Document Type

Article

Date of Original Version

2002

Abstract

The function of the heterocercal tail in sharks has long been debated in the literature. Previous kinematic data have supported the classical theory which proposes that the beating of the heterocercal caudal fin during steady horizontal locomotion pushes posteroventrally on the water, generating a reactive force directed anterodorsally and causing rotation around the center of mass. An alternative model suggests that the heterocercal shark tail functions to direct reaction forces through the center of mass. In this paper, we quantify the function of the tail in two species of shark and compare shark tail function with previous hydrodynamic data on the heterocercal tail of sturgeon Acipenser transmontanus. To address the two models of shark heterocercal tail function, we applied the technique of digital particle image velocimetry (DPIV) to quantify the wake of two species of shark swimming in a flow tank. Both steady horizontal locomotion and vertical maneuvering were analyzed. We used DPIV with both horizontal and vertical light sheet orientations to quantify patterns of wake velocity and vorticity behind the heterocercal tail of leopard sharks (Triakis semifasciata) and bamboo sharks (Chiloscyllium punctatum) swimming at 1.0 Ls–1, where L is total body length. Two synchronized high-speed video cameras allowed simultaneous measurement of shark body position and wake structure. We measured the orientation of tail vortices shed into the wake and the orientation of the central jet through the core of these vortices relative to body orientation. Analysis of flow geometry indicates that the tail of both leopard and bamboo shark generates strongly tilted vortex rings with a mean jet angle of approximately 30 ° below horizontal during steady horizontal swimming. The corresponding angle of the reaction force is much greater than body angle (mean 11 °) and the angle of the path of motion of the center of mass (mean approximately 0 °), thus strongly supporting the classical model of heterocercal tail function for steady horizontal locomotion. Vortex jet angle varies significantly with body angle changes during vertical maneuvering, but sharks show no evidence of active reorientation of jet angle relative to body angle, as was seen in a previous study on the function of sturgeon tail. Vortex jet orientation is significantly more inclined than the relatively horizontal jet generated by sturgeon tail vortex rings, demonstrating substantial differences in function in the heterocercal tails of sharks and sturgeon. We present a summary of forces on a swimming shark integrating data obtained here on the tail with previous data on pectoral fin and body function. Body orientation plays a critical role in the overall force balance and compensates for torques generated by the tail. The pectoral fins do not generate lift during steady horizontal locomotion, but play an important hydrodynamic role during vertical maneuvering.

Creative Commons License


This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License

Share

COinS