanding of how these abiotic factors impact adelgid densities and tree health, and to determine why adelgid settlement was higher in the shaded treatments.

Share

COinS